SWP Logische Programme
|
|
|
- Rainer Beltz
- vor 10 Jahren
- Abrufe
Transkript
1 SWP Logische Programme Alexander Felfernig, Stephan Gspandl Institut für Softwaretechnologie Institute for Software Technology
2 Inhalt Motivation Logische Programme (LP) Resolution Unifikation Logische Programme und Datenbanken Semantik Institute for Software Technology 2
3 LP: Motivation Komplexe und wissensintensive Anwendungen, bspw. Konfiguration von Autos Beispiel für Konfigurationswissensbasis: ~ Komponenten ~ Constraints ~Änderungsrate pro Jahr: 40% OO, prozedurale und funktionale Sprachen anwendbar, aber kostenintensiv (Faktor )! Logische Programme: Trennung zwischen WAS? und WIE? Weitere Anwendungen? Institute for Software Technology 3
4 LP: Wissensrepräsentation Prädikatenlogik 1. Stufe (FOL) Programmierung: Formalisierung von Wissen der Anwendungsdomäne Programm = Reihe von Axiomen Berechnung = Beweis eines Statements Spezifikation des WAS? und nicht des WIE? Institute for Software Technology 4
5 Beispiel: (Bibel)Verwandtschaften Terach Sarah Abraham Nachor Haran Isaak Jiskah Milkah Lot "Abraham opfert Isaak": Ausschnitt eines Gemäldes von Laurent de La Hire ( ). Institute for Software Technology 5
6 Formalisierung Prädikate: father, mother, male, female Verwendung für Relationen (mehrstellig) father(x,y).. X ist der Vater von Y mother(x,y).. X ist die Mutter von Y Eigenschaften (einstellig) male(x).. X ist männlich female(x).. X ist weiblich Institute for Software Technology 6
7 Wissensbasis (test.pl) father(terach,abraham). father(terach,nachor). father(terach,haran). father(abraham,isaak). father(haran,lot). father(haran,milkah). father(haran,jiskah). mother(sarah,isaak). male(terach). male(abraham). male(nachor). male(haran). male(isaak). male(lot). female(sarah). female(milkah). female(jiskah). Institute for Software Technology 7
8 Anfragen Stelle Fragen an die Wissensbasis Beispiele: 1. Ist Abraham der Vater von Isaak? 2. Wer ist die Mutter von Isaak? Antworten (direkt ableitbar): Zu 1.: JA Zu 2.: Sarah (ist die Mutter von Isaak) Institute for Software Technology 8
9 Beispiel in PROLOG BPROLOG: (MSDOS shell) Laden der Wissensbasis: consult(test). Abfragen Mutter von Isaak?- mother(x, isaak). X = sarah yes Kinder von Terach?- father(terach, X). X = abraham?; X = nachor?; X = haran yes Institute for Software Technology 9
10 Erweiterungen (Wissensbasis) Definition von Regeln Beispiel: brother(x,y) X ist der Bruder von Y, wenn X und Y die Kinder von einem Elternteil sind und X zusätzlich ein Mann ist. (parent(z,x) parent(z,y) male(x)) brother(x,y) (father(x,y) mother(x,y)) parent(x,y) Institute for Software Technology 10
11 Beispiel in PROLOG Erweiterte Prädikate X ist Bruder von Y brother(x,y):- parent(x,y):- parent(z,x), parent(z,y), male(x), X\=Y. father(x,y); mother(x,y). Brüder von Abraham?- brother(abraham,y). Y = nachor?; Y = haran? yes Institute for Software Technology 11
12 Weitere Beispiele Definiere natürliche Zahlen: 0 ist eine natürliche Zahl. Ist X eine natürliche Zahl, dann ist auch Ihr Nachfolger (s(x)) eine natürliche Zahl. Definiere Addition: 0 mit jeder beliebigen Zahl X addiert, ergibt X. Wenn X+Y=Z gilt, dann gilt auch s(x)+y=s(z). Institute for Software Technology 12
13 Beispiel in PROLOG 0 ist eine natürliche Zahl n(0). Ist X eine natürliche Zahl, dann ist auch Ihr Nachfolger (s(x)) eine natürliche Zahl n(s(x)):- n(x). /* n(x) n(s(x)) */ Abfrage?- n(x). X = 0?; X = s(0)?; X = s(s(0)) yes Institute for Software Technology 13
14 Beispiel in PROLOG (cont.) 0 mit jeder beliebigen Zahl Y addiert, ergibt Y plus(0,y,y). Wenn X+Y=Z gilt, dann gilt auch s(x)+y=s(z). plus(s(x),y,s(z)):- plus(x,y,z). Abfrage?- plus(s(0),s(0),s(s(0))). yes?- plus(s(0),x,s(s(s(0)))). X = s(s(0))? yes Institute for Software Technology 14
