Computeralgebra PARI
|
|
|
- Viktoria Hofmeister
- vor 9 Jahren
- Abrufe
Transkript
1 Universität Wien Prof. Dr. D. Burde Computeralgebra PARI 1. Eine kleine Einführung in PARI-GP. PARI-GP ist ein Computeralgebrasystem (CAS), das hauptsächlich für Berechnungen in der Zahlentheorie entworfen wurde. Wir starten das Programm mit dem Befehl gp. Dann erscheint die folgende Meldung: PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type? for help, \q to quit. Type?12 for how to get moral (and possibly technical) support. realprecision = 28 significant digits seriesprecision = 16 significant terms format = g0.28 parisize = , primelimit = Wir wollen jetzt ein paar einfache Befehle ausprobieren:? 13*51 %1 = 663? gcd(360,336) %2 = 24? print("gcd(360,336) = ",gcd(360,336)) gcd(360,336) = 24? 2^(2^8+1) %4 = ? primes(100) %6 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541]? \q Good bye!
2 primes(n) gibt die ersten n Primzahlen aus. PARI hat standardmäßig schon die ersten Primzahlen vorberechnet. Der Neustart-Befehl gp -p startet PARI mit vorberechneten Primzahlen. Die Funktion prime(n) gibt die n-te Primzahl aus. Mit factor(n) kann man eine ganze Zahl n faktorisieren:? prime(100) %1 = 541? factor( ) %2 = [3 1] [181 1] [541 1] [547 1] Es gibt auch einen Befehl, mit dem man entscheiden kann, ob eine ganze Zahl n prim ist: isprime(n)? isprime( ) %1 = 0? factor( ) %2 = [1117 2] [2371 1]? isprime( ) %3 = 1 Hier sind noch weitere Befehle. Mit deriv(f) kann man die Ableitung von f bestimmen.? binomial(120,71) %1 = ? deriv(1/x) %2 = -1/x^2? sin(x) %3 = x - 1/6*x^3 + 1/120*x^5-1/5040*x^7 + 1/362880*x^9-1/ *x^11 + 1/ *x^13-1/ *x^15 + O(x^16)? \p 1000 realprecision = 1001 significant digits (1000 digits displayed)? Pi %4 =
3 Mit PARI kann man wie folgt Summen berechnen. Wir wollen die Reihe der reziproken Primzahlwerte bis p n ausrechen, d.h., 1 p? sum(n=1,100,isprime(n)*1.0/n) %1 = ? sum(n=1,1000,isprime(n)*1.0/n) %2 = ? sum(n=1,10000,isprime(n)*1.0/n) %3 = p n Die Reihe divergiert bekanntermaßen für n, aber sehr langsam. Man teste dagegen die folgende Reihe, wobei F k die k-te Fibonacci-Zahl ist: 1 = F k k=1? sum(n=1,100,1.0/fibonacci(n)) %8 = ? sum(n=1,1000,1.0/fibonacci(n)) %9 = ? sum(n=1,10000,1.0/fibonacci(n)) %10 = Wir vermuten, daß die Reihe gegen eine Konstante, die mit beginnt, konvergiert. In der Tat, die Reihe konvergiert gegen die Prévost Konstante: Prévost hatte 1977 bewiesen, daß diese Konstante irrational ist. Vorher hatte Apéry bewiesen, daß ζ(3) irrational ist: 1 ζ(s) = n s, Re(s) > 1 n=1? \p 100 realprecision = 105 significant digits (100 digits displayed)? zeta(3) %2 =
4 Kommen wir nochmal zum ggt zweier ganzer Zahlen a, b zurück, der mit gcd(a,b) berechnet wird. (lcm(a,b) berechnet das kgv von a und b). Mit bezout(a,b) kann PARI sogar die lineare diophantische Gleichung ax + by = (a, b) lösen. Wir machen ein Beispiel und rechnen gleich die Probe dazu. PARI benutzt den Euklidischen Algorithmus dazu, und gibt nur eine Lösung aus, auch wenn es mehrere gibt.? gcd(2479,1739) %4 = 37? bezout(2479,1739) %5 = [-7, 10, 37]? -7* *1739 %6 = 37 Der Befehl funktioniert nicht nur in Z, sondern auch in Z[x]:? gcd(x^2-1,x^2+x+3) %7 = 