Wie viel Mathematik kann ein Computer?
|
|
|
- Roland Glöckner
- vor 9 Jahren
- Abrufe
Transkript
1 Wie viel Mathematik kann ein Computer? Die Grenzen der Berechenbarkeit Dr. Daniel Borchmann Wie viel Mathematik kann ein Computer? / 1
2 Mathematik und Computer Computer sind schon praktisch, denn sie können... Rechnen, besser als wir alle zusammen; Gleichungssysteme lösen; Differentialgleichungen lösen; ein bisschen beweisen; besser Schach spielen; besser Jeopardy spielen;... Jetzt könnte man fragen... Gibt es etwas, was sie nie können werden? Wie viel Mathematik kann ein Computer? / 1
3 Wie viel Mathematik kann ein Computer? Frage 1 Kann ein Computer alles ausrechnen, was man sich vorstellen kann? Frage 2 Kann ein Computer alles beweisen, was man sich vorstellen kann? Wie viel Mathematik kann ein Computer? / 1
4 Hilberts 23 Probleme Eine kleine Zeitreise Anfang des 20. Jahrhunderts stellt David Hilbert eine Liste von 23 ungelösten Problemen vor, die er für die wichtigsten der Mathematik hält. Kontinuumshypothese (1.) Gibt es eine Menge, die größer ist als N, aber kleiner als R? Konsistenz der Arithmetik (2.) Gibt es Widersprüche in der Arithmetik? Riemann-Hypothese (8.) Haben alle nicht-trivialen Nullstellen der ζ-funktion Realteil 1{2? Diophantische Gleichungen (10.) Gibt es einen Algorithmus, der entscheidet, ob eine Diophantische Gleichung eine Lösung besitzt? Wie viel Mathematik kann ein Computer? / 1
5 Diophantische Gleichungen Eine Diophantische Gleichung ist eine algebraische Gleichung mit mindestens zwei Unbekannten, in der die Unbekannten nur ganzzahlig sein dürfen: Ppx 1,..., x n q 0 wobei Ppx 1,..., x n q ein ganzzahliges Polynom ist, und x 1,..., x n nur Werte in Z annehmen dürfen. Beispiele Fermats Letzter Satz: Für n ą 2 gibt es keine ganzzahligen Lösungen von x n ` y n z n 0. Pells Gleichung: Finde für n P N ganzzahlige Lösungen von x 2 ny 2 1. Wie viel Mathematik kann ein Computer? / 1
6 Hilberts 10. Problem Gibt es einen Algorithmus, der, gegeben ein ganzzahliges Polynom Ppx 1,..., x n q, entscheidet, ob die Diophantische Gleichung eine ganzzahlige Lösung hat? Ppx 1,..., x n q 0 Satz (Davis, Matiyasevich, Putnam, und Robinson, ) Solch einen Algorithmus gibt es nicht. Ein Computer wird also niemals alle Diophantischen Gleichungen lösen können! Achtung! Das bedeutet aber nicht, dass der Computer gar keine Diophantische Gleichung lösen kann! (Ñ Pells Gleichung) Wie viel Mathematik kann ein Computer? / 1
7 Das Entscheidungsproblem Das Entscheidungsproblem (Hilbert und Ackermann, 1928) Gibt es einen Algorithmus, der, gegeben eine Formel φ und eine Menge von Axiomen A, feststellt, ob φ aus A folgt? Beispiel Satz (Church, Turing, 1936) A x ě y. x ` y y ` x ` y 0 u φ p@xdy. x ` y ě 0q. Solch einen Algorithmus gibt es nicht. Computer können also nicht automatisch beweisen! Wie viel Mathematik kann ein Computer? / 1
8 Wieso ist das so? Fragen über Fragen! Wie kann man so etwas eigentlich beweisen? Was ist eigentlich ein Algorithmus? c National Portrait Gallery, London Wie viel Mathematik kann ein Computer? / 1
9 Was braucht man für einen Computer? Turingmaschinen eine endliche Menge Σ von Symbolen (für Ein- und Ausgabe) eine endliche Menge Q von Zuständen eine endliche Menge F Ď Q von Endzuständen einen Initialzustand q 0 P Q eine Übergangsfunktion δ Beispiel q 1 δpq 1, aq pq 2, b, Lq pq 2, b, R... a b b c a... Wie viel Mathematik kann ein Computer? / 1
10 Turingmaschinen Turingmaschinen modellieren das Verhalten unserer Computer sehr gut ein Algorithmus ist jetzt nichts anderes als eine Turingmaschine: die Eingabe wird auf das Band geschrieben die Turingmaschine arbeitet diese Eingabe ab, bis sie einen finalen Zustand erreicht der Inhalt des Bandes ist dann die Ausgabe des Algorithmus Wir müssen also zeigen Es gibt keine Turingmaschine, die für eine Diophantische Gleichung als Eingabe entscheidet (z.b. indem sie eine 0 oder 1 auf das Band schreibt), ob diese Gleichung eine Lösung hat. für eine gegebene Formel φ und eine gegebene Menge A von Axiomen entscheidet, ob φ aus A folgt. Wie viel Mathematik kann ein Computer? / 1
11 Beweisstrategie Abstrakt Wir wollen zeigen, dass ein Problem Q nicht durch einen Algorithmus entscheidbar ist. Idee Frage Finde ein Problem P, für das bekannt ist, dass es keine Turingmaschine gibt, die P entscheidet. Zeige: wenn für Q ein Algorithmus existiert, dann existiert auch einer für P. (Widerspruch!) Was ist solch ein Problem P? Wie viel Mathematik kann ein Computer? / 1
12 Das Halteproblem Beobachtung Turingmaschinen lassen sich durch eine endliche Folge von Zeichen darstellen. Das Halteproblem Gegeben eine Turingmaschine M und eine Eingabe w. Erreicht dann M mit der Eingabe w den finalen Zustand, d.h. hält M mit Eingabe w? Wie viel Mathematik kann ein Computer? / 1
13 Die Unentscheidbarkeit der Halteproblems Frage Wie zeigen wir, dass es keine Turingmaschine gibt, die das Halteproblem entscheidet? Versuch Mittels Widerspruchsbeweis! Annahme Angenommen, es gibt eine Turingmaschine H mit # 1 falls Mpwq hält, HpM, wq 0 sonst. Wir wollen argumentieren, dass dann Unsinn passiert! Wie viel Mathematik kann ein Computer? / 1
14 Die Unentscheidbarkeit des Halteproblems Eine neue Maschine M M w H hält hält nicht 1Endlosschleife 0 Stopp H 1 Idee: Selbstreferenz! Was passiert, wenn ich H 1 auf H 1 anwende? Angenommen, H 1 ph 1 q hält. Dann ist HpH 1, H 1 q 1. Also hält H 1 ph 1 q nicht, Widerspruch! Angenommen, H 1 ph 1 q hält nicht. Dann ist HpH 1, H 1 q 0. Also hält H 1 ph 1 q, Widerspruch! Aber das ist Unsinn, denn H 1 ph 1 q muss entweder halten, oder nicht! Also kann es H nicht geben! Wie viel Mathematik kann ein Computer? / 1
15 Vom Halteproblem zur Unentscheidbarkeit der Welt! Unsere bekannten Probleme Mit ein wenig Arbeit kann gezeigt werden: Falls das Entscheidungsproblem entscheidbar wäre, dann wäre auch das Halteproblem entscheidbar. Mit viel mehr Arbeit kann dies auch für das Lösen Diophantischer Gleichungen getan werden. Weitere unentscheidbare Probleme Posts Korrespondenzproblem Kolmogorov-Komplexität Äquivalenz von Computerprogrammen Gleichheit reeller Zahlen Tiling-Problem (Wang Tiles)... Wie viel Mathematik kann ein Computer? / 1
Entscheidungsprobleme
Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge M Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge
2.5 Halteproblem und Unentscheidbarkeit
38 25 Halteproblem und Unentscheidbarkeit Der Berechenbarkeitsbegriff ist auf Funktionen zugeschnitten Wir wollen nun einen entsprechenden Begriff für Mengen einführen Definition 255 Eine Menge A Σ heißt
Entscheidungsprobleme
Entscheidungsprobleme übliche Formulierung gegeben: Eingabe x aus einer Grundmenge U Frage: Hat x eine bestimmte Eigenschaft P? Beispiel: gegeben: Frage: n N Ist n eine Primzahl? Formalisierung: Grundmenge
Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet.