15 Zusammenfassung Deklarative Sichtweise: Beschreibung der gesuchten Lösung NICHT Beschreibung des Lösungswegs Wie können Anfragen automatisiert beantwortet werden? Institute for Software Technology 15
16 Beantworten von Anfragen ( erste Idee ) Versuche Anfrage aus den Regeln mittels logischer Schlüsse zu belegen. Ist das möglich, wird die Anfrage mit Ja beantwortet, ansonsten mit Nein. Beispiel: Sind Abraham und Haran Brüder? Formal: brother(abraham,haran)? Institute for Software Technology 16
17 father(terach,abraham) (father(x,y) mother(x,y)) parent(x,y) parent(terach,abraham) father(terach,haran) male(abraham) parent(terach,haran) (parent(x,y) parent(x,z) male(y)) brother(y,z) brother(abraham,haran) ANTWORT: Institute for Software Technology 17
18 Durchführung von logischen Schlüssen? Wie kann ich aus bestehenden Fakten und Regeln neues Wissen ableiten? In der Aussagenlogik: Beispiel: Aus regen und der Regel regen nass folgt nass. Formal: regen (regen nass) nass Institute for Software Technology 18
19 Schlüsse in der Aussagenlogik AL Interpretationsfunktion I: AL {T,F} Für beliebige Aussagen x,y gilt: I(x y)=t, wenn I(x)=I(y)=T I(x y)=t, wenn I(x)=T oder I(y)=T I(x y)=t, wenn I(x)=T und I(y)=T, oder wenn I(x)=F I( x)=t, wenn I(x)=F Institute for Software Technology 19
20 Schlüsse in AL (cont.) Beispiel: Was ist I(regen nass)? Der Wert hängt von der Interpretation der Aussagen ab, d.h. von I(regen) und I(nass). Zum Beispiel ist I(regen nass)=t, wenn I(regen)=F. Definition: Eine wahre Interpretation eines aussagelogischen Satzes heißt Modell. I(regen)=F, I(nass)=T ist ein Modell für obiges Beispiel. Institute for Software Technology 20
21 Schlüsse in AL (cont.) Ein aussagenlogischer Satz y folgt aus einem aussagenlogischen Satz x (x y), wenn alle Modelle von x auch Modelle von y sind. Beispiel: I(regen)=T, I(nass)=T ist das einzige Modell für regen (regen nass) und auch ein Modell fürnass. Daher gilt: regen (regen nass) nass Institute for Software Technology 21
22 Modus Ponens Regel Generalisierung der letzten Schlußfolgerung: x 1.. x n (x 1.. x n y) y Sie dient der Ableitung neuer Fakten aus der bestehenden Wissensbasis. Regeln dürfen nur die Form x 1.. x n y haben (Horn-Klauseln). Institute for Software Technology 22
23 Schlüsse in der Prädikatenlogik Unterschiede zwischen Prädikatenlogik und Aussagenlogik? Variablen Quantoren (All- und Existenzquantor) Objekte und Beziehungen Allgemeinere Aussagen sind möglich Einschränkung: Im Folgenden wird nur der Allquantor berücksichtigt. Institute for Software Technology 23
24 Variablensubstitution Variable können durch Werte substituiert werden. Eine Substitution ist eine Menge von Paaren x i t i, wo x i eine Variable und t i einen Term bezeichnet. Die Variable x i kommt dabei in der Menge nur maximal einmal vor und darf auch in keinem Term t k mit k i vorkommen. Institute for Software Technology 24
25 Definition (Term): Terme Konstanten sind Terme Variablen sind Terme Sind t 1,..,t n Terme und ist f ein n-stelliges Funktionensymbol, dann ist auch f(t 1,..,t n ) ein Term. Beispiele: 0, X, s(0), s(s(0)),... Institute for Software Technology 25
26 Substitutionsanwendung Sei Θ eine Substitution und t ein Term. Einen Term tθ erhält man, indem man alle Variablen x i in t, für die es einen Eintrag x i t i in Θ gibt, durch t i ersetzt. Der Term tθ wird auch Instanz von t genannt. Beispiel: Aus dem Term male(x) und der Substitution Θ={X terach} erhält man male(terach). Institute for Software Technology 26
27 Anfragen Anfrage: Wer ist die Mutter von Isaak? Formal: mother(x,isaak)? mother(x,isaak). {X sarah} mother(sarah,isaak) Institute for Software Technology 27
28 Beispiel - Wissensdarstellung Textuelle Angabe: 1. Alle Vögel sind Tiere. 2. Alle Adler sind Vögel. 3. Karl liebt Tiere. 4. Kurti ist ein Vogel. 5. Hansi ist ein Adler. Institute for Software Technology 28
29 Lösung tier(x) := vogel(x). vogel(x) := adler(x). liebt(karl,x) := tier(x). vogel(kurti). adler(hansi). Institute for Software Technology 29
30 Anmerkung zur Konversion von Texten in Logik (bzw. LP) Prädikate beschreiben Eigenschaften von Dingen oder deren Relation zu anderen Dingen. Wenn-Dann-Sätze werden zu Implikationen Wird ein Allquantor verwendet, folgt (oft/meist) eine Implikation. Institute for Software Technology 30
Inhalt. SWP Logische Programme. Motivation. Formalisierung. Wissensbasis. Bsp (Bibel)Verwandtschaften. Motivation Sprache LP
Inhalt SWP Logische Programme Franz Wotawa Institut für Softwaretechnologie [email protected] Motivation Sprache LP Resolution Unifikation Datenbanken und logische Programme Semantik 2 Motivation Bsp
5 Logische Programmierung
5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen
Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln
Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese
Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)
Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden
Logische Folgerung. Definition 2.11
Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell
Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur
Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die
Semantik von Formeln und Sequenzen
Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt
Grundlagen der Künstlichen Intelligenz
Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.
Was ist Logische Programmierung?
Was ist Logische Programmierung? Die Bedeutung eines Computer-Programms kann durch Logik erklärt werden. Die Idee der logischen Programmierung besteht darin, die Logik eines Programms selber als Programm
Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)
Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Prolog basiert auf Prädikatenlogik
Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:
Theorie der Informatik
Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax
Probleme beim Arbeiten mit Variablen, Termen und Gleichungen
Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Tage des Unterrichts in Mathematik, Naturwissenschaften und Technik Rostock 2010 Prof. Dr. Hans-Dieter Sill, Universität Rostock, http://www.math.uni-rostock.de/~sill/
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie [email protected]
Inhalt SWP Funktionale Programme (2. Teil) Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie [email protected] Interpreter für funktionale Sprache
Einführung in die Fuzzy Logic
Einführung in die Fuzzy Logic Entwickelt von L. Zadeh in den 60er Jahren Benutzt unscharfe (fuzzy) Begriffe und linguistische Variablen Im Gegensatz zur Booleschen Logik {0,} wird das ganze Intervall [0,]
Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!
Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright
Theoretische Grundlagen des Software Engineering
Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik [email protected] Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Wissensbasierte Systeme
WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien
Logik für Informatiker
Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: [email protected] 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:
Binäre Suchbäume (binary search trees, kurz: bst)
Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Korrelation (II) Korrelation und Kausalität
Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Erfahrungen mit Hartz IV- Empfängern
Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November
FAMILIENSTAND ALLEINERZIEHENDE MÜTTER
Umfrage unter Eltern zur Kinder-Betreuung nach der Trennung Match-patch.de die Partnerbörse für Singles mit Familiensinn hat im Juni eine Umfrage unter seinen Mitgliedern durchgeführt. Bei der Befragung,
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
SCHRITT 1: Öffnen des Bildes und Auswahl der Option»Drucken«im Menü»Datei«...2. SCHRITT 2: Angeben des Papierformat im Dialog»Drucklayout«...
Drucken - Druckformat Frage Wie passt man Bilder beim Drucken an bestimmte Papierformate an? Antwort Das Drucken von Bildern ist mit der Druckfunktion von Capture NX sehr einfach. Hier erklären wir, wie
Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst
Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Peter Becker Hochschule Bonn-Rhein-Sieg Fachbereich Informatik [email protected] Kurzvorlesung am Studieninformationstag, 13.05.2009
AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b
AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität
Angaben zu einem Kontakt...1 So können Sie einen Kontakt erfassen...4 Was Sie mit einem Kontakt tun können...7
Tutorial: Wie kann ich Kontakte erfassen In myfactory können Sie Kontakte erfassen. Unter einem Kontakt versteht man einen Datensatz, der sich auf eine Tätigkeit im Zusammenhang mit einer Adresse bezieht.
GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen. Teil 1: Einführung: Wissensbasis und Ontologie.
GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen Teil 1: Einführung: Wissensbasis und Ontologie Was ist eine Wissensbasis? Unterschied zur Datenbank: Datenbank: strukturiert
Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen
Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke
Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30
Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
1 Einleitung. Lernziele. automatische Antworten bei Abwesenheit senden. Einstellungen für automatische Antworten Lerndauer. 4 Minuten.
1 Einleitung Lernziele automatische Antworten bei Abwesenheit senden Einstellungen für automatische Antworten Lerndauer 4 Minuten Seite 1 von 18 2 Antworten bei Abwesenheit senden» Outlook kann während
Die Bedeutung der Kinder für ihre alkoholabhängigen Mütter
anlässlich des 25. Kongresses des Fachverbandes Sucht e.v. Meilensteine der Suchtbehandlung Jana Fritz & Irmgard Vogt Institut für Suchtforschung FH FFM Forschungsprojekte des Instituts für Suchtforschung
Kapitel 4 Die Datenbank Kuchenbestellung Seite 1
Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 4 Die Datenbank Kuchenbestellung In diesem Kapitel werde ich die Theorie aus Kapitel 2 Die Datenbank Buchausleihe an Hand einer weiteren Datenbank Kuchenbestellung
4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:
4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie
Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation
Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation Einführung Mit welchen Erwartungen gehen Jugendliche eigentlich in ihre Ausbildung? Wir haben zu dieser Frage einmal die Meinungen von Auszubildenden
Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.
R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable
Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3
Bachelor Grundlagen der Logik und Logikprogrammierung 12. Februar 2009 3 Aufgabe 1 (20 Punkte) Dialogische Logik a) Was isteine formal wahrebehauptung? Welche Aussageschematasindallgemeingültig? b) Überprüfen
Wie ist das Wissen von Jugendlichen über Verhütungsmethoden?
Forschungsfragen zu Verhütung 1 Forschungsfragen zu Verhütung Wie ist das Wissen von Jugendlichen über Verhütungsmethoden? Wie viel Information über Verhütung ist enthalten? Wie wird das Thema erklärt?
Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4
Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt
Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich
Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes
Lineare Differentialgleichungen erster Ordnung erkennen
Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die
Anleitung über den Umgang mit Schildern
Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Beispiele für Relationen
Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Professionelle Seminare im Bereich MS-Office
Gegenüber PowerPoint 2003 hat sich in PowerPoint 2007 gerade im Bereich der Master einiges geändert. Auf Handzettelmaster und Notizenmaster gehe ich in diesen Ausführungen nicht ein, die sind recht einfach
Whitepaper. Produkt: combit Relationship Manager 7. combit Relationship Manager email-rückläufer Script. combit GmbH Untere Laube 30 78462 Konstanz
combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager 7 combit Relationship Manager email-rückläufer Script Inhalt Einleitung 3 Notwendige Anpassungen 3 crm Solution
Use Cases. Die Sicht des Nutzers. Fortgeschrittenenpraktikum SS 2004
Use Cases Die Sicht des Nutzers Fortgeschrittenenpraktikum SS 2004 Gunar Fiedler Lehrstuhl für Technologie der Informationssysteme Kontakt: [email protected] Use Cases 2 Was ist ein Use
Repräsentative Umfrage zur Beratungsqualität im deutschen Einzelhandel (Auszug)
Porsche Consulting Exzellent handeln Repräsentative Umfrage zur Beratungsqualität im deutschen Einzelhandel (Auszug) Oktober 2013 Inhalt Randdaten der Studie Untersuchungsziel der Studie Ergebnisse der
Erfüllbarkeit und Allgemeingültigkeit
Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN
ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden
Ich bin ein Versager. ich stehe mir selbst im Weg. Was kann mir helfen Arzt Therapeut Psychologe Sie haben versagt. Ihre Abteilung bringt keine Leistung Sie haben mir kein Geld und Personal gegeben Sie
Sehr geehrte Damen und Herren
Sehr geehrte Damen und Herren Im Infobrief 3 von Netzwerk Elternschaft von Menschen mit geistiger Behinderung, haben wir Sie aufgefordert, Ihre Kenntnisse über Eltern mit einer geistigen Behinderung und
Einführung in das Programmieren Prolog Sommersemester 2006. Teil 2: Arithmetik. Version 1.0
Einführung in das Programmieren Prolog Sommersemester 2006 Teil 2: Arithmetik Version 1.0 Gliederung der LV Teil 1: Ein motivierendes Beispiel Teil 2: Einführung und Grundkonzepte Syntax, Regeln, Unifikation,
1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden.
Der Serienversand Was kann man mit der Maske Serienversand machen? 1. Adressen für den Serienversand (Briefe Katalogdruck Werbung/Anfrage ) auswählen. Die Auswahl kann gespeichert werden. 2. Adressen auswählen,
Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1
Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Zunächst einmal: Keine Angst, die Beschreibung des Verfahrens sieht komplizierter
Informationen zum Ambulant Betreuten Wohnen in leichter Sprache
Informationen zum Ambulant Betreuten Wohnen in leichter Sprache Arbeiterwohlfahrt Kreisverband Siegen - Wittgenstein/ Olpe 1 Diese Information hat geschrieben: Arbeiterwohlfahrt Stephanie Schür Koblenzer
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Glaube an die Existenz von Regeln für Vergleiche und Kenntnis der Regeln
Glaube an die Existenz von Regeln für Vergleiche und Kenntnis der Regeln Regeln ja Regeln nein Kenntnis Regeln ja Kenntnis Regeln nein 0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % Glauben Sie, dass
Anhang. 3. Was denken Sie: An wen richtet sich das Lernprogramm für Psycholinguistik? zu nicht nicht zu
Anhang Bitte füllen Sie den Fragebogen vollständig, ehrlich und genau aus! Es gibt keine falschen Antworten! Ihre Angaben sind anonym und werden absolut vertraulich behandelt. Sie werden nur zu Forschungs-
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
FH-SY Chapter 2.4 - Version 3 - FH-SY.NET - FAQ -
FH-SY Chapter 2.4 - Version 3 - FH-SY.NET - FAQ - Version vom 02.02.2010 Inhaltsverzeichnis 1. KANN ICH BEI EINER EIGENEN LEKTION NACHTRÄGLICH NOCH NEUE LERNINHALTE ( WAS WURDE BEHANDELT? ) EINFÜGEN?...
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen
Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe)
So versprüht man digitalen Lockstoff
So versprüht man digitalen Lockstoff ist ein Spezialist für hyperlokales mobiles Advertising. Wir haben eine Webanwendung entwickelt, mit der potenzielle Kunden genau da erreicht werden, wo Sie es wünschen.
Statuten in leichter Sprache
Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN
HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
Animationen erstellen
Animationen erstellen Unter Animation wird hier das Erscheinen oder Bewegen von Objekten Texten und Bildern verstanden Dazu wird zunächst eine neue Folie erstellt : Einfügen/ Neue Folie... Das Layout Aufzählung
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Welche Staatsangehörigkeit(en) haben Sie?... Mutter geboren?...