1? gcd(x^4+x^3-x-1,2*x^3+5*x^2+5*x+3) %8 = x^2 + x + 1? bezout(x^4+x^3-x-1,2*x^3+5*x^2+5*x+3) %9 = [4/5, -2/5*x + 3/5, x^2 + x + 1] Das gilt auch für den Befehl factor:? factor(x^5-1) %10 = [x - 1 1] [x^4 + x^3 + x^2 + x + 1 1] Die Teiler einer ganzen Zahl n findet man wie folgt:? divisors(111111) %15 = [1, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 111, 143, 231, 259, 273, 407, 429, 481, 777, 1001, 1221, 1443, 2849, 3003, 3367, 5291, 8547, 10101, 15873, 37037, ]? numdiv(111111) %16 = 32? factor(111111) %17 = [3 1] [7 1] [11 1] [13 1] [37 1] Auch Vektoren und Matrizen sind in PARI vorgesehen. Wir berechnen die Inverse von ( ) 1 2 : 3 4
5 ? [1,2,3]+[4,5,6] %1 = [5, 7, 9]? [1,2;3,4]^(-1) %2 = [-2 1] [3/2-1/2] Was ist mod 81?? Mod(2,81)^100 %3 = Mod(25, 81) Man kann Polynome auch modulo p faktorisieren:? factor(x^2-5) %4 = [x^2-5 1]? factor(mod(1,11)*(x^2-5)) %5 = [Mod(1, 11)*x + Mod(4, 11) 1] [Mod(1, 11)*x + Mod(7, 11) 1] Mit dem Befehl polisirreducible kann man testen, ob ein Polynom irreduzibel über Q[x] bzw. F p [x] ist. Es wird 1 oder 0 ausgegeben. 1 meint irreduzibel.? polisirreducible(x^2-5) %6 = 1? polisirreducible(mod(1,11)*(x^2-5)) %7 = 0 Die prime Restklassengruppe (Z/nZ) hat ja bekanntlich ϕ(n) Elemente. Die Funktion ϕ(n) heißt die Eulersche ϕ-funktion. Falls die Gruppe (Z/nZ) zyklisch ist, so heißt ein Erzeuger eine Primitivwurzel modulo n. Gauß hat bewiesen, daß es genau dann Primitivwurzeln modulo n gibt, wenn n = 2, 4, p l, 2p l gilt für eine Primzahl p > 2 und ein l N.? eulerphi(43) %8 = 42? znprimroot(43) %9 = Mod(3, 43)? eulerphi(4489) %10 = 4422? znprimroot(4489) %11 = Mod(2, 4489)? znstar(4489) %12 = [4422, [4422], [Mod(2, 4489)]] Hierbei gibt znprimroot(n) die kleinste Primitivwurzel modulo n aus, sofern es überhaupt Primitivwurzeln modulo n gibt. Mit znstar(n) wird die Struktur von (Z/nZ) nochmal zusammengefaßt. Der Befehl chinese(mod(a,m),mod(b,n)) findet eine Lösung zu den Kongruenzen x a mod m, x b mod n
6 falls es eine gibt:? chinese(mod(3,8),mod(12,45)) %1 = Mod(147, 360) 2. Übungen: Der Primzahlsatz. Schreiben Sie ein PARI Programm pnt.gp, das die folgende Funktion berechnet: π(x) = p x 1 Die Summe geht über alle Primzahlen p x. Der Primzahlsatz, der 1896 unabhängig von Hadamard und de la Vallée Poussin bewiesen wurde, besagt π(x) x log x für x Berechnen Sie die Zahlen π(1000), π(2000),..., π(10000) und vergleichen Sie die Werte mit der Näherung x/(log x 1). 3. Der Dirichletsche Primzahlsatz. Seien a und q zwei teilerfremde ganze Zahlen. Schreiben Sie ein PARI Programm dirichlet.gp, das die folgende Funktion berechnet: f(n) = f(n, a, q) = p n p a(q) Der Wert f(n) ist gleich der Anzahl der Primzahlen p n, die in der arithmetischen Folge qx+a vorkommen. Der Satz von Dirichlet besagt, daß lim n f(n) = gilt. Genauer gilt: 1 f(x, q, a) π(x) ϕ(q) x ϕ(q) log x, für x Berechnen Sie für a = 7 und q = 16 die Zahlen f(1000), f(2000),..., f(10000). 4. Faktorisierung mit PARI. Faktorisieren Sie mit PARI die Zahl = Je nach Rechnergeschwindigkeit sollten Sie schon einige Minuten auf die Antwort warten. Berechnen Sie die Faktoriserung mit anderen CAS und vergleichen Sie die Zeit. Sollten Sie zu lange warten, dann brechen Sie besser ab, und versuchen Sie es mit oder 2 p 1 für kleinere Primzahlen p. Lösung: Es gilt =
