Materialien zur Mathematik IV
|
|
|
- Ralph Melsbach
- vor 9 Jahren
- Abrufe
Transkript
1 Joachim Stiller Materialien zur Mathematik IV Die Magie der Zahlen Alle Rechte vorbehalten
2 Zaubertricks mit Zahlen - Literaturhinweise Zu diesem Thema möchte ich lediglich einige gute Literaturhinweise geben: Literaturhinweise (Zaubertricks mit Zahlen): - Mathematische Zaubertricks für die 5. bis 10. Klasse Mathe spielend lernen - Spielend Lernen Mathematik Zaubertricks Band 2 Mathe spielend lernen - Zauberhafte Mathematik (Schulbuch) - Martin Gardner: Mathematik und Magie
3 Magische Quadrate 3er-Quadrat 1. Ordnung Summe: 5 x 3 = 15 Wir füllen zunächst ein Magisches 3er-Quandrat mit den Zahlen 1 9 aus. Für Jedes magische Quadrat gibt es genau 8 Lösungen er-Quadrat 2. Ordnung Summe: 6 x 3 = 18 Nun beginnen wir mit der Zahl 2. So entsteht ein magisches Quadrat 2. Ordnung er-Quadrat 3. Ordnung Summe: 7 x 3 =
4 4er-Quadrat 1. Ordnung Summe er-Quadrat 2. Ordnung Summe:
5 5er Quadrat 1. Ordnung Summe er-Quadrat Summe
6 Das Finale Wir basteln uns nun 9er-Quadrate (81 Felder) aber nicht nach dem Schema aus Denkspiele der Welt, sondern nach dem, das ich selber entwickelt habe. Dabei wird das 9er-Quadrat in 9 3er-Quadrate unterteilt, die der Reihe nach in der richtigen Reihenfolge ausgefüllt werden. Es handelt sich somit um eine selbstähnliche Schachtelung des magischen Quadrates. Ich fülle dieses Meisterquadrat, wie ich es genannt habe, zunächst nur mit den Ziffern 1 9 aus, also im Sinne des Nona-Systems (Zahlensystem mit der Grundzahl 9). Auf diese Weise wird einfach schneller deutlich, was ich meine. Die Besonderheit bei diesem Meisterquadrat ist, dass nicht nur die Summen der Zahlen alle gleich groß sind, sondern ganz logisch auch die Quersummen
7 9er-Quadrat 1. Ordnung Und nun füllen wir das 9er-Quadrat im Sinne des Dezimalsystems aus (Zahlensystem mit der Grundzahl 10). Wir beginnen mit der Zahl 1, so dass ein 9er-Quadrat 1. Ordnung entsteht. Es ist nun lediglich darauf zu achten dass die Reihenfolge beim Ausfüllen der Zahlen genau eingehalten wird. Man schreibe sich dazu vielleicht ein 3-er-Quadrat 1. Ordnung darüber, um sich immer orientieren zu können. Mit ein bischen Übung bracht man diese Hilfestellung nicht mehr. Dann geht alles ganz automatisch
8 9er-Quadrat 11. Ordnung Nun können wir praktisch jedes beliebige magische 9er-Quadrat jeder beliebigen Ordnung ganz leicht ausfüllen. Hier einmal ein 9er-Quadrat 11. Ordnung. Man muss nur zu jeder Zahl 10 addieren Literaturhinweis: - Van Delft/Botermanns: Denkspiele der Welt (das Kapitel zu den magischen Quadraten)
9 Ein philosophischer Gedanke Als Hobbymathematiker möchte ich einmal die These wagen, dass der große Gauß, der ich liebend gerne selber wäre, nie gerechnet hat. Er hat einfach nur die Strukturen hinter den Zahlen verstanden. Und die sind oft verblüffend einfach. Hinter den Zahlen stehen immer die Strukturen der Zahlen. Wer die Strukturen versteht, der braucht eben nicht mehr zu rechnen. Dabei haben die Strukturen und die Zahlen objektiven Charakter. Zahlen sind nämlich nichts ausgedachtes. Sie sind eine Offenbarung Gottes. Eine Anekdote Gauß soll bereits als Schüler seinen Lehrer verblüfft haben, als er die gestellte Aufgabe alle Zahlen von zusammenzurechnen, bereits nach wenigen Sekunden richtig löste. Was hatte er gemacht? Er rechnete = = = 100 usw. Das ergibt 49 x den ganzen 100er + die in der Mitte übrigbleibende 50, denn beide haben ja ganz logisch kein Gegenstück. Macht zusammen 5050, oder fifty-fifty, wie ich immer zu sagen pflege.