Erhebung zu den Meinungen und Erfahrungen von Immigranten mit der deutschen Polizei Im Rahmen unseres Hauptseminars zu Einwanderung und Integration an der Universität Göttingen wollen wir die Meinungen
Bedienungsanleitung - Webtool
Seite 1 Wie erstelle ich eine Anfrage? - Seite 2 Freie Anfrage - Seite 3 Strukturierte Anfrage Seite 4 Wie bestelle ich ein Angebot? Seite 5 Wie storniere ich eine Anfrage? Bedienungsanleitung - Webtool
Produktionsplanung und steuerung (SS 2011)
Produktionsplanung und steuerung (SS 2011) Teil 1 Sie arbeiten seit 6 Monaten als Wirtschaftsingenieur in einem mittelständischen Unternehmen in Mittelhessen. Das Unternehmen Möbel-Meier liefert die Büroaustattung
Kurzanleitung fu r Clubbeauftragte zur Pflege der Mitgliederdaten im Mitgliederbereich
Kurzanleitung fu r Clubbeauftragte zur Pflege der Mitgliederdaten im Mitgliederbereich Mitgliederbereich (Version 1.0) Bitte loggen Sie sich in den Mitgliederbereich mit den Ihnen bekannten Zugangsdaten
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Windows Server 2012 RC2 konfigurieren
Windows Server 2012 RC2 konfigurieren Kurzanleitung um einen Windows Server 2012 als Primären Domänencontroller einzurichten. Vorbereitung und Voraussetzungen In NT 4 Zeiten, konnte man bei der Installation
AutoTexte und AutoKorrektur unter Outlook verwenden
AutoTexte und AutoKorrektur unter Outlook verwenden Die Hilfsmittel "AutoKorrektur" und "AutoTexte", die schon unter Microsoft Word das Arbeiten erleichtern, sind natürlich auch unter Outlook verfügbar.
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode
Lehrer: Einschreibemethoden
Lehrer: Einschreibemethoden Einschreibemethoden Für die Einschreibung in Ihren Kurs gibt es unterschiedliche Methoden. Sie können die Schüler über die Liste eingeschriebene Nutzer Ihrem Kurs zuweisen oder
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007
R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei
Wärmebildkamera. Arbeitszeit: 15 Minuten
Wärmebildkamera Arbeitszeit: 15 Minuten Ob Menschen, Tiere oder Gegenstände: Sie alle senden unsichtbare Wärmestrahlen aus. Mit sogenannten Wärmebildkameras können diese sichtbar gemacht werden. Dadurch
Anmelden und Vorträge einreichen auf der JBFOne-Website Inhalt
Inhalt 1. Schritt: Anmelden 2 Anmelden mit Daten von 2014... 3 Neu anmelden... 3 Maske 1: Persönliche Angaben... 3 Maske 2: Angaben über Ihr Unternehmen... 3 Maske 3: Teilnahme und Rechnungsangaben...
Gutes Leben was ist das?
Lukas Bayer Jahrgangsstufe 12 Im Hirschgarten 1 67435 Neustadt Kurfürst-Ruprecht-Gymnasium Landwehrstraße22 67433 Neustadt a. d. Weinstraße Gutes Leben was ist das? Gutes Leben für alle was genau ist das
Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b
Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und
Anleitung für die Teilnahme an den Platzvergaben "Studio II, Studio IV und Studio VI" im Studiengang Bachelor Architektur SS15
Anleitung für die Teilnahme an den Platzvergaben "Studio II, Studio IV und Studio VI" im Studiengang Bachelor Architektur SS15 1 Bitte melden Sie sich über das Campusmanagementportal campus.studium.kit.edu
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer
Fachdidaktik der Informatik 18.12.08 Jörg Depner, Kathrin Gaißer Klassendiagramme Ein Klassendiagramm dient in der objektorientierten Softwareentwicklung zur Darstellung von Klassen und den Beziehungen,
50 Fragen, um Dir das Rauchen abzugewöhnen 1/6
50 Fragen, um Dir das Rauchen abzugewöhnen 1/6 Name:....................................... Datum:............... Dieser Fragebogen kann und wird Dir dabei helfen, in Zukunft ohne Zigaretten auszukommen
9. Übung Formale Grundlagen der Informatik
Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs ([email protected]) Reinhard Riedl ([email protected]) Nadine Korolnik ([email protected])
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:
VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt
