Lichtleitung in Glasfasern
|
|
|
- Laura Brandt
- vor 9 Jahren
- Abrufe
Transkript
1 Fortgeschrittenenpraktikum III: Lichtleitung in Glasfasern Tutor: Prof. Mitschke Version 19. Oktober 2006 Überblick Früher wurden Nachrichten im Normalfall über Kupferkabel als elektrische Signale transportiert. Inzwischen ist zumindest auf längeren Strecken eine Übertragung als optische Signale über Glasfasern der Regelfall. Ein gängiges Verfahren geht wie folgt: Die Daten (z.b. ein Telefonat, Telefax etc.) wird elektronisch in ein binäres Digitalformat gewandelt und liegt dadurch als Sequenz von Nullen und Einsen vor. Mit einem festen Zeittakt wird dann für jede Eins ein kurzer Lichtblitz aus einem Laser in eine Glasfaser geschickt und am anderen Ende durch einen Fotodetektor registiert. Für eine Null entfällt im betreffenden Zeitfenster des Taktes der Puls. Für diese Technik ist Voraussetzung, dass sowohl geeignete Lichtquellen und als auch Lichtempfänger bereitstehen. Es ist aber ebenso zentral erforderlich, dass geeignete Glasfasern als Lichtleiter zur Verfügung stehen. Seit etwa zwanzig Jahren erfüllen Glasfasern die wesentlichen Anforderungen, auch wenn es weiterhin Fortentwicklungen gibt. Die Anforderungen sind: Geringe Verluste: Es soll nach einer gegebenen Strecke ein möglichst großer Teil der Energie des Lichtpulses noch ankommen. Wenn nach Entfernungen von einigen 10 km der Puls nicht mehr nachweisbar wäre, würde man diese Faser nicht verwenden wollen. Geringe Dispersion der Gruppengeschwindigkeit: Da ein kurzer Puls nach Fourier notwendig eine gewisse spektrale Breite beansprucht und da andererseits der Brechungsindex eines jeden Materials von der Frequenz bzw. Wellenlänge abhängt, breiten sich verschiedene Fourierkomponenten des Pulses etwas unterschiedlich schnell aus. Als Resultat erreicht ein zeitlich breit geflossener Puls ein Empfänger. Überschreitet die Verbreiterung den durch den Zeittakt vorgegebenen Rahmen, wird das Signal unlesbar. Haltbarkeit: Die Fasern werden nicht in behüteter Laborumgebung, sondern draußen in der rauhen Wirklichkeit verlegt. Sie müssen mechanischen, thermischen und anderen Belastungen standhalten. Geringer Preis: Es werden erhebliche Mengen an Faser gebraucht: Weltweit wurden allein 2003 immerhin 55 Millionen km Glasfaser verlegt.
2 2 Das ist nur möglich, weil der Meter Standard-Glasfaser bei Großeinkauf inzwischen nur noch einige Cent kostet. Versuchsaufbau Zur Verfügung stehen Ihnen folgende Geräte: Ein Helium-Neon-Laser (λ = 632, 8 nm, linear polarisiert) als Lichtquelle Umlenkspiegel und ein Verschiebetisch zur Einkopplung des Laserstrahls in die Faser Ein Fotodetektor mit Anzeigegerät zum quantitativen Nachweis Ein Stück Standard-Glasfaser, wie sie für Telekommunikation benutzt wird. Daten: Stufenindexfaser mit Außendurchmesser 125 µm, Kerndurchmesser 2a = 8.2 µm, normierter Brechzahldifferenz = , umhüllt von einem Kunststoff-Schutzmantel (Außendurchmesser ca. 250 µm). Ein Stück einer Multimode-Faser. Der Außendurchmesser ist wieder 125 µm, der Kerndurchmesser 2a = 50 µm. Das Ganze ist umhüllt von einem ähnlichen Kunststoff-Schutzmantel. Sie erhalten ferner Zugang zu einer Zange zur Entfernung des Kunststoffmantels, einem Faserbrechgerät zur Erzeugung von Schnitten mit Schnittflächen von optischer Qualität, und einem Mikroskop zur Inspektion der Schnittflächen. Weitere Hilfsmittel können Sie, falls erforderlich, nach Absprache erhalten. Warnhinweis Dringender Sicherheitshinweis: Laserstrahlung kann Ihre Augen gefährden NIEMALS direkt in den Strahl sehen! Bedenken Sie auch, dass sogar Reflexe an spiegelnden Oberflächen an Ihr Auge gelangen und dieses gefährden können.
3 3 Versuchsdurchführung Es folgt die Beschreibung Ihrer Aufgaben. Diese ist keine mechanisch abzuarbeitende Checkliste; vielmehr benutzen Sie bitte Umsicht und Augenmaß. Bereiten Sie suabere Endflächen der Fasern vor. Koppeln Sie den Laserstrahl in jede der beiden Glasfasern so ein, dass Sie jeweils die höchstmögliche Leistung am anderen Faserende erhalten. Wenn anfangs die transmittierte leistung noch sehr gering ist, spricht das Leistungsmeßgerät u. U. noch nicht an: Lenken Sie dann den Strahl auf ein weißes Blatt Papier, um ihn im abgedunkelten Labor visuell zu beurteilen. Dazu ist eine präzise Justierung in allen fünf Freiheitsgraden (vertikale und horizontale Position und Winkel sowie Fokussierentfernung) erforderlich. Bestimmen Sie als Prozentangabe, wieviel der Leistung vor der Faser noch nach der Faser ankommt. Das Leistungsmeßgerät hat lineare und Dezibel-Skalen. Machen Sie sich die jeweilige bedeutung klar. Die verwendeten Fasern haben bei der Wellenlänge des verwendeten Lasers eine Extinktion (Leistungsverlust) von ca. 5 db/km. Diskutieren Sie, ob damit Ihre Meßwerte erklärt werden können. Dazu müssen Sie betrachten, ob systematische Fehler in die Messung eingehen. Falls der gemessene Wert nicht so wie erwartet ist: Woran kann es liegen? Wickeln Sie die Faser um einen geeigneten runden Gegenstand zu einer Schlaufe mit vielleicht 2 cm Durchmesser. Ändert sich die transmittierte Leistung? Warum? Betrachten und beschreiben Sie das Profil des Strahls, der am Faserende austritt und auf einen Schirm gelangt. Hängt das Strahlprofil von der Justierung der Einkopplung ab? Vergleichen Sie dies für die beiden Fasern. Achten Sie auch darauf, ob die enge Schlaufe des vorigen Punktes einen Einfluss hat. Informieren Sie sich über die Moden der Ausbreitung in einem Wellenleiter. Angaben dazu finden Sie in Lehrbüchern der Optik oder Nachrichtentechnik wie dem unten angegebenen, oder aus der Vorlesung von Prof. Mitschke. Begründen Sie kurz, warum eine Faser unter bestimmten Verhältnissen nur eine Mode unterstützt. Wie viele Moden erwarten Sie bei den beiden hier verwendeten Fasern? bei dieser Betrachtung können die beiden hier beigegebenen Abbildungen hilfreich sein. Was müßte man tun, damit nur eine einzige Mode geleitet wird? Könnte man dazu einen Laser einer anderen Wellenlänge einsetzen?