Rückschau 12.11.04 Wir haben eine Beziehung zwischen entscheidbar und rekursiv aufzählbar hergeleitet. Wir haben das Prinzip der Diagonalisierung eingeführt und mit DIAG eine erste nicht rek. aufz. Sprache
Einführung in Berechenbarkeit, Komplexität und Formale Sprachen
Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V8, 5.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick
Allgemeines Halteproblem Hilberts 10. Problem
Allgemeines Halteproblem Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit
Reduktion / Hilberts 10. Problem
Reduktion / Hilberts 10. Problem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Clevere Algorithmen programmieren
ClevAlg 2017 Theoretische Informatik Clevere Algorithmen programmieren Dennis Komm, Jakub Závodný, Tobias Kohn 06. Dezember 2017 Die zentralen Fragen sind... Was kann man mit einem Computer nicht machen?
Motivation. Typische Virenscanner finden nur bekannte Viren, aber keine Neuentwicklungen.
Berechenbarkeit 1 Motivation Computerviren, Würmer und Trojanische Pferde verursachen jährlich Schäden in Milliardenhöhe. Typische Virenscanner finden nur bekannte Viren, aber keine Neuentwicklungen. Kann
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 17.November 2011 INSTITUT FÜR THEORETISCHE 0 KIT 17.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
Informatik III. Christian Schindelhauer Wintersemester 2006/ Vorlesung
Informatik III Christian Schindelhauer Wintersemester 2006/07 13. Vorlesung 07.12.2006 1 Überblick: Die Church- Turing-These Turing-Maschinen 1-Band Turing-Maschine Mehrband-Turing-Maschinen Nichtdeterministische
Wie man eine diophantische Gleichung löst
Wie man eine diophantische Gleichung löst Michael Stoll Regionale Lehrerfortbildung Graf-Münster-Gymnasium Bayreuth 27. Juni 2012 Diophantische Gleichungen... sind Gleichungen F (x 1,..., x n ) = 0, wobei
Unentscheidbarkeit. 1. Wann sind Sprachen unentscheidbar? 1, A 0, A } = {
Unentscheidbarkeit 1. Wann sind Sprachen unentscheidbar? Eine Menge A heisst entscheidbar, falls die charakteristische Funktion von A, nämlich A : {0,1}, berechenbar ist, d.h. gilt: A = { 1, A 0, A } Eine
Theoretische Informatik Mitschrift
Theoretische Informatik Mitschrift 9. Berechenbarkeit, Entscheidbarkeit, Aufzählbarkeit 9.1 Grundbegriffe bereits gezeigt: Spracherkennung durch Turingmaschine = Berechnung der semi-charakteristischen
Turingmaschinen. und eine kleine Einführung in Bereiche der theoretischen Informatik
Turingmaschinen und eine kleine Einführung in Bereiche der theoretischen Informatik Gliederung Einführung Leben Alan Turing Theoretische Informatik Turingmaschine Aufbau, Definition Beispiele Game of Life
Einführung in Berechenbarkeit, Komplexität und Formale Sprachen
Einführung in Berechenbarkeit, Komplexität und Formale Sprachen V7, 3.11.09 Willkommen zur Vorlesung Einführung in Berechenbarkeit, Komplexität und Formale Sprachen Friedhelm Meyer auf der Heide 1 Rückblick
Einführung in die Theoretische Informatik
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Sascha Böhme, Lars Noschinski Sommersemester 2011 Lösungsblatt 9 25. Juli 2011 Einführung in die Theoretische Informatik
1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit
1 Prädikatenlogik: Korrektheit, Vollständigkeit, Entscheidbarkeit 1.1 Korrektheit Mit dem Kalkül der Prädikatenlogik, z.b. dem Resolutionskalkül, können wir allgemeingültige Sätze beweisen. Diese Sätze
Theoretische Informatik für Wirtschaftsinformatik und Lehramt
Theoretische Informatik für Wirtschaftsinformatik und Lehramt Entscheidungsprobleme Priv.-Doz. Dr. Stefan Milius [email protected] Theoretische Informatik Friedrich-Alexander Universität Erlangen-Nürnberg
Der Satz von Rice. Dann ist C(S) eine unentscheidbare Menge.
Der Satz von Rice Satz: Sei R die Klasse der (Turing-) berechenbaren Funktionen, S eine nichttriviale Teilmenge von R und C(S) ={w Mw berechnet eine Funktion aus S}. Dann ist C(S) eine unentscheidbare
Halteproblem/Kodierung von Turing-Maschinen
Halteproblem/Kodierung von Turing-Maschinen Unser Ziel ist es nun zu zeigen, dass das sogenannte Halteproblem unentscheidbar ist. Halteproblem (informell) Eingabe: Turing-Maschine M mit Eingabe w. Frage:
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am
7. Übung TGI. Lorenz Hübschle-Schneider, Tobias Maier INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS. 1 Lorenz Hübschle-Schneider, Tobias Maier
7. Übung TGI Lorenz Hübschle-Schneider, Tobias Maier INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 Lorenz Hübschle-Schneider, Tobias Maier KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft
Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2011/12
Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2011/12 Prof. Barbara König Übungsleitung: Henning Kerstan & Jan Stückrath Barbara König
Wir müssen wissen, und wir werden wissen.
D. Hilbert Wir müssen wissen, und wir werden wissen. David Hilbert (1862-1943)... Eine Diophantische Gleichung [...] sei vorgelegt: man soll ein Verfahren angeben, nach welchem sich mittelst einer endlichen
Theoretische Informatik und Logik Übungsblatt 1 (2016S) Lösung
Theoretische Informatik und Logik Übungsblatt (26S) en Aufgabe. Sei L = {w#w r w {, } }. Geben Sie eine deterministische Turingmaschine M an, welche die Sprache L akzeptiert. Wählen Sie mindestens einen
Das Halteproblem für Turingmaschinen
Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.
Unentscheidbare Probleme: Diagonalisierung
Unentscheidbare Probleme: Diagonalisierung Prof Dr Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit
Theoretische Informatik für Wirtschaftsinformatik und Lehramt
Theoretische Informatik für Wirtschaftsinformatik und Lehramt Universelle Turingmaschinen und Church sche These Priv.-Doz. Dr. Stefan Milius [email protected] Theoretische Informatik Friedrich-Alexander
Universelle Turingmaschinen
Universelle Turingmaschinen bisher: zum Erkennen einer rekursiven Sprache L wurde jeweils eine spezielle dtm M L angegeben jetzt: konstruieren feste dtm ( universelle Turingmaschine ), die als Eingabe
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
THEORETISCHE INFORMATIK UND LOGIK
THEORETISCHE INFORMATIK UND LOGIK 4. Vorlesung: Das Halteproblem und Reduktionen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 19. April 2017 Ankündigung Wegen großer Nachfrage wird eine
Einführung in die Informatik Algorithms II
Einführung in die Informatik Algorithms II Eigenschaften von Algorithmen Wolfram Burgard Cyrill Stachniss 14.1 Was können Computer berechnen? In Kapitel 1 haben wir gesagt, dass Programme die Umsetzung
Falls H die Eingabe verwirft, so wissen wir, dass M bei Eingabe w nicht hält. M hält im verwerfenden Haltezustand. Beweis:
1 Unentscheidbarkeit 2 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 #include char *s="include
Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004
Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,
Theorie der Informatik
Theorie der Informatik 15. Ackermannfunktion Malte Helmert Gabriele Röger Universität Basel 28. April 2014 Überblick: Vorlesung Vorlesungsteile I. Logik II. Automatentheorie und formale Sprachen III. Berechenbarkeitstheorie
Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Beispiel einer nicht berechenbaren Funktion: Busy Beaver
Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Reduktionen. Formalisierung von Sprache A ist nicht schwerer als Sprache B.
Reduktionen Formalisierung von Sprache A ist nicht schwerer als Sprache B. Idee: Algorithmus/DTM für B kann genutzt werden, um A zu entscheiden/akzeptieren. WS 2018/19 Reduktionen 1 Zwei einfache Sprachen
Mächtigkeit von LOOP-Programmen. Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen
Mächtigkeit von LOOP-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 23 Die Programmiersprache LOOP Syntax Elemente eines LOOP-Programms Variablen
Wie man Diophantische Gleichungen löst. Anna-Maria Chiavetta Seminar 28. Oktober 2013
Wie man Diophantische Gleichungen löst Anna-Maria Chiavetta Seminar 28. Oktober 2013 Inhaltsverzeichnis 1. Einführung in das Thema 2. Lösbarkeit Diophantischer Gleichungen - Beispielgleichung 3. Ein anderer
14. Rekursiv aufzählbare Mengen
14. Rekursiv aufzählbare Mengen In diesem Abschnitt fassen wir einige Eigenschaften der rekursiv aufzählbaren d.h. der nach Churchscher These (effektiv) aufzählbaren Mengen zusammen. In Korollar 11.8 haben
Theoretische Informatik. Berechenbarkeit
Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was
Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2
Beispiel: NTM M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) 0,1,R 0,0,R q0 1,0,R q1 #,#,R q2 0,0,L Zustand 0 1 # q 0 {(1, R, q 0 )} {(0, R, q 1 )} q 1 {(0, R, q 1 ),(0, L, q 0 )} {(1, R, q
Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen
Kapitel 1: rekursive Mengen 1 rekursive Mengen 1.1 Definition 1.1.1 informal Eine Menge heißt rekursiv oder entscheidbar, wenn ihre charakteristische Funktion berechenbar ist. 1.1.2 formal Eine Menge A
Präsenzübung Berechenbarkeit und Komplexität
Lehrstuhl für Informatik 1 WS 2013/14 Prof. Dr. Berthold Vöcking 28.01.2014 Kamal Al-Bawani Benjamin Ries Präsenzübung Berechenbarkeit und Komplexität Musterlösung Name:...................................
Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik
Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 7.07.2016 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Berechenbarkeit und Komplexität
Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter
Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)
Technische Universität Berlin, Berlin, 28.07.2016 Name:... Matr.-Nr.:... Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016) Einlesezeit: Bearbeitungszeit: Max.
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 15.07.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Übungsblatt 3. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 3 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 21. November 2017 Abgabe 5. Dezember 2017, 11:00 Uhr
Unentscheidbarkeitssätze der Logik
Unentscheidbarkeitssätze der Logik Elmar Eder () Unentscheidbarkeitssätze der Logik 1 / 30 Die Zahlentheorie ist nicht formalisierbar Satz (Kurt Gödel) Zu jedem korrekten formalen System der Zahlentheorie
Semi-Entscheidbarkeit und rekursive Aufzählbarkeit
Semi-Entscheidbarkeit und rekursive Aufzählbarkeit Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 9. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung
Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice
Die Unentscheidbarkeit extensionaler Eigenschaften von Turingmaschinen: der Satz von Rice Holger Arnold Dieser Text befasst sich mit der Frage, unter welchen Bedingungen das Problem, zu bestimmen, ob die
Deterministische Turing-Maschinen
Deterministische Turing-Maschinen Um 900 präsentierte David Hilbert auf einem internationalen Mathematikerkongress eine Sammlung offener Fragen, deren Beantwortung er von zentraler Bedeutung für die weitere
Klausur zur Vorlesung Mathematische Logik
Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik
Unentscheidbarkeit des Halteproblems, Unterprogrammtechnik
Unentscheidbarkeit des Halteproblems, Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. Oktober 2009 Berthold Vöcking, Informatik 1 () Vorlesung
Wie man eine Sprache versteht
Aufzählbarkeit Formale Grundlagen der Informatik 1 Kapitel 10 Aufzählbarkeit und (Un-)Entscheidbarkeit Frank Heitmann [email protected] 11. Mai 2015 Definition 1 Eine Menge M Σ heißt (rekursiv)
Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule
Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1
Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07. Nichtdeterministische Turingmaschinen und NP
Proseminar Komplexitätstheorie P versus NP Wintersemester 2006/07 Vortrag am 17.11.2006 Nichtdeterministische Turingmaschinen und NP Yves Radunz Inhaltsverzeichnis 1 Wiederholung 3 1.1 Allgemeines........................................
Das zehnte Hilbertsche Problem und die Gödelschen Sätze
1 Das zehnte Hilbertsche Problem und die Gödelschen Sätze Peter Koepke, Mathematisches Institut, Universität Bonn Cusanuswerk, Fachschaftstagung Mathematik-Informatik, Uder, 1. -4. Mai 2008 2 Mathematische
Satz von Rice. Lemma 39
Unentscheidbarkeit Satz von Rice Das nächste Resultat zeigt, dass jede Eigenschaft der von einer Turing-Maschine berechneten Funktion unentscheidbar ist. Das bedeutet, es gibt keine Methode, mit der man
Turing-Maschinen: Ein abstrakes Maschinenmodell
Wann ist eine Funktion (über den natürlichen Zahlen) berechenbar? Intuitiv: Wenn es einen Algorithmus gibt, der sie berechnet! Was heißt, eine Elementaroperation ist maschinell ausführbar? Was verstehen
Das Halteproblem. Ein unlösbares Problem der Informatik - 1 -
1 Ein unlösbares Problem der Informatik - 1 - Endlosschleifen 2 Beispiel: input x; while(x 0) { x = x+1; } Wenn man für x eine negative Zahl eingibt, hält das Programm an. nichtnegative Zahl eingibt, hält
Algebraische Gleichungen. Martin Brehm February 2, 2007
Algebraische Gleichungen Martin Brehm February, 007 1. Der Begriff Algebra Algebraische Gleichungen Durch das herauskristalisieren von mehreren Teilgebieten der Algebra ist es schwer geworden eine einheitliche
Unentscheidbare Probleme: Existenz, Diagonalsprache, Halteproblem
Unentscheidbare Probleme: Existenz, Diagonalsprache, Halteproblem Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 25. Oktober 2010 Berthold Vöcking, Informatik
Klausur zur Vorlesung Informatik III Wintersemester 2007/2008
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Klausur zur Vorlesung Informatik III Wintersemester 2007/2008 Hier Aufkleber mit Name und Matrikelnr. anbringen Vorname: Nachname: Matrikelnummer:
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie WS 11/12 155 Überblick Zunächst einmal definieren wir formal den Begriff
Übungsblatt Nr. 4. Lösungsvorschlag
Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 4 svorschlag Aufgabe 1: Ein neuer Held
Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik
Unentscheidbarkeit des Halteproblems: Unterprogrammtechnik Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung
Einführung in die Theoretische Informatik
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische
Das Halteproblem. H = { M w M hält auf w}.
Das Halteproblem Beim Halteproblem geht es darum, zu entscheiden, ob ein Programm auf einer bestimmten Eingabe terminiert. In der Notation der TM ergibt sich die folgende formale Problemdefinition. H =
Turing-Maschine Definition
Turing-Maschine Definition Definition: Eine Turing-Maschine ist ein Quintupel M = (X, Z, z 0, Q, δ), wobei - X und Z Alphabete sind, - z 0 Z und Q Z gelten, - δ eine Funktion von (Z \ Q) (X { }) in Z (X
Angewandte Mathematik am Rechner 1
Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 3 [Bildquellen: Wikipedia User David Madore, Inductiveload ] Grundlagen 2: Funktionen, Berechenbarkeit und emergente Komplexität Michael Wand
6.4 Entscheidbarkeit. nein sein müssen, ist klar. THEO 6.4 Entscheidbarkeit 205/307 c Ernst W. Mayr
6.4 Entscheidbarkeit Wortproblem Leerheit Äquivalenz Schnittproblem Typ 3 ja ja ja ja DCFL ja ja ja nein (*) Typ 2 ja ja nein (*) nein Typ 1 ja nein (*) nein nein Typ 0 nein (*) nein nein nein (*) Diese
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 139 Unentscheidbarkeit Überblick Zunächst einmal definieren wir formal
Einführung in die Theoretische Informatik Tutorium IX
Einführung in die Theoretische Informatik Tutorium IX Michael R. Jung 16. & 17. 12. 2014 EThI - Tutorium IX 1 1 Entscheidbarkeit, Semi-Entscheidbarkeit und Unentscheidbarkeit 2 EThI - Tutorium IX 2 Definitionen
11. Übungsblatt. x y(top(push(x, y)) = y)
Logik, Berechenbarkeit und Komplexität Sommersemester 2012 Hochschule RheinMain Prof. Dr. Steffen Reith 11. Übungsblatt 1. Ein Keller (engl. stack) ist eine bekannte Datenstruktur. Sei die Signatur S =
Übungsblatt Nr. 4. Lösungsvorschlag
Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Nico Döttling Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 4 svorschlag Aufgabe 1
Achim Feldmeier, 23. Juni : Penrose nimmt dieses Argument auf in Shadows of the Mind.
Können Menschen mehr (Mathematik) als Computer? Turing - Penrose - Searle Achim Feldmeier, 23. Juni 2008 1931: Gödel beweist den Unvollständigkeitssatz. 1937: Turing beweist das Halteproblem. 1961: Lucas
Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?
Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff
1936 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus
//5 Abstrakte Maschinenmodelle: Turingmaschine (TM) 96 von Alan Turing zum theoretischen Studium der Berechenbarkeit eingeführt Besteht aus einem festen Teil ( "Hardware ) einem variablen Teil ( "Software
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 16.11.2010 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft
Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte)
1 Aufgabe 1 (19 Punkte) a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) Q, die endliche Zustandsmenge b) Was besagt die Church-Turing-These? (1 Punkt)
1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion
Transitiv-reflexive Hülle Definition 24. Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a, a) R 2. R R 3.
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der