10 Mathematische Rätsel - Literaturhinweise Literaturhinweise (mathematische Rätsel mit Zahlen): - Loyd, Sam: Die kniffligsten mathematischen Rätsel - Loyd, Sam: Mathematische Rätsel und Spiele - Loyd, Sam/Gardner, Martin: Mathematische Rätsel und Spiele - Holt, Michael: Neue Mathematische Rätsel für Denker und Tüftler - Hemme, Heinrich: Die Hölle der Zahlen - Hemme, Heinrich: Mensch ärgere dich nicht - Hemme Heinrich: Alice im Knobelland - Havil, Julian: Das gibt s doch gar nicht (das Buch ist leider sehr teuer) - Fritsche/Mischak/Krone: Verflixt und zugeknobelt - Fritsche/Mischak/Krone: Auf der Suche nach dem heiligen Integral - Degrazia, Josef J: Von Ziffern, Zahlen und Zeichen (das Buch ist schon für den ganz kleinen Geldbeutel erhältlich) - Acheson, David: 1089 oder das Wunder der Zahlen - Beutelspacher, Albrecht: Minus mal Minus gibt Plus - Kröber Günter: Bitte Zahlen - Stewart, Ian: Pentagonien, Andromeda und die gekämmte Kugel - Stewart, Ian: Die wunderbare Welt der Mathematik - Zweistein: Zahlen-Logeleien - Zweistein: Logeleien für Kenner Werke zum Thema Mathematische Rätsel gibt es sehr viele. Man schaue vielleicht einmal in der nächsten gut sortierten Stadtbücherei. Joachim Stiller Münster, bis 2014 Ende Zurück zur Starteite
Materialien zur Mathematik III
Joachim Stiller Materialien zur Mathematik III Magische Quadrate Alle Rechte vorbehalten Magische Quadrate 3er-Quadrat 1. Ordnung Summe: 5 x 3 = 15 Wir füllen zunächst ein Magisches 3er-Quandrat mit den
Materialien zur Mathematik I
Joachim Stiller Materialien zur Mathematik I Mathematik allgemein Alle Rechte vorbehalten Euklidische Geometrie Die Griechen kannten innerhalb der Euklidischen Geometrie drei Probleme, die auf direktem
Materialien zur Mathematik I
Joachim Stiller Materialien zur Mathematik I Mathematik allgemein Alle Rechte vorbehalten Euklidische Geometrie Die Griechen kannten innerhalb der Euklidischen Geometrie drei Probleme, die auf direktem
Geheimnisvolle Zahlentafeln Lösungen
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Geheimnisvolle Zahlentafeln Lösungen Aufgabe 1 (3-mal-3-Zahlentafel (nur für die Klassen 7/8) [4 Punkte]). Finde je eine geheimnisvolle
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 1. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib
Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c
Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6
Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21
Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8
Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die
Einführung. Schon immer haben sich die Menschen gern mit Rätseln und
Einführung Schon immer haben sich die Menschen gern mit Rätseln und Zauberei beschäftigt. Oft beruhen solche magischen Spielereien auf physikalischen oder chemischen Phänomenen oder resultieren aus der
ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE
ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib Länge und Breite des Rechtecks in einer Formel an. Es ist natürlich leicht
Kompetenzerwerb beim Entdecken von Mustern und Strukturen
VL 6/7/8 Kompetenzerwerb beim Entdecken von Mustern und Strukturen Modul 8.2 01./08./15. Dezember 2014 Vorlesung 06 01.12.2014 Intermezzo: Das Haus vom Nikolaus richtig oder falsch? Es gibt mehr als 15
Wir entdecken Rechenvorteile
Wir entdecken Rechenvorteile 1 =1 1+3 =4 1+3+5 =9...... Wie wird es weitergehen? 1+3+5+...+... =625... Berechne. 1 1 6 6 11 11 16 16 2 2 3 3 4 4 5 5 Rechne mit dem Taschenrechner. Entdecke Rechenvorteile!
Aufgaben zu Lambacher Schweizer 5 Hessen
Aufgaben zu Kapitel I Kopfrechenaufgaben 1 Berechne im Kopf. a) 60 + 32 b) 57 + 41 c) 130 + 72 d) 504 + 91 e) 75 + 47 f) 76 + 85 g) 124 + 127 h) 295 + 76 i) 129 + 396 j) 747 + 239 2 a) 3800 + 4600 b) 5700
Inhalt. Vorwort Transzendente Zahlen Die geheimnisvollste Zahl Grenzwerte Wie viele transzendente Zahlen gibt es?
Inhalt Vorwort 7 1. Natürliche Zahlen 9 1.1 Zählen 9 1.2 Eigenschaften von Zahlen 11 1.3 Magische Quadrate 16 1.4 Primzahlen 19 1.5 Von Pythagoras zu Fermat 23 1.6 Was sind natürliche Zahlen? 27 1.7 Anwendung:
55 Methoden Mathematik
Elke Königsdorfer 55 Methoden Mathematik Lösen nach bestimmten Rastern + II Sekundarstufe I + II Elke Königsdorfer Elke Königsdorfer 55 Methoden M Downloadauszug aus dem Originaltitel: 55 Methoden Mathematik
Zahlenluchs. von Anja Strobach. Spielanleitung
von Anja Strobach Spielanleitung Die Zahlen von 1 bis 25 laden dich zum spannenden Kombinationstraining ein. Noch während du Aufgaben durch ausgeklügelte Rechenkunst löst, jonglieren deine Mitspieler mit
3.1 Addieren. Magische Quadrate (1/2) Name:
Name: Klasse: Datum: Magische Quadrate (1/2) In magischen Quadraten ist die Summe in allen Zeilen, Spalten und Diagonalen immer gleich groß. Diese Summe nennt man magische Zahl. Beispiel: Das magische
Faktorisierungen und Teilbarkeiten natürlicher Zahlen. Teiler natürlicher Zahlen
Faktorisierungen und Teilbarkeiten natürlicher Zahlen Erinnerung: Eine natürliche Zahl heißt faktorisierbar, wenn sie als Produkt mit Faktoren geschrieben werden kann. Beispiel: 21= 1 21 oder 21= 3 7 Natürlich
Mathematik II. Kantonale Vergleichsarbeit 2012/ Klasse Primarschule. Prüfungsnummer: Datum der Durchführung: 16.
Volksschulamt Prüfungsnummer: (wird von der Lehrperson ausgefüllt) Kantonale Vergleichsarbeit 2012013 6. Klasse Primarschule Mathematik II Datum der Durchführung: 16. Januar 2013 Hinweise für Schülerinnen
Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts?
zeitung für mathematik am mpg trier / heft 39 / januar 07 Inhaltsverzeichnis Seite Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? Die Summe mit dem größten Produkt Nur eine Zahl bleibt
Magie der Mathematik Von der Verblüffung zum Verstehen. René Schelldorfer, Pädagogische Hochschule Zürich
Magie der Mathematik Von der Verblüffung zum Verstehen René Schelldorfer, Pädagogische Hochschule Zürich Magie der Mathematik: Eine Darbietung in fünf Nummern 1 Die Nummer mit den Zahlenkarten 2 Die Nummer
Was wir schon wissen!
Name: Was wir schon wissen! Rechne möglichst schlau! Schreibe deine Rechenwege so auf, dass andere Kinder sie verstehen können! Immer zwei Aufgaben gehören zusammen. 78-23 * 578-123 ** Welchen Namen gibst
II für die weiterführende Schule Mathematik S T E R N E N K L A R
S T E R N E N K L A R II für die weiterführende Schule Mathematik Ziffernkärtchen Bilde aus diesen sechs Ziffernkärtchen alle möglichen Zahlen. Achtung: Die Null darf nicht vorne stehen. 1 2 1 0 7 Unterstreiche
Download. Selbstkontrollaufgaben Mathematik Klasse 5. Addition und Subtraktion. Kerstin-Andrea Schmidt. Downloadauszug aus dem Originaltitel:
Download Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathematik Klasse 5 Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathe 5. Klasse Sekundarstufe I Lehrplanrelevante Arbeitsblätter mit integrierter
OPEN OFFICE CALC. Für den Hausgebrauch Christina
OPEN OFFICE CALC Für den Hausgebrauch 20.03.2018 Christina Inhalt Rechner:... 2 Addieren:... 2 Subtrahieren:... 2 Multiplizieren:... 3 Listen oder Archive erstellen... 3 CALC formatieren:... 4 Markieren
Was wir schon wissen!
Name: Was wir schon wissen! Rechne möglichst schlau! Schreibe deine Rechenwege so auf, dass andere Kinder sie verstehen können! Immer zwei Aufgaben gehören zusammen. 13 + 36 * 613 + 236 ** Welchen Namen
Felix Lauffer. Mathematik. Ziffern und Zahlen. Ω µz ü r c h e r k a n t o n a l e m i t t e l s t u f e n k o n f e r e n z v e r l a g z k m.
Felix Lauffer Mathematik Ziffern und Zahlen Ω µz ü r c h e r k a n t o n a l e m i t t e l s t u f e n k o n f e r e n z v e r l a g z k m. c h Inhalt Inhalt Autorenvorstellung Felix Lauffer Zahlenraum
Runde 3 Aufgabe 1
Aufgabe 1 Trage immer die Zahlen von 1 bis 6 ein. In allen Kreisringen (das sind die sechs Bahnen rund herum) und in allen Kreissegmenten (das sind die sechs keilförmigen Abschnitte der Kreisfläche) dürfen
a) = b) =
Kopfrechnen: Addition und Subtraktion 1 Rechne im Kopf. a) 14 + 12 + 13 + 11 + 17 + 10 + 15 + 16 = b) 21 + 23 + 25 + 20 + 26 + 22 + 29 + 24 = c) 15 + 21 + 9 + 23 + 11 + 16 + 24 + 6 +10 = d) 7 + 32 + 12
Hochbegabungsförderung in der Praxis
Hochbegabungsförderung in der Praxis (Sommerakademien, Pull-Out-Kurse, Unterricht) Beispiele aus Mathematik Hildegard Urban-Woldron Gymnasium Sacre Coeur Pressbaum, KPH Wien/Krems, AECC Physik Übersicht
Begriffe zur Gliederung von Termen, Potenzen 5
Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend
KV Logik als Arbeitssprache. Christoph Hörtenhuemer LVA-Nummer: LVA-Leiterin: Wolfgang Windsteiger. Agnes Schoßleitner
KV Logik als Arbeitssprache LVA-Nummer: 326.014 LVA-Leiterin: Wolfgang Windsteiger Abgabedatum: 02. 06. 2004 Christoph Hörtenhuemer 0355958 Agnes Schoßleitner 0355468 Inhaltsverzeichnis Kurzbeschreibung...
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Vom Zählen zum Rechnen im Zahlenraum bis 20 mit montessoriorientierten Rechenplättchen Das komplette Material finden Sie hier: School-Scout.de
von Markus Wurster Titelseite und Buchrücken für Ringbuch
Dreieck Zahlen DREIECK ZAHLEN von Markus Wurster Titelseite und Buchrücken für Ringbuch Dreieck Zahlen von Markus Wurster 1. Quadratzahlen Was Quadratzahlen sind, weißt du bestimmt: Man kann Perlen auf
Wiederholung der Grundlagen
Terme Schon wieder! Terme nerven viele von euch, aber sie kommen immer wieder. Daher ist es wichtig, dass man besonders die Grundlagen drauf hat. Bevor es also mit der richtigen Arbeit los geht solltest
3 Kodierung von Informationen
43 3 Kodierung von Informationen Bevor ich Ihnen im nächsten Kapitel die einzelnen Bausteine einer Computeranlage vorstelle, möchte ich Ihnen noch kurz zeigen, wie Daten kodiert sein müssen, damit der
Kreuzworträtsel Zahlensysteme Rätsel 1
https://www.mathestunde.com/kreuzwortraetsel-mathematik-klasse-5 Mathefritz Mathematikrätsel für die Unterstufe Kreuzworträtsel Zahlensysteme Rätsel 1 4. IV 5. 4. Stelle vor dem Komma 7. IV + V 8. Fehlt
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Rechnen 3./4. Klasse, Teil I. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Rechnen 3./4. Klasse, Teil I Das komplette Material finden Sie hier: School-Scout.de Vorwort Lassen Sie mich bitte als Verfasser und
Tag der Mathematik 2016
Tag der Mathematik 2016 Mathematischer Wettbewerb, Klassenstufe 7 8 30. April 2016, 9.00 12.00 Uhr Aufgabe 1 (a) Auf wie vielen Nullen endet die Zahl 1 2 3 9 10? (b) Auf wie vielen Nullen endet die Zahl
Aufgaben mit Lösungen
3. LGH-Mathematik Adventskalender für Klassen 7-8 Aufgaben mit Lösungen haben die Aufgaben und Lösungen vorbereitet. Leitung: Dr. Olga Lomonosova und Dr. Albert Oganian Schuljahr 2010/2011 1. Dezember
Brückenkurs Mathematik
Beweise und Beweisstrategien [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind
Mathematik-Aufgabenpool > Grundrechnen mit Dezimalzahlen
Michael Buhlmann Mathematik-Aufgabenpool > Grundrechnen mit Dezimalzahlen Einleitung: Dezimalzahlen (Dezimalbrüch sind (rational Zahlen von der Form Vorkommastellen-Komma- Nachkommastellen. Gerechnet wird
Finde die Karte und andere Zuordnungsspiele
Finde die Karte und andere Zuordnungsspiele 1.2018 Hendrik, Bastian Bosko Biati kennt alles Als Schüler habe ich den Zaubertrick Bosko Biati geliebt, dabei ist er vergleichsweise simpel und, wenn man sich
Lösungen - 4. Klasse / 4. Schulstufe
Lösungen - 4. Klasse / 4. Schulstufe 4. Klasse / 4. Schulstufe 1. Peter ist 2 Jahre älter als Jonas. Wenn Peter dreimal so alt sein wird wie er heute ist, wird Jonas viermal so alt wie er heute ist. Wie
Didaktik der Zahlbereichserweiterungen
Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche Kapitel 3: Ganze Zahlen Z 3.1 Didaktik der Zahlbereichserweiterungen 1 Ziele und Inhalte 2 Natürliche Zahlen N 3 Ganze
Download. Basics Mathe Gleichungen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Michael Franck
Download Michael Franck Basics Mathe Gleichungen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen Einfach und einprägsam
Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.
Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen
Bildungsstandards-Tag
Bildungsstandards-Tag 0 Diese Präsentation finden Sie auf meiner Homepage http://pro.kphvie.ac.at/rudolf.beer unter Arbeits-/Forschungsfelder Mathematik Wissenschaft die Wissen schafft Bildungsstandards-Tag
FRAGENKATALOG PANGEA-MATHEMATIKWETTBEWERB ZWISCHENRUNDE KLASSE 7
FRAGENKATALOG PANGEA-MATHEMATIKWETTBEWERB ZWISCHENRUNDE KLASSE 7 Antwortbogen Trage bitte die fehlenden Informationen leserlich in die dafür vorgesehenen Kästchen ein. Trenne nach der Prüfung den unteren
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe-Trainer 2: Aufgabensammlung für das 2. Schuljahr
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe-Trainer 2: Aufgabensammlung für das 2. Schuljahr Das komplette Material finden Sie hier: Download bei School-Scout.de 2Inhalt
MaMut primar. 4 Materialien für den Mathematikunterricht
MaMut primar 4 Materialien für den Mathematikunterricht MaMut primar 4 Materialien für den Mathematikunterricht Eva-Maria Plackner, Jennifer Postupa (Hrsg.) Üben im Mathematikunterricht in der Grundschule
FRAGENKATALOG PANGEA-MATHEMATIKWETTBEWERB ZWISCHENRUNDE KLASSE 8
FRAGENKATALOG PANGEA-MATHEMATIKWETTBEWERB ZWISCHENRUNDE KLASSE 8 Antwortbogen Trage bitte die fehlenden Informationen leserlich in die dafür vorgesehenen Kästchen ein. Trenne nach der Prüfung den unteren
Sie sehen: Diese beiden Mauern sind das 8-fache bzw. 6-fache der Ausgangsmauer, die Steine enthalten nur Zahlen der 8er- bzw. der 6er-Reihe.
Liebe Zahlenbuch-Profis! Muster bilden bekanntlich einen hervorragenden Nährboden für das aktiv-entdeckende Lernen, denn dahinter verbergen sich immer reichhaltige mathematische Strukturen. Man kann nämlich
Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.
1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987
Materialien zur Mathematik II
Joachim Stiller Materialien zur Mathematik II Die Quadratur des Kreises Alle Rechte vorbehalten Euklidische Geometrie Die Griechen kannten innerhalb der Euklidischen Geometrie drei Probleme, die auf direktem
Rechentraining im Zahlenraum bis 10
Konzentriertes Rechentraining im Zahlenraum bis 10 12 klar strukturierte, ablenkungsfreie, kleinschrittige Wiederholungsübungen für ein festes Fundament in Mathematik: zügiges Kopfrechnen und automatisierte
Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse
Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse 1. Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 2. Nachbarzahlen 3. Zahlenrätsel 1/2 4. Zahlenrätsel 2/2 5. Zahlen ordnen
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Rechnen 3./4. Klasse, Teil I. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Rechnen 3./4. Klasse, Teil I Das komplette Material finden Sie hier: School-Scout.de Vorwort Lassen Sie mich bitte als Verfasser und
Grundlagen der Mathematik WS12/13 Vortragsthemen
Grundlagen der Mathematik WS12/13 Vortragsthemen Themenblock 1: Mathematik im Alltag 1. Der Gregorianische Kalender und die Kalenderformel Entstehung und Aufbau des Gregorianischen Kalenders Wie berechnet
Elternbeirat der Maria Ward Schulen Altötting. Mathegym Online Mathematik Training
Elternbeirat der Maria Ward Schulen Altötting Mathegym Online Mathematik Training Mathe-Grundwissen üben der Elternbeirat bietet ein Online Training an Das Programm Mathegym wurde von einem bayerischen
45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben
45. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 7 Aufgaben c 2005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Rechnen 3./4. Klasse, Teil I. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Rechnen 3./4. Klasse, Teil I Das komplette Material finden Sie hier: School-Scout.de Vorwort Lassen Sie mich bitte als Verfasser und
Wissenschaftliche Grundlagen des Mathematischen Schulstoffs III III. Die erste Stunde. Die erste Stunde
Wissenschaftliche Grundlagen des Mathematischen Schulstoffs III III Was ist ist Mathematik? Der Inhalt Geometrie (seit (seit Euklid, ca. ca. 300 300 v. v. Chr.) Chr.) Die Die Lehre vom vom uns uns umgebenden
Mathe-Grundschule Klasse 1
Mathe-Grundschule Klasse 1 Dieses Heft ist noch ein Versuchskaninchen Dieses angefangene Heft ist mein Versuchs-Feld für eine ganze Reihe von Übungs-Heften zu allen wichtigen Lernzielen der Grundschule.
Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :
Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man
Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1
Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte
Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium
Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze
Tag der Mathematik 2016
Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16
Michael Engel. Mathematik für alle. Alles, was man wirklich braucht. Anaconda
Michael Engel Mathematik für alle Alles, was man wirklich braucht Anaconda Dieses Buch widme ich folgenden Menschen, die sehr zu meiner mathematischen»laufbahn«beigetragen haben: Meiner Mutter Ingeborg
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathe fr ganz Schnelle - Arithmetik. Das komplette Material finden Sie hier:
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathe fr ganz Schnelle - Das komplette Material finden Sie hier: School-Scout.de Mathe für ganz Schnelle Ergänzungs- und Zusatzaufgaben
Korrespondenzzirkel Klassenstufe 5 Leipziger Schülergesellschaft für Mathematik Serie 2
Korrespondenzzirkel Klassenstufe 5 Leipziger Schülergesellschaft für Mathematik Serie Liebe Schülerinnen, Schüler (und Eltern), hiermit übersende ich euch die zweite Serie. Dieses mal beschäftigen wir
Stellenwerttafel und Quersumme
6 Stellenwerttafel und Quersumme Trage die Zahlen in die Stellenwerttafel ein. HT ZT T H Z E a) 7 T + 4 H + Z + 8 E b) HT + 4 H + Z + E c) ZT + 9 T + 6 H + Z d) 5 ZT + 5 T + 9 H + Z e) 4 HT + ZT + 5 T
Aufgabenblätter. Schulbuchseite
Aufgabenblätter Damit die Schülerinnen und Schüler umfangreiche Übungen nicht abschreiben müssen, wurden von ausgewählten Schulbuchseiten die vorliegenden Aufgabenblätter gefertigt. Schulbuchseite A01
Folgen und Reihen. 1. Folgen
1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?
Be s math. Berner creening Mathematik. Geburtsdatum. Geschlecht: w. Testleiter/in Gesamtpunktwert*
Be s math Berner creening Mathematik Bewertungs- und bogen Name Vorname Klasse Geburtsdatum Testdatum Alter Geschlecht: w m Testleiter/in Gesamtpunktwert* *Gesamtpunktwert > 25 Leistungen liegen im Normbereich
Der MI-Selbsttest - "Wo liegen meine Stäken?
Der MI-Selbsttest - "Wo liegen meine Stäken? Bewerten jede der unten stehenden Aussagen mit 5 Punkten ("stimme voll zu") bis 0 Punkten ("stimme gar nicht zu"). Wie ist dein Multiple-Intelligenz-Profil?
Kapitel 1. Kapitel 1 Vollständige Induktion
Vollständige Induktion Inhalt 1.1 1.1 Das Das Prinzip A(n) A(n) A(n+1) 1.2 1.2 Anwendungen 1 + 2 + 3 +...... + n =? 1.3 1.3 Landkarten schwarz-weiß 1.4 1.4 Fibonacci-Zahlen 1, 1, 1, 1, 2, 2, 3, 3, 5, 5,
Pangea Ablaufvorschrift
Pangea Mathematik-Wettbewerb 2011 Klassenstufe 5 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten
Teil (C) Beweisen am Gymnasium
Teil (C) Beweisen am Gymnasium Mathematik ist die beweisende Wissenschaft. Der bekannte Mathematiker Albrecht Beutelspacher bemerkte gar einst, wer Mathematik sage, sage Beweis. Ohne Beweise ist Mathematik
Positive und negative Zahlen
Herausgeber e/t/s Didaktische Medien GmbH Registergericht: Kempten, Registernummer: HRB 5617 Umsatzsteuer-Identifikationsnummer gemäß 27a Umsatzsteuergesetz: DE 129 341 931 Kirchstraße 3, D-87642 Halblech
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Klett Mein großes Trainingsbuch Mathematik 4. Klasse
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Klett Mein großes Trainingsbuch Mathematik 4. Klasse Das komplette Material finden Sie hier: School-Scout.de Inhalt Die kleinen Lerndrachen
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2
Runde 2 Aufgabe 1
Aufgabe Trage immer die Zahlen von bis 6 ein. In allen Kreisringen (das sind die sechs Bahnen rund herum) und in allen Kreissegmenten (das sind die sechs keilförmigen Abschnitte der Kreisfläche) dürfen
50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben
50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben c 2010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den Text der
Schriftliche Addition zweier natürlicher Zahlen
Mit diesen überprüfen Sie, ob Sie die schriftliche Addition zweier natürlicher Zahlen genügend geübt, alles verstanden haben und sicher rechnen. Die dazu passenden Videos sind mit diesem Symbol gekennzeichnet.
schreiben, wobei p und q ganze Zahlen sind.
Schülerinfotag 1. Man zeige, dass keine rationale Zahl ist. Das heißt lässt sich nicht als p q schreiben, wobei p und q ganze Zahlen sind. Proof. Wir werden das Prinzip Beweis durch Widerspruch verwenden.
27. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1987/1988 Aufgaben und Lösungen
7. Mathematik Olympiade. Stufe (Schulolympiade) Klasse 6 Saison 987/988 Aufgaben und Lösungen OJM 7. Mathematik-Olympiade. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
FRAGENKATALOG PANGEA-MATHEMATIKWETTBEWERB ZWISCHENRUNDE KLASSE 9
FRAGENKATALOG PANGEA-MATHEMATIKWETTBEWERB ZWISCHENRUNDE KLASSE 9 Antwortbogen Trage bitte die fehlenden Informationen leserlich in die dafür vorgesehenen Kästchen ein. Trenne nach der Prüfung den unteren