7 5. PARI Online. Die Homepage von PARI ist zu finden unter William Stein hat einen Online PARI Calculator eingerichtet. Er findet sich unter
Einführung in die Zahlentheorie
Einführung in die Zahlentheorie von Peter Hellekalek Institut für Mathematik Universität Salzburg Hellbrunner Straße 34 A-5020 Salzburg, Austria Tel: +43-(0)662-8044-5310 Fax: +43-(0)662-8044-137 e-mail:
11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16
11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p
11. Übung zur Vorlesung Zahlentheorie. im Wintersemester 2016/17. Untersuche mit dem Lucas-Lehmer-Test, ob die Zahl n = prim ist.
11. Übung zur Vorlesung Aufgabe 41. Untersuche mit dem Lucas-Lehmer-Test, ob die Zahl n = 2 11 1 prim ist. Aufgabe 42. Beweise das folgende Kriterium von Proth mit dem Pocklington-Test: Sei n > 1 gegeben.
Übungsaufgaben zur Zahlentheorie (Holtkamp)
Ruhr-Universität Bochum Fakultät für Mathematik Sommersemester 2005 Übungsaufgaben zur Zahlentheorie (Holtkamp) Sonderregelung: Zur vollständigen Lösung jeder Aufgabe gehört die Kennzeichnung der (maximal
Übung ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt. Gehen Sie dabei wie folgt vor: i) p x
Übung 0 Übung 0 Zeigen Sie, dass der Primzahlsatz π(x) x/ ln(x) aus p x ln(p) x folgt Übung 02 Zeigen Sie, dass p x ln(p) x aus dem Primzahlsatz π(x) x/ ln(x) folgt Gehen Sie dabei wie folgt vor: i) p
WIEDERHOLUNG (BIS ZU BLATT 7)
Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber
Ältere Aufgaben (bis 1998)
Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:
Zahlentheorie. Prof. Dr. H. Brenner Osnabrück SS Vorlesung 11 Satz (von Euklid) Es gibt unendlich viele Primzahlen.
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung Satz.. (von Euklid) Es gibt unendlich viele Primzahlen. Beweis. Angenommen, die Menge aller Primzahlen sei endlich, sagen wir {p, p 2,...,
ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.
ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,
Übungen zu Zahlentheorie, SS 2017
Übungen zu Zahlentheorie, SS 017 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. ) Zeige (a b) (a n b n ) für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n ) (mit
Euklidische Division. Zahlentheorie - V Zusammenfassung 225 / 231
Euklidische Division 1. Euklidische Division: Landau Notation: f(n) = O(g(n)). Definitionen: Gruppe, Ring, Ideal Teilbarkeit und Teilbarkeit mit Rest (euklidisch) Beispiel für euklidische Ringe Z euklidisch
Zahlentheorie. Vorlesung 11. Die Unendlichkeit der Primzahlen. N = p 1 p 2 p 3 p r +1.
Prof. Dr. H. Brenner Osnabrück WS 206/207 Zahlentheorie Vorlesung Die Unendlichkeit der Primzahlen Satz.. Es gibt unendlich viele Primzahlen. Beweis. Angenommen, die Menge aller Primzahlen sei endlich,
Primzahlen Primzahlsatz Der Satz von Green und Tao Verschlüsselung mit RSA. Primzahlen. Ulrich Görtz. 3. Mai 2011
Primzahlen Ulrich Görtz 3. Mai 2011 Sei N := {1, 2, 3,... } die Menge der natürlichen Zahlen. Definition Eine Primzahl ist eine natürliche Zahl > 1, die nur durch 1 und durch sich selbst teilbar ist. Beispiel
In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0.
Kapitel 5: Die Einheitengruppe von Z/Z und Primitivwurzeln modulo In diesem Kapitel bestimmen wir die multiplikative Struktur der Einheitengruppe (Z/Z) von Z/Z für eine beliebige positive Zahl Z >0. 16
Kapitel III Ringe und Körper
Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem
Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler
Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante
Übungen zu Zahlentheorie für TM, SS 2013
Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass
Die Faszination der Primzahlen
zu Die der Institut für Mathematik Humboldt-Universität zu Berlin 27. April 2015 zu zu zu zu Die natürlichen Zahlen. Die Menge der natürlichen Zahlen: N = {0, 1, 2, 3,... }. zu zu Die natürlichen Zahlen.
. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. /
Zahlentheorie, Arithmetik und Algebra I Tobias Polzer Tobias Polzer Zahlentheorie, Arithmetik und Algebra I / Modulare Arithmetik Motivation Rechenregeln schnelle Potenzierung Gemeinsame Teiler euklidischer
3. Diskrete Mathematik
Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
Liften von Lösungen modulo 2
Liften von Lösungen modulo 2 Übung: An welcher Stelle im vorigen Beweis benötigen wir p 2? Geben Sie ein Gegenbeispiel für voriges Lemma für p = 2, r = 3. Modifizieren Sie den Beweis, um das folgende Lemma
Lösungen der Aufgaben
Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.
χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).
September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =
Einführung in die Zahlentheorie
Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik
UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlicheitstheorie Musterlösung zur Probelausur zur Angewandten Disreten Mathemati Prof Dr Helmut Maier, Hans- Peter Rec Gesamtpuntzahl: 130 Punte,
Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie
Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:
3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen
3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt
Algorithmische Kryptographie
Algorithmische Kryptographie Walter Unger Lehrstuhl für Informatik I 16. Februar 2007 Public-Key-Systeme: Rabin 1 Das System nach Rabin 2 Grundlagen Körper Endliche Körper F(q) Definitionen Quadratwurzel
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik
UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100
Primzahltest für Mersenne-Primzahlen
Primzahltest für Mersenne-Primzahlen Satz Lucas-Lehmer Test Sei n = 2 p 1 N für p P\{2}. Wir definieren die Folge S k durch S 1 = 4 und S k = S 2 k 1 2. Falls n S p 1, dann ist n prim. Beweis: Seien ω
Übungen zu Zahlentheorie, SS 2008
Übungen zu Zahlentheorie, SS 2008 Christoph Baxa 1) Finde alle positiven Teiler von a) 1799 b) 997. 2) Zeige (a b) (a n b n )für alle a, b Z und alle n N. 3) Zeige: Wenn m n dann (a m b m ) (a n b n )
Primzahlen von Euklid bis heute
Mathematisches Institut Universität zu Köln [email protected] 5. November 2004 Pythagoras von Samos (ca. 570-480 v. Chr.) Euklid von Alexandria (ca. 325-265 v. Chr.) Teilbarkeit Satz von Euklid
Diskrete Mathematik Kongruenzen
Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie
Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.
Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,
Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie
Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.
Definition der Kolmogorov-Komplexität I
Definition der Kolmogorov-Komplexität I Definition: Die Komplexität K A (x) eines Wortes x V + bezüglich des Algorithmus A ist die Länge der kürzesten Eingabe p {0, 1} + mit A(p) = x, d.h. in formalisierter
Algebra für Informationssystemtechniker
Algebra für Informationssystemtechniker Prof. Dr. Ulrike Baumann Fachrichtung Mathematik Institut für Algebra www.math.tu-dresden.de/ baumann [email protected] 16.07.2018 14. Vorlesung irreduzible
L-Funktionen in Geometrie und Arithmetik
Fachbereich Mathematik Technische Universität Darmstadt [email protected] 30. Januar 2008 Leonhard Euler (1707 1783) Bernhard Riemann (1826-1866) Die rationalen Zahlen Prinzahlen Die
Von den ganzen Zahlen zu GF(p)
Endliche Körper p. 1 Von den ganzen Zahlen zu GF(p) Aus dem Ring aller ganzen Zahlen gewinnt man endliche Körper wie folgt: Man führt das Rechnen modulo n ein (modulare Arithmetik) und erhält so endliche
ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA
ZAHLENTHEORIE Skritum zur Vorlesung von Prof. Michael DRMOTA Inhaltsverzeichnis Teilbarkeit in ganzen Zahlen. ggt und kgv............................2 Fundamentalsatz der Zahlentheorie............... 3.3
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen 2 Teil 11 Prof. Peter F. Stadler & Dr. Christian Höner zu Siederdissen Bioinformatik/IZBI Institut für Informatik & Interdisziplinäres Zentrum für Bioinformatik Universität
VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren
VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
Fibonacci-Zahlen und goldener Schnitt
Fibonacci-Zahlen und goldener Schnitt Suche eine Darstellung der Form F n = x n für reelle Zahl x > 0. Aus der definierenden Gleichung folgt sofort x 2 = x + 1. Dann liefert die p-q-formel: x 1,2 = 1 2
Groÿe Fortschritte bei kleinen Primzahllücken
Groÿe Fortschritte bei kleinen Primzahllücken Ringvorlesung PD Dr. Karin Halupczok 7. Mai 2014, Mathematisches Institut der WWU Münster Die Verteilung der Primzahlen Die Verteilung der Primzahlen in Restklassen
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 4: Zahlentheorie
Prof. Dr. Sebastian Iwanowski DM4 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 4: Zahlentheorie Beutelspacher 5 Lang 7, Biggs 20, 22, 23 (jeweils teilweise,
Endliche Körper und Codierung SS Übungsblatt. 9. Bestimmen Sie alle primitiven Elemente (Erzeuger der multiplikativen Gruppe) von
Endliche Körper und Codierung SS 2007 1. Übungsblatt 1. Sei p eine Primzahl und 0 j p 1. Zeigen Sie, dass ( ) p 1 j ( 1) j (mod p). 2. Sei R ein kommutativer Ring der Charakteristik p > 0 (prim). Zeigen
Erweiterter Euklidischer Algorithmus
Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:
Zahlentheorie, Arithmetik und Algebra
Zahlentheorie, Arithmetik und Algebra Seminar Hallo Welt für Fortgeschrittene 2008 Matthias Niessner June 20, 2008 Erlangen 1 von 29 Matthias Niessner Zahlentheorie, Arithmetik und Algebra Übersicht 1
Struktur und Zufall in der Menge der Primzahlen
Struktur und Zufall in der Menge der Primzahlen Vortrag zum Tag der Mathematik 2013 PD Dr. Karin Halupczok 2. März 2013, LVM in Münster Primzahlen zählen: von Euklid bis Riemann Primzahlmuster nden: viele
Quadratische Reste. Michael Partheil. 19. Mai Hintergrund 2. 2 Quadratische Reste 4. 3 Gauß sche Summen 7
Quadratische Reste Michael Partheil 19. Mai 008 Inhaltsverzeichnis 1 Hintergrund Quadratische Reste 4 3 Gauß sche Summen 7 4 Quadratisches Rezirozitätsgesetz 10 5 Literaturverzeichnis 1 1 1 Hintergrund
Übungen zur Zahlentheorie
J. Wolfart Sommersemester 2009 Übungen zur Zahlentheorie. Bestimmen Sie die größten gemeinsamen Teiler d der Zahlenpaare (a, b) = (0, 00), (000, 0000), (89, 44) und lösen Sie jeweils die Gleichung ax +
Zahlentheorie, Arithmetik und Algebra I
Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt
Kapitel 6: Das quadratische Reziprozitätsgesetz
Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im
Polynome und endliche Körper
Universität Koblenz-Landau Polynome und endliche Körper Ausarbeitung zum Proseminar Modul 4c Kryptographie im Fachbereich 3 Regula Krapf Arbeitsgruppe: Prof. Dr. Peter Ullrich Universität Koblenz-Landau
Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018
Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).
UE Zahlentheorie. Markus Fulmek
UE Zahlentheorie (Modul: Elementare Algebra (EAL)) Markus Fulmek Sommersemester 2015 Aufgabe 1: Betrachte folgende Partition der Menge r9s t1, 2, 3, 4, 5, 6, 7, 8, 9u Ă N: r9s t1, 4, 7u 9Y t2, 5, 8u 9Y
Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.
Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 26 1. Folgen R. Steuding (HS-RM)
Übung zur Vorlesung Diskrete Strukturen I
Technische Universität München WS 2002/03 Institut für Informatik Aufgabenblatt 8 Prof. Dr. J. Csirik 2. Dezember 2002 Brandt & Stein Übung zur Vorlesung Diskrete Strukturen I Abgabetermin: Tutorübungen
Zahlentheorie, Arithmetik und Algebra 1
Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen
ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018
ÜBUNGEN ZUR VORLESUNG ZAHLENTHEORIE, SS 2018 KARLHEINZ GRÖCHENIG So wie Sport Training erfordert, erfordert Mathematik das selbständige Lösen von Übungsaufgaben. Das wesentliche an den Übungen ist das
7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:
7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge
Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)
Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden
9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie
9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd
Analytische ZAHLENTHEORIE. Skriptum zur Vorlesung von Prof. Michael DRMOTA
Analytische ZAHLENTHEORIE Skriptum zur Vorlesung von Prof. Michael DRMOTA Inhaltsverzeichnis Zahlentheoretische Funktionen Analytische Funktionen und Dirichletsche Reihen 7 3 Der Primzahlsatz mit Restglied
8. Musterlösung zu Mathematik für Informatiker II, SS 2004
8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in
ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen
ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g
Der chinesische Restsatz mit Anwendung
Der chinesische Restsatz mit Anwendung Nike Garath [email protected] Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis
Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe)
TU Kaiserslautern Fachbereich Mathematik Prof. Dr. Andreas Gathmann Inga Schwabrow Lösung zur 13. Hausübung Algebraische Strukturen (keine Abgabe) Aufgabe 1. Wintersemester 2016/17 (1 + i) (1 i) 3 (2 +
Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)
WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Viel Erfolg! Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) Name:... Matr.-Nr.:...
8. März 2011 Prof. Dr. W. Bley Universität Kassel Lösungen zur Klausur WS 2010/11 Diskrete Strukturen II (Informatik) 1 2 3 4 5 6 Name:................................................ Matr.-Nr.:............................................
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Anzahl der Generatoren
Anzahl der Generatoren Satz Anzahl Generatoren eines Körpers Sei K ein Körper mit q Elementen. Dann besitzt K genau φ(q 1) viele Generatoren. Beweis: K ist zyklisch, d.h. K besitzt einen Generator a mit
Einführung in die Zahlentheorie
Einführung in die Zahlentheorie Jörn Steuding Uni Wü, SoSe 2015 I Zahlen II Modulare Arithmetik III Quadratische Reste IV Diophantische Gleichungen V Quadratische Formen Wir behandeln die wesentliche Zahlentheorie
Aufgabe der Kryptografie
Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale
Übungen p-adische Zahlen
Blatt 1 Aufgabe 1. Berechnen Sie die ersten fünf Ziffern a 0,..., a 4 der ganzen p- adischen Zahl 1 + p + p 2 = a i p i Z p, p 1 i 0 für die Primzahlen p = 2, 3, 5. Aufgabe 2. Sei a = i 0 a ip i Z p eine
Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05
Prof. Dr. Duco van Straten Oliver Weilandt Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 0.03.05 Bitte tragen Sie hier gut lesbar Ihren Namen und Ihre Matrikelnummer ein. Name, Vorname Matrikelnummer
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 18 Kreisteilungskörper Definition 18.1. Der n-te Kreisteilungskörper ist der Zerfällungskörper des Polynoms X n 1 über Q. Offenbar
Public-Key-Verschlüsselung und Diskrete Logarithmen
Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln
Tutorium: Diskrete Mathematik
Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 16.02.2017 (Teil 2, Lösungen 15. Februar 2017 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler 15. Februar
Kanonische Primfaktorzerlegung
Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik
