Angewandte Strömungssimulation

Größe: px
Ab Seite anzeigen:

Download "Angewandte Strömungssimulation"

Transkript

1 Angewandte Strömungssimulation 8. Vorlesung Stefan Hickel

2 Visualisierung

3 Prinzipien zur sinnvollen Ergebnisdarstellung! Achsen immer beschriften Einheiten angeben! Bei Höhenliniendarstellungen und Konturdarstellungen immer eine Legende mitliefern! Bei Isoflächen den Iso-Wert mit angeben! wenn Daten weiterverarbeitet werden, dann ist die Formel anzugeben! bei Anfangswertproblemen die Anfangsbedingungen klar angeben Stefan Hickel - Angewandte Strömungssimulation 3

4 Quantitative Auswertung Mittelwert! Profile der mittleren Geschwindigkeit <u>, <v>, <w> Schwankungsgrößen! Reynoldsspannungen Stefan Hickel - Angewandte Strömungssimulation 4

5 Quantitative Auswertung Energiespektren! Räumliche oder zeitliche Fourier-Transformation des Geschwindigkeitsfeldes (FFT-Algorithmus)! Darstellung der spektralen Energie über der Wellenzahl Stefan Hickel - Angewandte Strömungssimulation 5

6 Visualisierung Stromlinien! Stromlinien sind die Linien, deren Tangentenrichtungen in jedem Punkt mit der Richtungen der Geschwindigkeit übereinstimmen.! Leicht berechenbar durch Verfolgen der Bahn eines masselosen Partikels im eingefrorenen Strömungsfeld.! Stromlinien sind Höhenlinien der Stromfunktion -> numerische Integration einer Momentanaufnahme der Strömung Stefan Hickel - Angewandte Strömungssimulation 6

7 Visualisierung Vektordarstellung regelmäßige Anordnung zufällige Anordnung dynamischeres Bild Stefan Hickel - Angewandte Strömungssimulation 7

8 Visualisierung Bahnlinien! Beschreibt die Bahn eines Teilchens in der sich zeitlich verändernden Strömung. Streichlinien! Verbinden der momentanen Ortspunkte aller Partikel die zu schon einmal an einem gegebenen Ort wahren oder in der Zukunft sein werden. Stefan Hickel - Angewandte Strömungssimulation 8

9 Wirbelidentifikation! Wie kann man einen Wirbel graphisch darstellen?! Problem: Es existiert keine formale mathematische Definition eines Wirbels.! Wirbel werden im Allgemeinen als in einer turbulenten Strömung auftretende kohärente Strukturen aufgefasst! turbulente Strömungen bestehen aus einer Vielzahl von Wirbeln, gemeint sind die großen (energietragenden) Strukturen! Intuitive Kriterien: niedriger statischer Druck hohe Beträge der Wirbelstärke Stefan Hickel - Angewandte Strömungssimulation 9

10 Wirbelidentifikation! lokales Druckminimum: im Wirbel stehen Zentrifugal- und Druckkräfte im Gleichgewicht, was zu einem Druckminimum im Kern des Wirbels führt aber auch Druckminima ohne Wirbel sind möglich weder hinreichende noch notwendige Bedingung für einen Wirbel aber z.b. für Grenzschichten gut anwendbar Stefan Hickel - Angewandte Strömungssimulation 10

11 Wirbelidentifikation! hohe Beträge der Wirbelstärke Wirbelstärke wird an der Wand maximal ω-isoflächen in Rohrströmungen sind Röhren nicht geeignet zur Wirbelidentifikation! erweiterte Identifikationskriterien sind erforderlich Δ-Kriterium Q-Kriterium λ 2 -Kriterium (J. Jeong & F. Hussain: On the identification of a vortex, J. Fluid Mech. 1995) Stefan Hickel - Angewandte Strömungssimulation 11

12 Wirbelidentifikation Δ-Kriterium: Q-Kriterium: Der Geschwindigkeitsgradiententensor hat komplexe Eigenwerte, wenn geschlossene oder spiralförmige Stromlinien auftreten 2. Invariante des Gradiententensors Q = 1 ( 2 A 2 S 2 ) A und S sind die antimetrischen und symmetrischen Anteile des Geschwindig- keitsgradiententensors A = 1 2 (( u ) T u) S = 1 2 (( u ) T + u) Stefan Hickel - Angewandte Strömungssimulation 12

13 Wirbelidentifikation Q-Kriterium(2): Die 2. Invariante Q beschreibt das lokale Gleichgewicht zwischen Rotation und Scherung in allen Raumrichtungen. Wenn Q>0, so überwiegt die Rotation die Scherung keine Eindeutigkeit Abhilfe durch Q>0 und p<p grenz Stefan Hickel - Angewandte Strömungssimulation 13

14 Wirbelidentifikation λ 2 -Kriterium:! Die Existenz eines Druckminimums ist nicht gleichbedeutend mit dem Vorhandensein eines Wirbels! Gründe: 1.) durch instationäre Dehnung des Strömungsfeldes entstehen Druckminima ohne Wirbelbewegung 2.) viskose Effekte können vorhandene Druckminima eliminieren! Idee: diese Effekte bei der Wirbelidentifikation vernachlässigen! Informationen über lokale Druckminima sind in der Hesse-Matrix des Drucks enthalten Stefan Hickel - Angewandte Strömungssimulation 14

15 Wirbelidentifikation! durch Bildung des Gradienten der Navier-Stokes-Gleichung und weiteren Umstellungen folgt:! Tensor S und A sind der symmetrische bzw. antimetrische Anteil des Geschwindigkeitsgradiententensors! die Hesse-Matrix ist ein symmetrischer Tensor! Aufgrund der Symmetrie von H(p) ist nur der symmetrische Anteil relevant Stefan Hickel - Angewandte Strömungssimulation 15

16 Wirbelidentifikation! der instationäre und der viskose Term werden vernachlässigt! ein Wirbel ist ein Gebiet mit zwei negativen Eigenwerten des Tensors A 2 +S 2! Aufgrund der Symmetrie besitzt A 2 +S 2 nur reelle Eigenwerte! mit λ 3 <λ 2 <λ 1 sind negative Eigenwerte λ 2 ein Indikator für Wirbelgebiete Stefan Hickel - Angewandte Strömungssimulation 16

17 Wirbelidentifikation Alternativ: Iso-Flächen negativer Druckfluktuationen p! nur bei bekanntem Mittelwert <p>! große Wirbelstrukturen hohe kinetische Energie hohe negative Abweichung des Druckes vom Mittelwert! einfaches und effektives Kriterium Stefan Hickel - Angewandte Strömungssimulation 17

18 Wandstromlinien! Wandstromlinien Integrallinien des Richtungsfeldes der Wandschubspannung! Vergleichsdarstellung zu Wandanstrichbildern, wie sie aus Experimenten bekannt sind. Stefan Hickel - Angewandte Strömungssimulation 18

19 Schlierenbilder! Darstellung von Dichtegradienten durch so genannte Schlierenoptik! Mit der Änderung der Dichte ist eine Änderung des Brechungsindex des Lichtes verbunden! Ablenkung des Lichtstrahls ist proportional zum Dichtegradienten! Gebiete gleicher Dichtegradienten werden durch gleiche Farben auf dem Schirm abgebildet! Konvektion durch Wärmezufuhr: Stefan Hickel - Angewandte Strömungssimulation 19

20 Schlierenbilder! für kompressible Strömungen wird das Dichtefeld sichtbar gemacht (bzw. dessen Gradienten) Schlierenbild einer Gewehrkugel bei Ma=3 Stefan Hickel - Angewandte Strömungssimulation 20

21 Schlierenbild auch möglich für zivile Anwendungen Stefan Hickel - Angewandte Strömungssimulation 21

22 Schlierenbild! Ein numerisch erzeugtes Schlierenbild kann man durch die Darstellung des Dichtegradienten erreichen:! Dabei wird meist über die Richtung gemittelt, welche mit der Durchsichtrichtung im Experiment übereinstimmt. Stefan Hickel - Angewandte Strömungssimulation 22

23 Schlierenbild N.A. Adams (2000) Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Re=1685 Simulation Experiment Stefan Hickel - Angewandte Strömungssimulation 23

24 Beispiel 1 LES einer Zylinderumströmung bei Re=3900 Zwei Isoflächen des Druckes Stefan Hickel - Angewandte Strömungssimulation 24

25 Beispiel 1 LES einer Zylinderumströmung bei Re=3900 Zwei Isoflächen der X-Komponente der Wirbelstärke Stefan Hickel - Angewandte Strömungssimulation 25

26 Beispiel 2 Turbulente Umströmung eines rechteckigen Zylinders! Turbulenzmodell: SAS-SST F. Menter and Y. Egorov: A Scale Adaptive Simulation Model using Two-Equation Models, AIAA , 2005! Reynolds-Zahl: Re = 2.2 x 10 4! Simulation mit CFL 1! Ablösefrequenz: f 7 Hz! phys. Zeitschritt: t = 7.5 x 10-6 s! Simulation einer Ablöseperiode: ca Zeitschritte! Grundlage für statistische Auswertung turbulenter Effekte: ca. 7 Ablöseperioden! Simulationsbedarf: ca Zeitschritte Stefan Hickel - Angewandte Strömungssimulation 26

27 Beispiel 2! Isofläche Ω 2 - S 2 = const., coloriert mit turbulenter Längenskala Stefan Hickel - Angewandte Strömungssimulation 27

28 Beispiel 2! Contourplot der Geschwindigkeitsverteilung! räumliche Stromlinienverteilung! Wandschubspannung auf der Zylinderoberfläche Stefan Hickel - Angewandte Strömungssimulation 28

29 Beispiel 3! Mischung von Sauerstoff und Wasserstoff in einer Raketenbrennkammer (p 100 bar) Stefan Hickel - Angewandte Strömungssimulation! Geschwindigkeit im Nachlaufwirbel hinter einem Eurofighter 29

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 9. Vorlesung Stefan Hickel Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung Auswertung Parameter und Kennzahlen

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit 5.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit Einführendes Beispiel ( Erhöhung der Sicherheit bei Flugreisen ) Die statistische Wahrscheinlichkeit, dass während eines Fluges ein Sprengsatz an Bord

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Statuten in leichter Sprache

Statuten in leichter Sprache Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg Baden-Württemberg: Fachhochschulreie 2015 www.mathe-augaben.com Hauptprüung Fachhochschulreie 2015 Baden-Württemberg Augabe 1 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Zahlen auf einen Blick

Zahlen auf einen Blick Zahlen auf einen Blick Nicht ohne Grund heißt es: Ein Bild sagt mehr als 1000 Worte. Die meisten Menschen nehmen Informationen schneller auf und behalten diese eher, wenn sie als Schaubild dargeboten werden.

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: [email protected]. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit [email protected] 6

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Erstellen von x-y-diagrammen in OpenOffice.calc

Erstellen von x-y-diagrammen in OpenOffice.calc Erstellen von x-y-diagrammen in OpenOffice.calc In dieser kleinen Anleitung geht es nur darum, aus einer bestehenden Tabelle ein x-y-diagramm zu erzeugen. D.h. es müssen in der Tabelle mindestens zwei

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

WLAN Konfiguration. Michael Bukreus 2014. Seite 1

WLAN Konfiguration. Michael Bukreus 2014. Seite 1 WLAN Konfiguration Michael Bukreus 2014 Seite 1 Inhalt Begriffe...3 Was braucht man für PureContest...4 Netzwerkkonfiguration...5 Sicherheit...6 Beispielkonfiguration...7 Screenshots Master Accesspoint...8

Mehr

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt

Optik: Teilgebiet der Physik, das sich mit der Untersuchung des Lichtes beschäftigt -II.1- Geometrische Optik Optik: Teilgebiet der, das sich mit der Untersuchung des Lichtes beschäftigt 1 Ausbreitung des Lichtes Das sich ausbreitende Licht stellt einen Transport von Energie dar. Man

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

Wärmebildkamera. Arbeitszeit: 15 Minuten

Wärmebildkamera. Arbeitszeit: 15 Minuten Wärmebildkamera Arbeitszeit: 15 Minuten Ob Menschen, Tiere oder Gegenstände: Sie alle senden unsichtbare Wärmestrahlen aus. Mit sogenannten Wärmebildkameras können diese sichtbar gemacht werden. Dadurch

Mehr

AM 53/2012. Amtliche Mitteilungen 53/2012

AM 53/2012. Amtliche Mitteilungen 53/2012 AM 53/2012 Amtliche Mitteilungen 53/2012 Dritte Ordnung zur Änderung der Prüfungsordnung für den Bachelor-Studiengang Wirtschaftsmathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Universität

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen

Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen Anspruchsvolle Dreierausdrücke zum selbstständigen Lernen von Frank Rothe Das vorliegende Übungsblatt ist als Anregung gedacht, die Sie in Ihrer Klasse in unterschiedlicher Weise umsetzen können. Entwickelt

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Mit dem Tool Stundenverwaltung von Hanno Kniebel erhalten Sie die Möglichkeit zur effizienten Verwaltung von Montagezeiten Ihrer Mitarbeiter.

Mit dem Tool Stundenverwaltung von Hanno Kniebel erhalten Sie die Möglichkeit zur effizienten Verwaltung von Montagezeiten Ihrer Mitarbeiter. Stundenverwaltung Mit dem Tool Stundenverwaltung von Hanno Kniebel erhalten Sie die Möglichkeit zur effizienten Verwaltung von Montagezeiten Ihrer Mitarbeiter. Dieses Programm zeichnet sich aus durch einfachste

Mehr

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b

AGROPLUS Buchhaltung. Daten-Server und Sicherheitskopie. Version vom 21.10.2013b AGROPLUS Buchhaltung Daten-Server und Sicherheitskopie Version vom 21.10.2013b 3a) Der Daten-Server Modus und der Tresor Der Daten-Server ist eine Betriebsart welche dem Nutzer eine grosse Flexibilität

Mehr

Drei Fragen zum Datenschutz im. Nico Reiners

Drei Fragen zum Datenschutz im. Nico Reiners Drei Fragen zum Datenschutz im Geoinformationswesen Nico Reiners 1. Frage Welche Geoinformationen sind personenbezogen? Personenbezug? Personenbezogene Daten sind Einzelangaben über persönliche oder sachliche

Mehr

Umgang mit Schaubildern am Beispiel Deutschland surft

Umgang mit Schaubildern am Beispiel Deutschland surft -1- Umgang mit Schaubildern am Beispiel Deutschland surft Im Folgenden wird am Beispiel des Schaubildes Deutschland surft eine Lesestrategie vorgestellt. Die Checkliste zur Vorgehensweise kann im Unterricht

Mehr

Handbuch ECDL 2003 Basic Modul 6: Präsentation Diagramm auf einer Folie erstellen

Handbuch ECDL 2003 Basic Modul 6: Präsentation Diagramm auf einer Folie erstellen Handbuch ECDL 2003 Basic Modul 6: Präsentation Diagramm auf einer Folie erstellen Dateiname: ecdl6_05_01_documentation_standard.doc Speicherdatum: 14.02.2005 ECDL 2003 Basic Modul 6 Präsentation - Diagramm

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Festigkeit von FDM-3D-Druckteilen

Festigkeit von FDM-3D-Druckteilen Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der

Mehr

Deutsches Rotes Kreuz. Kopfschmerztagebuch von:

Deutsches Rotes Kreuz. Kopfschmerztagebuch von: Deutsches Rotes Kreuz Kopfschmerztagebuch Kopfschmerztagebuch von: Hallo, heute hast Du von uns dieses Kopfschmerztagebuch bekommen. Mit dem Ausfüllen des Tagebuches kannst Du mehr über Deine Kopfschmerzen

Mehr

4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz"

4.4 AnonymeMärkteunddasGleichgewichtdervollständigen Konkurrenz 4.4 AnonymeMärkteunddasGleichgewichtder"vollständigen Konkurrenz" Wir haben bisher nachvollziehen können, wie zwei Personen für sich den Anreiz zum TauschentdeckenundwiemitwachsenderBevölkerungdieMengederAllokationensinkt,

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Lehrer: Einschreibemethoden

Lehrer: Einschreibemethoden Lehrer: Einschreibemethoden Einschreibemethoden Für die Einschreibung in Ihren Kurs gibt es unterschiedliche Methoden. Sie können die Schüler über die Liste eingeschriebene Nutzer Ihrem Kurs zuweisen oder