4 4 LP-Moden LP modes w u Abbildung 1: Die u-w-ebene bis V = 8. Entnommen aus F. Mitschke, Glasfasern. Physik und Technologie, Elsevier Spektrum 2005 Mögliche Zusatzaufgaben: Schlagen Sie ein Experiment vor, mit dem man tatsächlich die Extinktion der Faser sinnvoll messen könnte. Diskutieren Sie, ob und wie die Polarisation des Lichts einen Einfluß auf die bislang erzielten Ergebnisse hat. Literaturhinweise Es gibt zahlreiche geeignete Bücher. Es sei hier nur genannt: F. Mitschke, Glasfasern Physik und Technologie, Elsevier Spektrum 2005
5 5 Abbildung 2: Bilder mehrerer LP-Moden. Entnommen aus R.H. Stolen und W. N. Leibolt, Appl. Opt. 15, 239 (1976). Bericht Über Verlauf und Ergebnis des Versuchs fertigen Sie bitte ein Protokoll, welches Sie beide unterschreiben. Reichen Sie das Protokoll binnen 14 Tagen nach Versuchsende bei Prof. Mitschke ein.
Lichtleitung in Glasfasern
Fortgeschrittenenpraktikum III: Lichtleitung in Glasfasern Tutor: Prof. Dr. Fedor Mitschke Version: 6. März 2013 Überblick Früher wurden Nachrichten im Normalfall über Kupferkabel als elektrische Signale
Versuch Polarisiertes Licht
Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise
Versuch Nr. 22. Fresnelformeln
Grundpraktikum der Physik Versuch Nr. 22 Fresnelformeln Versuchsziel: Die Fresnelformeln beschreiben, in welcher Weise sich ein polarisierter oder unpolarisierter Lichtstrahl verhält, wenn er auf die Grenzfläche
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter
Übungen zur Optik (E3-E3p-EPIII) Blatt 14
Übungen zur Optik (E3-E3p-EPIII) Blatt 14 Wintersemester 2016/2017 Vorlesung: Thomas Udem ausgegeben am 31.01.2017 Übung: Nils Haag ([email protected]) besprochen ab 06.02.2017 Die Aufgaben ohne Stern sind
Praktikum Lasertechnik, Protokoll Versuch Beugung
Praktikum Lasertechnik, Protokoll Versuch Beugung 05.05.2014 Inhaltsverzeichnis 1 Einleitung 2 2 Fragen zur Vorbereitung 2 3 Versuch 2 3.1 Geräteliste... 3 3.2 Versuchsaufbau... 3 3.3 Versuchsvorbereitung...
Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker. Versuch: Optische Kohärenz-Tomographie (OCT)
Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker Versuch: Optische Kohärenz-Tomographie (OCT) Grundlagen der Optischen Kohärenz-Tomographie (OCT) Bei der Optischen Kohärenz-Tomographie
Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion
Übung 24 Optik Wellencharakter von Licht, Reflexion, Brechung, Totalreflexion Lernziele - verstehen, dass das Licht Wellencharakter besitzt. - verstehen, wie beim Fresnel'schen Spiegelversuch die beobachteten
Wissenswertes zum Einsatz von Lichtleitern
Wissenswertes zum Einsatz von Lichtleitern Dr. Jörg-Peter Conzen Vice President NIR & Process Bruker Anwendertreffen, Ettlingen den 13.11.2013 Innovation with Integrity Definition: Brechung Brechung oder
Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016
Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer
Schülerlabor. Station 1: musikalische Lichtleiter. Stationsbeschreibung
Schülerlabor Station 1: musikalische Lichtleiter Stationsbeschreibung Bild 1: Auf diesem optischen Tisch wird das Experiment aufgebaut. Bild 2: Ziel des Experiments ist es einen Laserstrahl in ein orangenes
Klausur Optoelektronik 1 / Optische Informationstechnologie. Winter-Halbjahr 2003
Klausur Optoelektronik / Optische Informationstechnologie Winter-Halbjahr 23 Name: Matrikelnummer: Aufgabe : Aufgabe 2: Aufgabe 3: Aufgabe 4: Note: Einverständniserklärung Ich bin damit einverstanden,
Komponenten, Aufbau und Funktionsweise einer. Glasfaserdatenübertragung
Komponenten, Aufbau und Funktionsweise einer Folie 1 Folie Optische Kommunikation (1) 1880 Photophon (Graham Bell) Sonnenlicht Spiegel Halbleiter Lautsprecher Änderung der Lichtstärke Übertragung von der
1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter
1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen
8 Reflexion und Brechung
Universität Leipzig, Fakultät für Physik und Geowissenschaften Vorlesung zur Experimentalphysik III Wintersemester 28/29 Prof. Dr. Josef A. Käs Vorlesungsmitschrift zur Vorlesung vom 2.11.28 8 Reflexion
Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr.
Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum I Versuchsprotokoll Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr. 1 0. Inhaltsverzeichnis 1. Einleitung.
Übungen zur Optik (E3-E3p-EPIII) Blatt 8
Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Wintersemester 2016/2017 Vorlesung: Thomas Udem ausgegeben am 06.12.2016 Übung: Nils Haag ([email protected]) besprochen ab 12.12.2016 Die Aufgaben ohne Stern sind
Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves
Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie
Einfache Experimente zu Koronen
KORONEN PHYSIKDIDAKTIK Einfache Experimente zu Koronen LES COWLEY PHILIP LAVEN MICHAEL VOLLMER Dieses Dokument ist eine Ergänzung zum Artikel Farbige Ringe um Sonne und Mond über Koronen in Physik in unserer
Labor für Technische Akustik
Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende
Strukturierte Verkabelung
Elemente der strukturierten Verkabelung Patchfeld (Patchpanel) Patchkabel Anschlussdosen Netzwerkkabel Verteilerschränke Switch, Hubs, Router Twisted Pair Kabel U/UTP - Unscreened/Unshielded Twisted-Pair-Kabel
Vorlesung Physik für Pharmazeuten PPh Optik
Vorlesung Physik für Pharmazeuten PPh - 10 Optik 02.07.2007 Wiederholung : Strom und Magnetismus B = µ 0 N I l Ampère'sche Gesetz Uind = d ( BA) dt Faraday'sche Induktionsgesetz v F L = Q v v ( B) Lorentzkraft
PRISMEN - SPEKTRALAPPARAT
Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes
Technischer Hintergrund
Technischer Hintergrund zu Modul 01: Lichtsignale Heutzutage können wir uns das Leben ohne Computer nicht mehr vorstellen. Nachrichten an Freunde schreiben, im Internet surfen, Musik und Videos runterladen
Protokoll. Lichtausbreitug in Glasfaser. F-Praktikum Physikalisches Institut. Versuchsdurchführung: Montag, 10.Januar Montag, 30.
F-Praktikum Physikalisches Institut Protokoll Lichtausbreitug in Glasfaser Versuchsdurchführung: Montag, 10.Januar 2011 Abgabe des Protokolls: Montag, 30.Januar 2011 Protokollant: Verantwortlich: Tagesprotokoll:
425 Polarisationszustand des Lichtes
45 Polarisationszustand des Lichtes 1. Aufgaben 1.1 Bestimmen Sie den Polarisationsgrad von Licht nach Durchgang durch einen Glasplattensatz, und stellen Sie den Zusammenhang zwischen Polarisationsgrad
Physik für Naturwissenschaften. Dr. Andreas Reichert
Physik für Naturwissenschaften Dr. Andreas Reichert Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Modulhandbuch Termine Klausur: 5. Februar?, 12-14 Uhr,
Präsentation der Diplomarbeit von Michael Löffler. Lehrstuhl für Photonische Technologien Diplomarbeit 2009/008 von Michael Löffler
Realisierung und Erprobung eines Messsystems zur Erfassung des Einfallswinkels bei der Observation von Lichtquellen schwankender Intensität durch eine einzelne Glasfaser Präsentation der Diplomarbeit von
Versuch O08: Polarisation des Lichtes
Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen
Versuch 4.1b: Interferenzrefraktor von Jamin
PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher
Ultrakurze Lichtimpulse und THz Physik
Ultrakurze Lichtimpulse und THz Physik 1. Einleitung 2. Darstellung ultrakurzer Lichtimpulse 2.1 Prinzip der Modenkopplung 2.2 Komplexe Darstellung ultrakurzer Lichtimpulse 2.2.1 Fourier Transformation
Abiturprüfung Physik, Grundkurs
Seite 1 von 7 Abiturprüfung 2011 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Der Doppelspalt 1.1 Interferenzen bei Licht In einem ersten Experiment untersucht man Interferenzen von sichtbarem Licht,
Physikalisches Anfängerpraktikum Teil 2 Versuch PII 22: Lichtstreuung Auswertung
Physikalisches Anfängerpraktikum Teil 2 Versuch PII 22: Lichtstreuung Auswertung Gruppe Mi-14: Marc A. Donges , 1060028 Tanja Pfister, 14846 05 07 12 1 1 Versuchsaufbau Der Versuch wurde
Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation
Physik 3 exp. Teil. 30. Optische Reflexion, Brechung und Polarisation Es gibt zwei Möglichkeiten, ein Objekt zu sehen: (1) Wir sehen das vom Objekt emittierte Licht direkt (eine Glühlampe, eine Flamme,
ibeo LUX Laserscanner
Jan Christoph Gries, Jan Girlich, Prof. Dr. Jianwei Zhang, Denis Klimentjew Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme 19. März 2008 Jan Gries,
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten
Schriftliche Prüfung zur Feststellung der Hochschuleignung
Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:
NG Brechzahl von Glas
NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes
Klausur für die Teilnehmer des Physikalischen Praktikums für Mediziner und Zahnmediziner im Sommersemester 2006
Name: Gruppennummer: Nummer: Aufgabe 1 2 3 4 5 6 7 8 9 10 insgesamt erreichte Punkte erreichte Punkte Aufgabe 11 12 13 14 15 16 erreichte Punkte Klausur für die Teilnehmer des Physikalischen Praktikums
Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung
Vortrag zum Thema Lichtwellenleiter. von Stanislaw Nickel. Universität Bielefeld Proseminar SS 2010
Vortrag zum Thema Lichtwellenleiter von Stanislaw Nickel Universität Bielefeld Proseminar SS 2010 Inhalt 1. Motivation und Geschichte 2. Physikalische Grundlagen 2.1 Arten und Aufbau 2.2 Wellenoptische
Labor für Technische Optik und Lasertechnik
Labor für Technische Optik und Lasertechnik Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Untersuchung von polarisiertem Licht 1. Lernziele: a) Erzeugung von linear
Physik 2 (GPh2) am
Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 09.03.2012 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden
Lichtausbreitung in Glasfasern. Fortgeschrittenes Praktikum Physikalisches Institut Fachbereich Physik Goethe Universität Frankfurt am Main
Lichtausbreitung in Glasfasern Fortgeschrittenes Praktikum Physikalisches Institut Fachbereich Physik Goethe Universität Frankfurt am Main Kontaktdaten des Betreuers Matthias Wiecha Büro: _0.215 Tel.:
F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie
F-Praktikumsversuch: Kristallschwingungen und Raman - Spektroskopie Was ist Raman-Spektroskopie? Abteilung Physik der Mikro- und Nanostrukturen (Prof. Dr. P.J. Klar) I. Physikalisches Institut, Justus-Liebig-Universität
Lloydscher Spiegelversuch
Lloydscher Spiegelversuch Lichtwellen können sich gegenseitig auslöschen, nämlich dann, wenn ein Berg der Welle auf ein Tal derselben trifft. Um das zu zeigen, benötigt man zwei im gleichen Takt und mit
Photonische Kristalle Clemens Ringpfeil
Photonische Kristalle 22.11.2001 Clemens Ringpfeil Inhalt Einführung Grundlagen Historischer Überblick Herstellung Anwendungen Passive Wellenleiter Optische Bauelemente können nur sehr beschränkt auf einem
Praktikum Optische Technologien, Protokoll Versuch polarisiertes Licht
Praktikum Optische Technologien, Protokoll Versuch polarisiertes Licht Marko Nonhoff, Christoph Hansen, Jannik Ehlert [email protected] Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.
Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O10: Linsensysteme Arbeitsplatz Nr.
Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum I Versuchsprotokoll Versuch O10: Linsensysteme Arbeitsplatz Nr. 1 0. Inhaltsverzeichnis 1. Einleitung 2.
Physikalisches Praktikum
Physikalisches Praktikum Versuch 17: Lichtbeugung Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 Versuch 17: Lichtbeugung Im Modell
Laser und Laserbeamline bei PITZ. Technisches Seminar Marc HänelH
Laser und Laserbeamline bei PITZ Technisches Seminar Marc HänelH 26.06.2007 Inhalt 1. Was ist PITZ und wofür brauchen wir einen Laser? 2. Was muss der Laser können? 3. Wie macht er das? 4. Wie überwachen
Durchblick mit Physik. Landeswettbewerb Physik 2017/2018 Runde 2
Landeswettbewerb Physik 2017/2018 Runde 2 Durchblick mit Physik Aufgabe 1: Glasgefäße In dieser Aufgabe untersuchst du optische Eigenschaften unterschiedlicher Glasgefäße. Material: Ein möglichst kugelförmiges
6.2.2 Mikrowellen. M.Brennscheidt
6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ
Lichtwellenleitertechnik im Handwerk
Lichtwellenleitertechnik im Handwerk K. Mertens, Labor für Optoelektronik und Sensorik, Fachbereich Elektrotechnik und Informatik, Fachhochschule Münster Handwerk trifft Wissenschaft, Münster, 2.11.2006
Lösung: a) b = 3, 08 m c) nein
Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter
Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen
Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen August 204 Praktikum Optische
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002
Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723
Physik 2 am
Name: Matrikelnummer: Studienfach: Physik 2 am 28.03.2017 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
Optik Licht als elektromagnetische Welle
Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor
ONT Optische Nachrichtentechnik. Bildübertragung mit Lichtwellenleitern
Fachbereich Elektrotechnik u. Informatik ONT Optische Nachrichtentechnik Bildübertragung mit Lichtwellenleitern Dipl.-Ing. Kufferath Version 1.1-4-2013 Demonstration der Technologie Wellenlängenmutiplex
Praktikum GI Gitterspektren
Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings
Jan Buchman Erik Johnson
Messung der Lichtgeschwindigkeit von Jan Buchman Erik Johnson Weird Science Club Darmstadt an der Lichtenbergschule Europaschule, MINT-Excellence Center, Internationale Begegnungsschule Ludwigshöhstr.
Geometrische Optik Die Linsen
1/1 29.09.00,19:40Erstellt von Oliver Stamm Geometrische Optik Die Linsen 1. Einleitung 1.1. Die Ausgangslage zum Experiment 2. Theorie 2.1. Begriffe und Variablen 3. Experiment 3.1.
LASER-OPTIK-KIT "SNELLIUS Ein Versuchsaufbau zum Erlernen der Optik im Zeitalter der Photonik in Gymnasien, Schülerlaboren und physikalischen Praktika
LASER-OPTIK-KIT "SNELLIUS Ein Versuchsaufbau zum Erlernen der Optik im Zeitalter der Photonik in Gymnasien, Schülerlaboren und physikalischen Praktika Alle gleichzeitig stattfindenden Phänomene werden
Spektrale Helligkeitsverteilung einer Leuchtdiode (LED)
Lehrer-/Dozentenblatt Spektrale Helligkeitsverteilung einer Leuchtdiode (LED) Aufgabe und Material Lehrerinformationen Zusatzinformation Es ist besonders darauf zu achten, dass sich die Versuchsanordnung
Das Gasinterferometer
Physikalisches Praktikum für das Hautfach Physik Versuch 24 Das Gasinterferometer Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Grue: Daniel Scholz Hauke Rohmeyer [email protected] B9 Assistent:
Themenübersicht. 2. Dispersion CD (Chromatische Dispersion) 3. Dispersion s PMD (Polarisations Moden Dispersion)
Faserqualifikation: Dämpfung und Dispersion (CD/PMD) Themenübersicht 1. Dämpfung 2. Dispersion CD (Chromatische Dispersion) 3. Dispersion s PMD (Polarisations Moden Dispersion) 4. Beispiele aus der Praxis
1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten
Versuch Nr. 18 BEUGUNG
Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der
Protokoll zum Physikalischen Praktikum Versuch 9 - Newtonsche Ringe
Protokoll zum Physikalischen Praktikum Versuch 9 - Newtonsche Ringe Experimentator: Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 02.11.2004 Inhaltsverzeichnis 1 Ziel des Versuches 1 2 Vorbetrachtungen
Polarisation und Doppelbrechung Versuchsauswertung
Versuche P2-11 Polarisation und Doppelbrechung Versuchsauswertung Marco A. Harrendorf und, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 04.07.2011 1 Inhaltsverzeichnis
Physik 2 (GPh2) am
Name, Matrikelnummer: Physik 2 (GPh2) am 16.9.11 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD Optik Brechungszahl eines Prismas Durchgeführt am 17.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer II Inhaltsverzeichnis 1
Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012
Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012 1. Kurzaufgaben (7 Punkte) a) Welche der folgenden Aussagen ist richtig? Kreuzen Sie diese an (es ist genau eine Aussage richtig). A: Der Brechungswinkel
Sessionsprüfung Elektromagnetische Felder und Wellen ( S)
Sessionsprüfung Elektromagnetische Felder und Wellen (7-005-10S) 5. Januar 019, 09:00-1:00 Uhr, HG D3. Prof. Dr. L. Novotny Bitte beachten Sie: Diese Prüfung besteht aus 4 Aufgaben. Die Angabe umfasst
Klausurtermin: Nächster Klausurtermin: September :15-11:15
Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: [email protected] direkt oder im Tutorium
Laboranten Labormethodik und Physikalische Grundlagen
0.09.06 Brechung Trifft Licht auf die Grenzfläche zweier Stoffe, zweier Medien, so wird es zum Teil reflektiert, zum Teil verändert es an der Grenze beider Stoffe seine Richtung, es wird gebrochen. Senkrecht
Versuch GO1 Abbildungen durch Linsen und Abbildungsfehler
BERGISCHE UNIVERSITÄT WUPPERTAL Versuch GO Abbildungen durch Linsen und Abbildungsfehler I. Vorkenntnisse 0.06 Das Snellius sche Brechungsgesetz, die Dispersion des Brechungsindex von Glas, Linsen- und
Praktikum Optische Technologien Anleitung zum Versuch Polarisiertes Licht
Fachbereich Energietechnik Lehrgebiet für Lasertechnik und Optische Technologien Prof. Dr. F.-M. Rateike Praktikum Optische Technologien Anleitung zum Versuch Polarisiertes Licht August 14 Praktikum Optische
Bedienungsanleitung Laseroptisches Ausrichtsystem LT-VA-5
Bedienungsanleitung Laseroptisches Ausrichtsystem LT-VA-5 BESTEHEND AUS: Präzisionslaser Laserhalter Zieleinheit Akkupack Ladegerät Ersatz Zielscheiben (5 Stk.) Laserwarnschilder Bild 1: Zieleinheit LASERSICHERHEIT
Auflösung optischer Instrumente
Aufgaben 12 Beugung Auflösung optischer Instrumente Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
AUSWERTUNG: LASER A FREYA GNAM, TOBIAS FREY
AUSWERTUNG: LASER A FREYA GNAM, TOBIAS FREY 1. BREWSTERWINKEL UND BRECHUNGSINDEX Da ein Laser linear polarisiertes Licht erzeugt, lässt sich der Brewsterwinkel bestimmen, indem man den Winkel sucht, bei
Glasfaserversuch. Daniel Grewe, Henrik Gebauer 22. Dezember 2009
Glasfaserversuch Daniel Grewe, Henrik Gebauer 22. Dezember 2009 Zusammenfassung Dieser Versuch wurde am 22. Dezember 2009 im Rahmen des Fortgeschrittenen-Praktikums in der Physik durchgeführt, um die Glasfasertechnik
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern
Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen
Formstabile Wellenpropagation
Formstabile Wellenpropagation Solitonen in Glasfasern David Kleinhans WWU Münster David Kleinhans, WWU Münster Solitonen in Glasfasern 1 Wegweiser Was sind Solitonen? Lineare Lichtausbreitung in optischen
Institut für Fachdidaktik der Naturwissenschaften Abteilung Physik und Physikdidaktik
MECHANIK I SCHWERPUNKT & GLEICHGEWICHT, IMPULS- & ENERGIEERHALTUNG MITTWOCH 25.10.17 UND 01.11.17 GRUPPE A (DEMO) Schwerpunkt (stabiles, labiles und indifferentes Gleichgewicht), Hebelgesetze, Drehmoment,
Teilklausur Physik 2 (GPh2) am
Name, Matrikelnummer: Teilklausur Physik 2 (GPh2) am 7.2.07 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Teilklausur: Beiblätter
Brewster-Winkel - Winkelabhängigkeit der Reflexion.
5.9.30 ****** 1 Motivation Polarisiertes Licht wird an einem geschwärzten Glasrohr reflektiert, so dass auf der Hörsaalwand das Licht unter verschiedenen Relexionswinkeln auftrifft. Bei horizontaler Polarisation
Staatsexamen Physik (Unterrichtsfach) / Fachdidaktik. (Einzelprüfungsnummer 44019) Prüfungstermin Frühjahr 2005, Thema Nr. 1.
Referent: Schuller, Wolfgang Dozent: Dr. Wilhelm, Thomas Datum: 02. 11. 2006 Staatsexamen Physik (Unterrichtsfach) / Fachdidaktik (Einzelprüfungsnummer 44019) Prüfungstermin Frühjahr 2005, Thema Nr. 1
Interferometeranordnungen zur Messung der Rechtwinkligkeit
F Interferometeranordnungen zur Messung der Rechtwinkligkeit Die Abweichung von der Rechtwinkligkeit zweier Maschinenachsen kann auf folgende Weise gemessen werden: 1. Die Geradheit einer Maschinenachse
Insitu-Monitoring bei der Herstellung von Dünnfilmen durch Elektronenstrahlverdampfen
Insitu-Monitoring bei der Herstellung von Dünnfilmen durch Elektronenstrahlverdampfen Dipl.-Ing. Sabine Peters Universität Karlsruhe (TH) Herstellung von Dünnfilmen durch Elektronenstrahlverdampfen Rezipient
Besprechung am
PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Übungsblatt 10 Übungsblatt 10 Besprechung am 27.6.2016 Aufgabe 1 Interferenz an dünnen Schichten. Weißes Licht fällt unter einem Winkel
OM4 Multimode Glasfaser 50/125 μm, laseroptimiert, für 10Gigabit Ethernet, 550 m
OM4 Multimode Glasfaser 50/125 μm, laseroptimiert, für 10, 550 m Spezifikation nach IEC 60793-2-10 fiber type A1a.3 Kerndurchmesser μm 50,0 ± 2,5 Durchmesser über μm 245 ± 10 Mantel/Beschichtung-Konzentrizitätsfehler
Vorlesung 7: Geometrische Optik
Vorlesung 7: Geometrische Optik, Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed Geometrische Optik Beschäftigt sich mit dem Verhalten von Lichtstrahlen (= ideal schmales Lichtbündel)
Übungsaufgaben zu Interferenz
Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.
