Hamilton-Formalismus
|
|
|
- Meta Geier
- vor 10 Jahren
- Abrufe
Transkript
1 KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten Lagrange-Formalismus benutzt man zur Beschreibung dieses Systems und dessen Zeitentwicklung einerseits s verallgemeinerte Koordinaten q = { q a },...,s (IV.1a und andererseits die zugehörigen verallgemeinerten Geschwindigkeiten q = { q a },...,s. (IV.1b Zusammen mit der Zeit bilden die generalisierten Koordinaten und Geschwindigkeiten die Argumente der Lagrange-Funktion L ( t, q, q, welche die ganze Information über das System enthält. Mithilfe der Lagrange-Funktion werden noch die verallgemeinerten Impulse definiert; somit ist p a L( t, q, q (IV.1c q a der zur Koordinate q a (t konjugierte Impuls. Im Folgenden werden diese Impulse kollektiv mit p = { p a },...,s (IV.1d bezeichnet. Die Grundidee des Hamilton-Formalismus besteht darin, den Bewegungszustand eines mechanischen Systems zur Zeit t durch die verallgemeinerten Koordinaten q a (t und die dazu konjugierten Impulse p a (t zu charakterisieren, statt durch die Variablen {q a (t}, { q a (t}. Definition: Der von den 2s Variablen {q a } und {p a } aufgespannte Raum Γ heißt Phasenraum des Systems. Dementsprechend werden die {q a } und {p a } für a {1,..., s} gemeinsam Phasenraumkoordinaten genannt. Jedem möglichen Bewegungszustand eines gegebenen Systems wird ein Punkt in dessen Phasenraum Γ zugeordnet, und die Bewegung entspricht einer Phasenraumtrajektorie. Dieses Thema wird in Abschn. IV.3 ausführlicher diskutiert werden. Bemerkung: Der Phasenraum ist im Allgemeinen kein Vektorraum, weil einige Variablen wie z.b. Winkel ihre Werte nur in einem endlichen Intervall annehmen können. Mathematisch ist der Phasenraum eine Mannigfaltigkeit der Dimension 2s.
2 IV.1 Hamilton sche Bewegungsgleichungen 75 IV.1.2 Hamilton-Funktion Um die Variablen {q a }, { q a } des Lagrange-Formalismus durch die Koordinaten {q a } und die konjugierten Impulse {p a } zu ersetzen, muss eine Funktion der neuen Variablen definiert werden, welche die gesamte Information über das System enthält, um die Rolle der Lagrange-Funktion zu übernehmen. Definition: Gegeben die Lagrange-Funktion eines System wird seine Hamilton-Funktion definiert durch H ( t, q, p p a q a L ( t, q, q. (IV.2 Auf der rechten Seite dieser Definition sollen die q a als Funktionen ( der Zeit t und der Phasenraumkoordinaten {q b } und {p b } betrachtet werden: q a = q a t, q, p. Das heißt, dass die definierende Beziehung des konjugierten Impulses (IV.1c invertiert werden soll. Wenn dies möglich ist, gilt bei festen { p b },...,s ( H = p b q b L = p a L = 0, q a q a q a d.h. H hängt nicht explizit von q a ab. Laut dem Satz von der Umkehrabbildung sollen die zweiten Ableitungen 2 L/ q a positiv sein, damit Gl. (IV.1c lokal invertierbar sei; vgl. auch Anhang C. Wie oben erwähnt muss die Hamilton-Funktion H die gleiche Information wie die Lagrange- Funktion L enthalten. Dass dies der Fall ist, lässt sich beweisen, indem man L aus H rekonstruieren kann. Sei somit angenommen, dass die Hamilton-Funktion H ( t, q, p bekannt ist. Definiert man zunächst Q a H( t, q, p, so folgt aus Gl. (IV.2 und der Kettenregel Q a = ( p b q b L = q a + p b L wobei q b / = 0 benutzt wurde, entsprechend der Unabhängigkeit der Variablen q b und p a. Unter Verwendung der Beziehung (IV.1c im letzten Term kommt dann Q a = q a. Somit lassen sich die verallgemeinerten Geschwindigkeiten aus der Hamilton-Funktion über q a ( t, q, p = H ( t, q, p wiederfinden. Dann liefert eine einfache Berechnung ( H p a H = p a q a p a q a L = L. Das heißt, die Lagrange-Funktion kann aus der Hamilton-Funktion gemäß (IV.3a L ( t, q, q ( ( p a q a t, q, p H t, q, p (IV.3b rekonstruiert werden, wobei q a durch Gl. (IV.3a gegeben ist.
3 76 Hamilton-Formalismus Mathematisch ist der Übergang von L zu H ein Beispiel von Legendre (o -Transformation, und der Übergang von H zu L ist die Rücktransformation (inverse Legendre-Transformation. Bemerkung: Vergleicht man Gl. (IV.2 mit Gl. (II.25c, so stimmt die Definition der Hamilton- Funktion mit jener der Noether-Ladung assoziiert mit Invarianz unter Zeittranslationen überein, die als Energie des Systems interpretiert wurde. IV.1.3 Kanonische Bewegungsgleichungen Die Position eine Systems im Phasenraum zu einer gegebenen Zeit t gibt seine verallgemeinerten Koordinaten und konjugierten Impulse zu diesem Zeitpunkt, die ganz natürlich mit {q a (t} und {p a (t} bezeichnet werden. Zur Charakterisierung der Bewegung des Systems sind noch Bewegungsgleichungen erforderlich, welche die Zeitentwicklung von den {q a (t} und {p a (t} bestimmen. Im vorigen Paragraphen wurde schon Gl. (IV.3a gefunden, welche die Zeitableitung der verallgemeinerten Koordinate q a (t durch Größen des Hamilton-Formalismus ausdrückt. Betrachtet man jetzt die Ableitung der Hamilton-Funktion (IV.2 nach der verallgemeinerten Koordinate q a, so ergibt sich ( H = dh = d p b q b L = dq a dq a p b L L. Im letzten Summanden kann L/ durch p b ersetzt werden, so dass dieser Term sich mit dem ersten herauskürzt. Dann ist der zweite Term L/, berechnet entlang der Trajektorie des Systems, laut der Euler Lagrange-Gleichung (II.9 gleich der Zeitableitung von L/ q a. Nach Gl. (IV.1c ist dies auch gleich der Zeitableitung des konjugierten Impulses p a. Somit ergibt sich H ( t, q(t, p(t = dp a(t. Insgesamt gelten die (kanonischen Hamilton schen Gleichungen dq a (t dp a (t = H( t, q(t, p(t = H( t, q(t, p(t für a = 1,..., s. (IV.4 Ein wichtiger Gegensatz zum zweiten Newton schen Gesetz (I.2 oder zu den Euler Lagrange- Gleichungen (II.9, die zweiter Ordnung sind, besteht darin, dass die 2s Hamilton schen Bewegungsgleichungen Differentialgleichungen erster Ordnung sind. Deshalb ist für jede Phasenraumkoordinate eine einzige Anfangsbedingung nötig, um die Lösung der Bewegungsgleichungen, d.h. die Phasenraumtrajektorie, zu bestimmen. Bemerkungen: Die Ableitung der Definition (IV.2 nach der Zeit mithilfe der Produktregel gibt unter Verwendung der Euler Lagrange-Gleichungen (II.9 und der Kettenregel dh ( = dpa q d q a a + p a dl ( L = dq a + L d q a dl q a = L t. Andererseits liefern die Hamilton schen Gleichungen (IV.4 dh = H t + H H q a + ṗ a = H t + ( H ṗa q a + q a ṗ a = t. (o A.-M. Legendre,
4 IV.1 Hamilton sche Bewegungsgleichungen 77 Falls die Hamilton-Funktion nicht explizit von der Zeit abhängt ( H/ t = 0, ist sie somit eine Konstante der Bewegung, entsprechend Energieerhaltung im System. Die Hamilton schen Bewegungsgleichungen (IV.4 können aus einem Extremalprinzip, dem schon angetroffenen Hamilton(!-Prinzip (II.8, hergeleitet werden. Demgemäß ist die Wirkung t2 [ ( ( ] S[q, p] p a (t q a t, q(t, p(t H t, q(t, p(t (IV.5 t 1 unter allen Phasenraumtrajektorien mit festen Endpunkten extremal für die physikalisch realisierte Bewegung. IV.1.4 Beispiele IV.1.4 a Eindimensionales System Das einfachste Beispiel ist das eines zeitunabhängigen Systems mit einem einzigen Freiheitsgrad, parametrisiert durch eine verallgemeinerte Koordinate q. Sei L(q, q = m 2 q2 V (q (IV.6a die zugehörige Lagrange-Funktion, mit V dem Potential für die generalisierte Koordinate. Der zu q konjugierte Impuls ist L(q, q p = = m q, (IV.6b q woraus q(t, q, p = p/m folgt. Die Hamilton-Funktion (IV.2 für dieses System lautet H(q, p = p q L(q, q = m q 2 m 2 q2 + V (q = m 2 q2 + V (q. Ersetzt man q durch p/m, so ergibt sich schließlich und H(q, p = p2 2m + V (q. (IV.6c Ausgehend von dieser Hamilton-Funktion lauten die Hamilton schen Gleichungen (IV.4 dq(t = H( q(t, p(t = p(t (IV.6d p m dp(t = H( q(t, p(t q = V ( q(t q. (IV.6e Wird die zweite in der Ableitung der ersten nach der Zeit eingesetzt, so findet man die übliche Bewegungsgleichung wieder. Schließlich prüft man schnell nach, dass die Lagrange-Funktion aus der Hamilton-Funktion rekonstruiert werden kann: H(q, p p H(q, p = p p p m p2 p2 V (q = 2m 2m V (q. IV.1.4 b Harmonischer Oszillator Ein wichtiger Sonderfall der im letzten Paragraphen gefundenen Ergebnisse ist der des eindimensionalen harmonischen Oszillators mit Potential V (q = 1 2 mω2 q 2. Die Hamilton-Funktion ist H(q, p = p2 2m mω2 q 2, (IV.7
5 78 Hamilton-Formalismus entsprechend den Hamilton schen Bewegungsgleichungen dq(t = p(t m (IV.8a und dp(t = mω 2 q(t. (IV.8b Diese zwei gekoppelten Differentialgleichungen können natürlich kombiniert werden, um die übliche Differentialgleichung zweiter Ordnung m q(t + mω 2 q(t = 0 zu geben. Stattdessen wird hiernach eine geeignete Linearkombination von q(t und p(t eingeführt, um eine einfach lösbare Gleichung erster Ordnung zu erhalten. Sei mω α(t 2 q(t + i p(t. (IV.9a 2mω Die Phasenraumtrajektorie lässt sich durch α(t und die komplexe konjugierte Funktion α(t ausdrücken: 1 [ q(t = α(t + α(t ], p(t = 1 mω [ α(t α(t ]. (IV.9b 2mω i 2 Die Summe aus Gl. (IV.8a, multipliziert mit mω/2, und Gl. (IV.8b multipliziert mit i/ 2mω gibt dα(t = iω α(t. (IV.10 Diese gewöhnliche Differentialgleichung erster Ordnung lässt sich sofort lösen: wenn α 0 die Anfangsbedingung bei t = 0 bezeichnet, gilt α(t = α 0 e iωt, (IV.11 woraus q(t und p(t über Gl. (IV.9b folgen. Insbesondere ergibt sich das der Leserin schon bekannte oszillatorische Verhalten von q(t.
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum
6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
1 Mathematische Grundlagen
Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.
Charakteristikenmethode im Beispiel
Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand
Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der
0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )
Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,
Lineare Differentialgleichungen erster Ordnung erkennen
Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Modellbildungssysteme: Pädagogische und didaktische Ziele
Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und
Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin
Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände
Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger
Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.
040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Klassenarbeit zu linearen Gleichungssystemen
Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
Anleitung über den Umgang mit Schildern
Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen
Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
11.3 Komplexe Potenzreihen und weitere komplexe Funktionen
.3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt
Approximation durch Taylorpolynome
TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Berechnung der Erhöhung der Durchschnittsprämien
Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Die Klein-Gordon Gleichung
Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber
Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt
Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt
8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht
8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Die Größe von Flächen vergleichen
Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2
PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN
PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN Karlsruhe, April 2015 Verwendung dichte-basierter Teilrouten Stellen Sie sich vor, in einem belebten Gebäude,
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
Grundlagen der Theoretischen Informatik, SoSe 2008
1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)
Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor
Wichtiges Thema: Ihre private Rente und der viel zu wenig beachtete - Rentenfaktor Ihre private Gesamtrente setzt sich zusammen aus der garantierten Rente und der Rente, die sich aus den über die Garantieverzinsung
Physikalisches Praktikum
Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: [email protected] http: // www. praktikum. physik. uni-bremen.
1 topologisches Sortieren
Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
14 Schmiegeparabel und Freunde, Taylor-Reihe
14 Schmiegeparabel und Freunde, Taylor-Reihe Jörn Loviscach Versionsstand: 20. März 2012, 16:01 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu: http://www.j3l7h.de/videos.html
Quadratische Gleichungen
Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl
Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2
Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung
Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".
Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über
Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion
Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik
Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!
Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright
Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?
Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen
1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind
Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1
Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene
Access [basics] Rechnen in Berichten. Beispieldatenbank. Datensatzweise berechnen. Berechnung im Textfeld. Reporting in Berichten Rechnen in Berichten
Berichte bieten die gleichen Möglichkeit zur Berechnung von Werten wie Formulare und noch einige mehr. Im Gegensatz zu Formularen bieten Berichte die Möglichkeit, eine laufende Summe zu bilden oder Berechnungen
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage
Downloadfehler in DEHSt-VPSMail. Workaround zum Umgang mit einem Downloadfehler
Downloadfehler in DEHSt-VPSMail Workaround zum Umgang mit einem Downloadfehler Downloadfehler bremen online services GmbH & Co. KG Seite 2 Inhaltsverzeichnis Vorwort...3 1 Fehlermeldung...4 2 Fehlerbeseitigung...5
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Finanzwirtschaft. Teil II: Bewertung
Zeitwert des Geldes 1 Finanzwirtschaft Teil II: Bewertung Zeitwert des Geldes Zeitwert des Geldes 2 Bewertung & Zeitwert des Geldes Finanzwirtschaft behandelt die Bewertung von Real- und Finanzwerten.
Statuten in leichter Sprache
Statuten in leichter Sprache Zweck vom Verein Artikel 1: Zivil-Gesetz-Buch Es gibt einen Verein der selbstbestimmung.ch heisst. Der Verein ist so aufgebaut, wie es im Zivil-Gesetz-Buch steht. Im Zivil-Gesetz-Buch
Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz
Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: [email protected]. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Serienbrieferstellung in Word mit Kunden-Datenimport aus Excel
Sehr vielen Mitarbeitern fällt es schwer, Serienbriefe an Kunden zu verschicken, wenn sie die Serienbrieffunktion von Word nicht beherrschen. Wenn die Kunden mit Excel verwaltet werden, genügen nur ein
Plotten von Linien ( nach Jack Bresenham, 1962 )
Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
Erfahrungen mit Hartz IV- Empfängern
Erfahrungen mit Hartz IV- Empfängern Ausgewählte Ergebnisse einer Befragung von Unternehmen aus den Branchen Gastronomie, Pflege und Handwerk Pressegespräch der Bundesagentur für Arbeit am 12. November
Lineare Gleichungssysteme I (Matrixgleichungen)
Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen
Handbuch. NAFI Online-Spezial. Kunden- / Datenverwaltung. 1. Auflage. (Stand: 24.09.2014)
Handbuch NAFI Online-Spezial 1. Auflage (Stand: 24.09.2014) Copyright 2016 by NAFI GmbH Unerlaubte Vervielfältigungen sind untersagt! Inhaltsangabe Einleitung... 3 Kundenauswahl... 3 Kunde hinzufügen...
Matrix42. Use Case - Sicherung und Rücksicherung persönlicher Einstellungen über Personal Backup. Version 1.0.0. 23. September 2015 - 1 -
Matrix42 Use Case - Sicherung und Rücksicherung persönlicher Version 1.0.0 23. September 2015-1 - Inhaltsverzeichnis 1 Einleitung 3 1.1 Beschreibung 3 1.2 Vorbereitung 3 1.3 Ziel 3 2 Use Case 4-2 - 1 Einleitung
O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik
W eierstraß-institut für Angew andte Analysis und Stochastik Robotik-Seminar O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik Mohrenstr 39 10117 Berlin [email protected]
Kevin Caldwell. 18.April 2012
im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig
Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik
Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)
Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine
ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN
ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,
Media Teil III. Begriffe, Definitionen, Übungen
Media Teil III. Begriffe, Definitionen, Übungen Kapitel 1 (Intermedia- Vergleich: Affinität) 1 Affinitätsbewertung als Mittel des Intermedia-Vergleichs Um die Streugenauigkeit eines Werbeträgers zu bestimmen,
Wie löst man Mathematikaufgaben?
Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Programmentwicklungen, Webseitenerstellung, Zeiterfassung, Zutrittskontrolle
Version LG-TIME /Office A 8.3 und höher Inhalt 1. Allgemeines S. 1 2. Installation S. 1 3. Erweiterungen bei den Zeitplänen S. 1;2 4. Einrichtung eines Schichtplanes S. 2 5. Einrichtung einer Wechselschicht
Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)
Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen
www.mathe-aufgaben.com
Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
II.2 Lösung der freien Klein Gordon-Gleichung
II. Lösung der freien Klein Gordon-Gleichung II..1 Allgemeine Lösung Da die Klein Gordon-Gleichung eine lineare partielle Differentialgleichung ist, kann man als Lösungsansatz eine ebene Welle φ(x) N e
( ) als den Punkt mit der gleichen x-koordinate wie A und der
ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der
1.3 Die Beurteilung von Testleistungen
1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen
1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R
C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter
Frohe Weihnachten und ein gutes neues Jahr!
Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]
Ist Fernsehen schädlich für die eigene Meinung oder fördert es unabhängig zu denken?
UErörterung zu dem Thema Ist Fernsehen schädlich für die eigene Meinung oder fördert es unabhängig zu denken? 2000 by christoph hoffmann Seite I Gliederung 1. In zu großen Mengen ist alles schädlich. 2.
Einfache Differentialgleichungen
Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine
6.2 Scan-Konvertierung (Scan Conversion)
6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster
Handbuch Fischertechnik-Einzelteiltabelle V3.7.3
Handbuch Fischertechnik-Einzelteiltabelle V3.7.3 von Markus Mack Stand: Samstag, 17. April 2004 Inhaltsverzeichnis 1. Systemvorraussetzungen...3 2. Installation und Start...3 3. Anpassen der Tabelle...3
Sichere E-Mail Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere E-Mail. der
Sichere E-Mail der Nutzung von Zertifikaten / Schlüsseln zur sicheren Kommunikation per E-Mail mit der Sparkasse Germersheim-Kandel Inhalt: 1. Voraussetzungen... 2 2. Registrierungsprozess... 2 3. Empfang