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

FRAGE 39. Gründe, aus denen die Rechte von Patentinhabern beschränkt werden können

FRAGE 39. Gründe, aus denen die Rechte von Patentinhabern beschränkt werden können Jahrbuch 1963, Neue Serie Nr. 13, 1. Teil, 66. Jahrgang, Seite 132 25. Kongress von Berlin, 3. - 8. Juni 1963 Der Kongress ist der Auffassung, dass eine Beschränkung der Rechte des Patentinhabers, die

Mehr

Glaube an die Existenz von Regeln für Vergleiche und Kenntnis der Regeln

Glaube an die Existenz von Regeln für Vergleiche und Kenntnis der Regeln Glaube an die Existenz von Regeln für Vergleiche und Kenntnis der Regeln Regeln ja Regeln nein Kenntnis Regeln ja Kenntnis Regeln nein 0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % Glauben Sie, dass

Mehr

Rundung und Casting von Zahlen

Rundung und Casting von Zahlen W E R K S T A T T Rundung und Casting von Zahlen Intrexx 7.0 1. Einleitung In diesem Werkstattbeitrag erfahren Sie, wie Zahlenwerte speziell in Velocity, aber auch in Groovy, gerundet werden können. Für

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Bilder im Gemeindebrief ansprechend platzieren

Bilder im Gemeindebrief ansprechend platzieren Bilder im Gemeindebrief ansprechend platzieren veröffentlicht am 20. Januar 2015 by Nelli Schwarz in Gestaltungstipps Ein Gemeindebrief besteht gewöhnlich hauptsächlich aus Texten und Bildern. Wie man

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

Informationen zum Ambulant Betreuten Wohnen in leichter Sprache

Informationen zum Ambulant Betreuten Wohnen in leichter Sprache Informationen zum Ambulant Betreuten Wohnen in leichter Sprache Arbeiterwohlfahrt Kreisverband Siegen - Wittgenstein/ Olpe 1 Diese Information hat geschrieben: Arbeiterwohlfahrt Stephanie Schür Koblenzer

Mehr

Silca Software ERKLÄRUNG. February 2013 Copyright Silca S.p.A. V.2.0

Silca Software ERKLÄRUNG. February 2013 Copyright Silca S.p.A. V.2.0 ERKLÄRUNG Was ist eine KARTE? KARTE oder Gesamtheit der Parameter hinsichtlich Abstände, Frästiefe, Fräsbasis, Winkel, Bezug, Spannbacke, Fräser ( insgesamt etwa 250 Parameter für jede Schlüsselachse )

Mehr

Notation und Gestaltung

Notation und Gestaltung Kapitel 1 Zahlen visualisieren die Grundlagen Notation und Gestaltung Gestaltungsregeln aus dem Corporate Design sollten nur dann zur Anwendung kommen, wenn sie dem Verständnis dienen. Alle dekorativen

Mehr

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen:

Erweiterung der Aufgabe. Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: VBA Programmierung mit Excel Schleifen 1/6 Erweiterung der Aufgabe Die Notenberechnung soll nicht nur für einen Schüler, sondern für bis zu 35 Schüler gehen: Es müssen also 11 (B L) x 35 = 385 Zellen berücksichtigt

Mehr

Versetzungsregeln in Bayern

Versetzungsregeln in Bayern Grundschule Schüler der Jahrgangsstufen 1 und 2 rücken ohne besondere Entscheidung vor. Das Vorrücken in den Jahrgangsstufen 3 und 4 soll nur dann versagt werden, wenn der Schüler in seiner Entwicklung

Mehr

Kleine Einführung in die lineare Regression mit Excel

Kleine Einführung in die lineare Regression mit Excel Kleine Einführung in die lineare Regression mit Excel Grundoperationen mit Excel Werte mit Formeln berechnen Bsp.: Mittelwert und Standardabweichung Das $-Zeichen Beispielauswertung eines Versuches Daten

Mehr

Auswertung des Jahresabschlusses Bilanzanalyse 2

Auswertung des Jahresabschlusses Bilanzanalyse 2 KA11 Unternehmensergebnisse aufbereiten, bewerten und nutzen Auswertung des Jahresabschlusses Bilanzanalyse 2 Kennzahlen zur Bilanzanalyse Die aufbereitete Bilanz kann mit Hilfe unterschiedlicher Kennzahlen

Mehr

Fragebogen zur Diplomarbeit von Thomas Friedrich

Fragebogen zur Diplomarbeit von Thomas Friedrich Fragebogen zur Diplomarbeit von Thomas Friedrich Thema der Diplomarbeit: Optimierungspotentiale Klein- und mittelständischer Unternehmen - Methodenanalyse zur Effektivitätssteigerung und Kostenreduktion

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Ein Blick voraus. des Autors von C++: Bjarne Stroustrup. 04.06.2005 Conrad Kobsch

Ein Blick voraus. des Autors von C++: Bjarne Stroustrup. 04.06.2005 Conrad Kobsch Ein Blick voraus des Autors von C++: Bjarne Stroustrup 04.06.2005 Conrad Kobsch Inhalt Einleitung Rückblick Nur eine Übergangslösung? Was würde C++ effektiver machen? Quelle 2 Einleitung Wo steht C++,

Mehr

FRAGEBOGEN ANWENDUNG DES ECOPROWINE SELBSTBEWERTUNG-TOOLS

FRAGEBOGEN ANWENDUNG DES ECOPROWINE SELBSTBEWERTUNG-TOOLS Dieser Fragebogen bildet eine wichtige Rückmeldung der Pilotweingüter über Verständnis, Akzeptanz und Effektivität des ECOPROWINE Selbstbewertung-tools für alle daran Beteiligten. Dieser Fragebogen besteht

Mehr

Die Übertragung der Tonalität auf den Bildstil

Die Übertragung der Tonalität auf den Bildstil Bildstil der Marke Niederösterreich Die Bildwelt einer Marke gliedert sich in zwei Komponenten die Bildsprache und den Bildstil. Dabei beschreibt die Bildsprache den Inhalt der Bilder, also das, was dargestellt

Mehr

Michelson-Interferometer & photoelektrischer Effekt

Michelson-Interferometer & photoelektrischer Effekt Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &

Mehr

A Vortex Particle Method for Smoke, Fire, and Explosions

A Vortex Particle Method for Smoke, Fire, and Explosions Hauptseminar WS 05/06 Graphische Datenverarbeitung A Vortex Particle Method for Smoke, Fire, and Explosions ( Ein Wirbel-Partikel Ansatz für Rauch, Feuer und Explosionen ) Martin Petrasch Inhalt 1. Überblick

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Bereich METIS (Texte im Internet) Zählmarkenrecherche

Bereich METIS (Texte im Internet) Zählmarkenrecherche Bereich METIS (Texte im Internet) Zählmarkenrecherche Über die Zählmarkenrecherche kann man nach der Eingabe des Privaten Identifikationscodes einer bestimmten Zählmarke, 1. Informationen zu dieser Zählmarke

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Anleitung für die Online-Bewerbung über LSF auf Lehrveranstaltungen aller Lehramtsstudiengänge

Anleitung für die Online-Bewerbung über LSF auf Lehrveranstaltungen aller Lehramtsstudiengänge Einloggen: Eingabe von Benutzername und Passwort Benutzername = Matrikelnummer (z.b. 999999) Passwort = Geburtsdatum (z.b. 31.12.1998) wird angezeigt als ********** Nach dem ersten Einloggen sollten sie

Mehr

A. Ersetzung einer veralteten Govello-ID ( Absenderadresse )

A. Ersetzung einer veralteten Govello-ID ( Absenderadresse ) Die Versendung von Eintragungsnachrichten und sonstigen Nachrichten des Gerichts über EGVP an den Notar ist nicht möglich. Was kann der Notar tun, um den Empfang in seinem Postfach zu ermöglichen? In zahlreichen

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Teaser-Bilder erstellen mit GIMP. Bildbearbeitung mit GIMP 1

Teaser-Bilder erstellen mit GIMP. Bildbearbeitung mit GIMP 1 Teaser-Bilder erstellen mit GIMP 08.08.2014 Bildbearbeitung mit GIMP 1 Auf den folgenden Seiten werden die wichtigsten Funktionen von GIMP gezeigt, welche zur Erstellung von Bildern für die Verwendung

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

Elternzeit Was ist das?

Elternzeit Was ist das? Elternzeit Was ist das? Wenn Eltern sich nach der Geburt ihres Kindes ausschließlich um ihr Kind kümmern möchten, können sie bei ihrem Arbeitgeber Elternzeit beantragen. Während der Elternzeit ruht das

Mehr

Änderung des IFRS 2 Anteilsbasierte Vergütung

Änderung des IFRS 2 Anteilsbasierte Vergütung Änderung IFRS 2 Änderung des IFRS 2 Anteilsbasierte Vergütung Anwendungsbereich Paragraph 2 wird geändert, Paragraph 3 gestrichen und Paragraph 3A angefügt. 2 Dieser IFRS ist bei der Bilanzierung aller

Mehr

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH

MORE Profile. Pass- und Lizenzverwaltungssystem. Stand: 19.02.2014 MORE Projects GmbH MORE Profile Pass- und Lizenzverwaltungssystem erstellt von: Thorsten Schumann erreichbar unter: [email protected] Stand: MORE Projects GmbH Einführung Die in More Profile integrierte

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Laserschneiddüsen. CFD-Simulation der Wechselwirkung zwischen einer supersonischen Düsenströmung und einem festen Werkstück

Laserschneiddüsen. CFD-Simulation der Wechselwirkung zwischen einer supersonischen Düsenströmung und einem festen Werkstück Laserschneiddüsen CFD-Simulation der Wechselwirkung zwischen einer supersonischen Düsenströmung und einem festen Werkstück Herr J. A. Comps Herr Dr. M. Arnal Herr Prof. Dr. K. Heiniger Frau Dr. I. Dohnke

Mehr

Einführung in die Energie- und Umweltökonomik

Einführung in die Energie- und Umweltökonomik Otto-Friedrich-Universität Bamberg Lehrstuhl für Volkswirtschaftslehre insb. Wirtschaftspolitik Dr. Felix Stübben Klausur Einführung in die Energie- und Umweltökonomik im WS 2013/14 HINWEIS: Es sind sämtliche

Mehr

FAQ 04/2015. Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter. https://support.industry.siemens.com/cs/ww/de/view/109475921

FAQ 04/2015. Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter. https://support.industry.siemens.com/cs/ww/de/view/109475921 FAQ 04/2015 Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter mit https://support.industry.siemens.com/cs/ww/de/view/109475921 Dieser Beitrag stammt aus dem Siemens Industry Online Support. Es

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Handreichung zu Datenauswertungen im TILL Stand: 07.11.2014

Handreichung zu Datenauswertungen im TILL Stand: 07.11.2014 Handreichung zu Datenauswertungen im TILL Stand: 07.11.2014 1. Aufbau des TILL 2. Vom Dashboard zum Answers-Bereich 3. Überblick über den Answers-Bereich 4. Berichte verändern im Answers-Bereich 5. Berichte

Mehr

Test: Sind Sie ein Unternehmertyp?

Test: Sind Sie ein Unternehmertyp? Test: Sind Sie ein Unternehmertyp? Weitere Hinweise darauf, ob Sie ein Unternehmertyp sind, gibt Ihnen der folgende Persönlichkeitstest. Er ist eine von vielen Möglichkeiten zu erfahren, ob Sie für die

Mehr

Strom in unserem Alltag

Strom in unserem Alltag Strom in unserem Alltag Kannst du dir ein Leben ohne Strom vorstellen? Wir verbrauchen jeden Tag eine Menge Energie: Noch vor dem Aufstehen klingelt der Radiowecker, dann schalten wir das Licht ein, wir

Mehr

Wie ist das Wissen von Jugendlichen über Verhütungsmethoden?

Wie ist das Wissen von Jugendlichen über Verhütungsmethoden? Forschungsfragen zu Verhütung 1 Forschungsfragen zu Verhütung Wie ist das Wissen von Jugendlichen über Verhütungsmethoden? Wie viel Information über Verhütung ist enthalten? Wie wird das Thema erklärt?

Mehr

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr