Materialien zur Mathematik III
|
|
|
- Christin Sachs
- vor 7 Jahren
- Abrufe
Transkript
1 Joachim Stiller Materialien zur Mathematik III Magische Quadrate Alle Rechte vorbehalten
2 Magische Quadrate 3er-Quadrat 1. Ordnung Summe: 5 x 3 = 15 Wir füllen zunächst ein Magisches 3er-Quandrat mit den Zahlen 1 9 aus. Für Jedes magische Quadrat gibt es genau 8 Lösungen er-Quadrat 2. Ordnung Summe: 6 x 3 = 18 Nun beginnen wir mit der Zahl 2. So entsteht ein magisches Quadrat 2. Ordnung er-Quadrat 3. Ordnung Summe: 7 x 3 =
3 4er-Quadrat 1. Ordnung Summe er-Quadrat 2. Ordnung Summe:
4 5er Quadrat 1. Ordnung Summe er-Quadrat Summe
5 Unechte magische Quadrate I Die definitiv einfachsten Unechten Quadrate entstehen, wenn man sie mit immer den gleichen Zahlen ausfüllt. Das ist natürlich trivial
6
7 Unechte Magische Quadrate II Schwieriger wird die Sache schon, wenn man zur Herstellung eines unechten magischen Quadrates mindestens zwei Zahlen mehrfach verwenden soll. Diese Aufgabe ist gar nicht so leicht zu lösen. Am einfachsten geht es mit geraden Quadraten, weil da die Symmetrie praktisch schon vorgegeben ist. Ich habe dafür zwei Verfahren gefunden. Hier das erste Verfahren (Schema):
8 Und hier das zweite Verfahren (Schema)
9 Dieses Wechselprinzip kann uns auch als Vorlage dienen, um ganz bestimmte ungerade magische Quadrate als unechte Quadrate zu entwickeln. Ich zeige es einmal anhand von 5er- Quadraten. Das geht allerdings nicht mit 3er-Quadraten Für die gibt es keine Lösung. Jedenfalls habe ich keine gefunden. Hier also ein unechtes 5er-Quadrat nach dem ersten Schema:
10 Hier einmal zwei unechte magische 5er-Quadrate nach dem zweiten Schema:
11 Und hier ein unechtes 9er-Quadrat nach dem ersten von mir entwickelten Schema. Dabei sind die vier 4er-Quadrate auch wieder magisch
12 Und hier noch eben ein unechtes 9er-Quadrat nach dem zweiten von mir entwickelten Schema. Dabei sind die vier 4er-Quadrate auch wieder magisch
13 Systematisches Konstruktionsschema für Ungerade magische Quadrate Ungerade magische Quadrate sind besonders leicht zu konstruieren. Man notiert die entsprechenden Zahlen einfach nach dem folgenden Schema über das Magische Quadrat: Danach braucht man das ungerade magische Quadrat nur noch komplettieren. Und zwar wie folgt: Das ganze geht natürlich auch in der genau entgegengesetzten Richtung der Notation. Und wenn man das Quadrat um je 90 Grad dreht, erhält man so genau 8 Möglichkeiten für das magische 3er-Quadrat
14 Und hier die Konstruktion für 5er-Quadrate Hier das fertige Quadrat:
15 Auch hier kann man die Notation wieder in der genau entgegengesetzten Richtung ansetzen Man vergleiche einmal mit dem 5er-Quadrat auf Seite 4. Nach dem hier vorgestellten Schema lässt sich praktisch jedes beliebige ungerade magische Quadrat ohne Probleme konstruieren. Systematisches Konstruktionsschema für
16 4er-Quadrate (doppelt gerade) 4er-Quadrate sind wiederum besonders einfach zu konstruieren. Zunächst füllt man dass 4er- Quadrat der Reihe nach aus Dann taucht man die auf den diagonalen je gegenüberliegenden Zahlen aus. Wie zeigt die folgende Abbildung. Zum besseren Verständnis wurden die auszutauschenden Zahlen blau dargestellt (es gibt übrigens noch ein weiteres Verfahren dafür): Man vergleiche vielleicht einmal mit dem 4er-Quadrat auf Seite 3. Einfache gerade Quadrate sind übrigens erheblich komplizierter zu konstruieren und sollen hier nicht besprochen werden.
17 Das Finale: Das Meisterquadrat Wir basteln uns nun 9er-Quadrate (81 Felder) aber nicht nach dem Schema aus Denkspiele der Welt, sondern nach dem, das ich selber entwickelt habe. Dabei wird das 9er-Quadrat in 9 3er-Quadrate unterteilt, die der Reihe nach in der richtigen Reihenfolge ausgefüllt werden. Es handelt sich somit um eine selbstähnliche Schachtelung des magischen Quadrates. Ich fülle dieses Meisterquadrat, wie ich es genannt habe, zunächst nur mit den Ziffern 1 9 aus, also im Sinne des Nona-Systems (Zahlensystem mit der Grundzahl 9). Auf diese Weise wird einfach schneller deutlich, was ich meine. Die Besonderheit bei diesem Meisterquadrat ist, dass nicht nur die Summen der Zahlen alle gleich groß sind, sondern ganz logisch auch die Quersummen
18 9er-Quadrat 1. Ordnung Und nun füllen wir das 9er-Quadrat im Sinne des Dezimalsystems aus (Zahlensystem mit der Grundzahl 10). Wir beginnen mit der Zahl 1, so dass ein 9er-Quadrat 1. Ordnung entsteht. Es ist nun lediglich darauf zu achten dass die Reihenfolge beim Ausfüllen der Zahlen genau eingehalten wird. Man schreibe sich dazu vielleicht ein 3-er-Quadrat 1. Ordnung darüber, um sich immer orientieren zu können. Mit ein bisschen Übung bracht man diese Hilfestellung nicht mehr. Dann geht alles ganz automatisch
19 9er-Quadrat 11. Ordnung Nun können wir praktisch jedes beliebige magische 9er-Quadrat jeder beliebigen Ordnung ganz leicht ausfüllen. Hier einmal ein 9er-Quadrat 11. Ordnung. Man muss nur zu jeder Zahl 10 addieren
20 Die Siegerehrung: Das Teufelsquadrat Der Sieger ist das sogenannte Teufelsquadrat: Jedes beliebige 5er-Quadrat darin ist in sich magisch Teufelssquadrate sind sehr schwer zu konstruieren. Eine Anleitung soll hier nicht gegeben werden. Literaturhinweis: - Van Delft/Botermanns: Denkspiele der Welt (das Kapitel zu den magischen Quadraten)
21 Ein philosophischer Gedanke Als Hobbymathematiker möchte ich einmal die These wagen, dass der große Gauß, der ich liebend gerne selber wäre, nie gerechnet hat. Er hat einfach nur die Strukturen hinter den Zahlen verstanden. Und die sind oft verblüffend einfach. Hinter den Zahlen stehen immer die Strukturen der Zahlen. Wer die Strukturen versteht, der braucht eben nicht mehr zu rechnen. Dabei haben die Strukturen und die Zahlen objektiven Charakter. Zahlen sind nämlich nichts Ausgedachtes. Sie sind eine Offenbarung Gottes. Eine Anekdote Gauß soll bereits als Schüler seinen Lehrer verblüfft haben, als er die gestellte Aufgabe alle Zahlen von zusammenzurechnen, bereits nach wenigen Sekunden richtig löste. Was hatte er gemacht? Er rechnete = = = 100 usw. Das ergibt 49 x den ganzen 100er + die in der Mitte übrigbleibende 50, denn beide haben ja ganz logisch kein Gegenstück. Macht zusammen 5050, oder fifty-fifty, wie ich immer zu sagen pflege. Joachim Stiller Münster, bis 2014 Ende Zurück zur Startseite
Materialien zur Mathematik IV
Joachim Stiller Materialien zur Mathematik IV Die Magie der Zahlen Alle Rechte vorbehalten Zaubertricks mit Zahlen - Literaturhinweise Zu diesem Thema möchte ich lediglich einige gute Literaturhinweise
KV Logik als Arbeitssprache. Christoph Hörtenhuemer LVA-Nummer: LVA-Leiterin: Wolfgang Windsteiger. Agnes Schoßleitner
KV Logik als Arbeitssprache LVA-Nummer: 326.014 LVA-Leiterin: Wolfgang Windsteiger Abgabedatum: 02. 06. 2004 Christoph Hörtenhuemer 0355958 Agnes Schoßleitner 0355468 Inhaltsverzeichnis Kurzbeschreibung...
Tag der Mathematik 2016
Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16
Hausarbeit zum Proseminar I. Magische Quadrate. von Yvonne Schulmeier und Joana Pesch
Hausarbeit zum Proseminar I Magische Quadrate von Yvonne Schulmeier und Joana Pesch Seite 1. Einleitung...1 2. Geschichte der magischen Quadrate...1 3. Konstruktion magischer Quadrate...3 1. Einleitung
Inhaltsverzeichnis. von Axel Jacquet, Jonathan Potthoff und Kai Seeling. Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts?
zeitung für mathematik am mpg trier / heft 39 / januar 07 Inhaltsverzeichnis Seite Alle gleich schwer wie verteilt man Gläser auf mehrere Tabletts? Die Summe mit dem größten Produkt Nur eine Zahl bleibt
100 Aufgaben für die Hundertertafel
100 Aufgaben für die Hundertertafel Die Schwierigkeitsgrade der Aufgaben sind unterschiedlich und eignen sich für die ersten drei Schuljahre. Wenn die Aufgaben auf Spielkarten geschrieben werden, können
Materialien zur Mathematik II
Joachim Stiller Materialien zur Mathematik II Die Quadratur des Kreises Alle Rechte vorbehalten Euklidische Geometrie Die Griechen kannten innerhalb der Euklidischen Geometrie drei Probleme, die auf direktem
Kreuzzahlrätsel. Senkrecht. A C die Hälfte von 1516 F der 8. Teil von 200. H Zahl mit der Quersumme
Kreuzzahlrätsel Die Zeichen bedeuten für jede einzelne Aufgabe: mehrstellige natürliche Zahl Rechenoperationszeichen Ziffer 0,, 2,... oder 9 In das Kreuzzahlrätsel ist immer das Ergebnis der Aufgabe einzutragen.
Folgen und Reihen. 1. Folgen
1. Folgen Aufgabe 1.1. Sie kennen alle die Intelligenztests, bei welchen man zu einer gegebenen Folge von Zahlen die nächsten herausfinden soll. Wie lauten die nächsten drei Zahlen bei den folgenden Beispielen?
Einführung. Schon immer haben sich die Menschen gern mit Rätseln und
Einführung Schon immer haben sich die Menschen gern mit Rätseln und Zauberei beschäftigt. Oft beruhen solche magischen Spielereien auf physikalischen oder chemischen Phänomenen oder resultieren aus der
Vom Leichtesten zum Schwersten Sortieralgorithmen
Aktivität 7 Vom Leichtesten zum Schwersten Sortieralgorithmen Zusammenfassung Häufig verwendet man Computer dazu Listen von Elementen in eine bestimmte Ordnung zu bringen. So kann man beispielsweise Namen
Hochbegabungsförderung in der Praxis
Hochbegabungsförderung in der Praxis (Sommerakademien, Pull-Out-Kurse, Unterricht) Beispiele aus Mathematik Hildegard Urban-Woldron Gymnasium Sacre Coeur Pressbaum, KPH Wien/Krems, AECC Physik Übersicht
Magische Quadrate. Die Abbildung zeigt einen Ausschnitt aus Albrecht Dürers Kupferstich «Melancholie».
4 9 2 3 5 7 8 6 2 Magische Quadrate Magische Quadrate ie bbildung zeigt einen usschnitt aus lbrecht ürers Kupferstich «Melancholie». ei genauem Hinsehen erkennen Sie ein magisches Quadrat vierter Ordnung.
Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c
Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6
Wir entdecken Rechenvorteile
Wir entdecken Rechenvorteile 1 =1 1+3 =4 1+3+5 =9...... Wie wird es weitergehen? 1+3+5+...+... =625... Berechne. 1 1 6 6 11 11 16 16 2 2 3 3 4 4 5 5 Rechne mit dem Taschenrechner. Entdecke Rechenvorteile!
Zahlenluchs. von Anja Strobach. Spielanleitung
von Anja Strobach Spielanleitung Die Zahlen von 1 bis 25 laden dich zum spannenden Kombinationstraining ein. Noch während du Aufgaben durch ausgeklügelte Rechenkunst löst, jonglieren deine Mitspieler mit
1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A
1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten
Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21
Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8
Kompetenzerwerb beim Entdecken von Mustern und Strukturen
VL 6/7/8 Kompetenzerwerb beim Entdecken von Mustern und Strukturen Modul 8.2 01./08./15. Dezember 2014 Vorlesung 06 01.12.2014 Intermezzo: Das Haus vom Nikolaus richtig oder falsch? Es gibt mehr als 15
1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen
. Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen
Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:
55 Methoden Mathematik
Elke Königsdorfer 55 Methoden Mathematik Lösen nach bestimmten Rastern + II Sekundarstufe I + II Elke Königsdorfer Elke Königsdorfer 55 Methoden M Downloadauszug aus dem Originaltitel: 55 Methoden Mathematik
Hans Walser, [ ] KO-Mauern Anregung: Th. W., Z. 1 Beispiel Die Abbildung 1 zeigt ein Beispiel einer KO-Mauer.
Hans Walser, [20160830] KO-Mauern Anregung: Th. W., Z. 1 Beispiel Die Abbildung 1 zeigt ein Beispiel einer KO-Mauer. Abb. 1: KO-Mauer 2 Start Das geht so: Wir beginnen mit der Mauergeometrie der Abbildung
Rubiks Cube Anleitung für alle Würfel mit ungerader Anzahl an Kantensteinen
Einleitung Für den klassischen 3X3X3 Zauberwürfel gibt es einige Anleitungen im Netz. Sucht man jedoch Lösungen für größere Würfel (5X5X5 oder 7X7X7), so wird es entweder schnell sehr kompliziert, grundlegend
Altersgruppe Klasse 5
Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und
Pangea Ablaufvorschrift
Pangea Mathematik-Wettbewerb 2011 Klassenstufe 5 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten
Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die
Magische Quadrate. Mögliche Aufgabenstellungen: Überprüfen, ob ein vorgegebenes Zahlenquadrat ein magisches Quadrat ist.
. Was sind magische Quadrate? Magische Quadrate Die Zahlen bis lassen sich auf vielerlei Arten so in einem x Quadrat anordnen, dass - jede der vier Zeilensummen, - jede der vier Spaltensummen - und auch
Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/
14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale
31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen
31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen
Teilbarkeit. 1. Maria stellt zwei Behauptungen auf:
1. Maria stellt zwei Behauptungen auf: Teilbarkeit (a) Die Zahl 123456789 ist durch 9 teilbar. (b) Wenn man die Ziffern einer 53-stelligen Zahl, die durch 9 teilbar ist, auf irgend eine Weise vertauscht,
C:\WINNT\System32 ist der Pfad der zur Datei calc.exe führt. Diese Datei enthält das Rechner - Programm. Klicke jetzt auf Abbrechen.
. Das Programm- Icon Auf dem Desktop deines Computers siehst du Symbolbildchen (Icons), z.b. das Icon des Programms Rechner : Klicke mit der rechten Maustaste auf das Icon: Du siehst dann folgendes Bild:
Tag der Mathematik 2016
Tag der Mathematik 2016 Mathematischer Wettbewerb, Klassenstufe 7 8 30. April 2016, 9.00 12.00 Uhr Aufgabe 1 (a) Auf wie vielen Nullen endet die Zahl 1 2 3 9 10? (b) Auf wie vielen Nullen endet die Zahl
Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft
Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt
Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden
29. Essener Mathematikwettbewerb 2013/2014
Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und nicht nur berühren;
Aufgabe S 1 (4 Punkte)
Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks
Begriffe zur Gliederung von Termen, Potenzen 5
Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend
Känguru der Mathematik 2006 Gruppe Benjamin (5. und 6. Schulstufe) Österreich
Känguru der Mathematik 2006 Gruppe Benjamin (5. und 6. chulstufe) Österreich - 6.3.2006-3 Punkte Beispiele - ) 3 2006 = 2005 + 2007 +?. Welche Zahl fehlt? A) 2005 B) 2006 C) 2007 D) 2008 E) 2009 3 2006
1. Gruppen. 1. Gruppen 7
1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.
Färbungsbeweise. 1 Aufgaben
Schweizer Mathematik-Olympiade smo osm Färbungsbeweise Aktualisiert: 1. Dezember 2015 vers. 1.0.0 1 Aufgaben Einstieg 1.1 Kann man überlappungsfrei und ohne Löcher die Figuren auf den Bildern unten mit
Name:... Vorname:...
Zentrale Aufnahmeprüfung 2013 für die Kurzgymnasien des Kantons Zürich Mathematik Bisheriges Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst
56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben
56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den
15. Essener Mathematikwettbewerb für die 3. Klassen der Grundschulen 2012/2013
für die 3. Klassen der Grundschulen 2012/2013 Aufgabe 1: Musikunterricht Paula kann die Noten g, a, f und h auf der Blockflöte spielen. Die Flötenlehrerin bittet sie, verschiedene Tonfolgen aus den vier
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition
ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie
1 Goldener Schnitt Pascalsches Dreieck Der Binomische Lehrsatz ( ) ß mit a multipliziert. ( a+ b) 4 = a 3 +3a 2 b+3ab 2 + b 3
1 Goldener Schnitt Pascalsches Dreieck 17 1.3 Pascalsches Dreieck 1.3.1 Der Binomische Lehrsatz Aus der Schule ist Ihnen mit Sicherheit die Binomische Regel bekannt: ( ) 2 = a 2 +2ab+ b 2 a+ b Diese Regel
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56
5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten
Schule. Klasse. Station Mathematik und Kunst Teil 3. Tischnummer. Arbeitsheft. Teilnehmercode
Schule Station Mathematik und Kunst Teil 3 Klasse Tischnummer Arbeitsheft Teilnehmercode Mathematik-Labor Station Mathematik und Kunst Liebe Schülerinnen und Schüler! Herzlich willkommen im Mathematik-Labor
Sowohl die Malstreifen als auch die Neperschen Streifen können auch in anderen Stellenwertsystemen verwendet werden.
Multiplikation Die schriftliche Multiplikation ist etwas schwieriger als die Addition. Zum einen setzt sie das kleine Einmaleins voraus, zum anderen sind die Überträge, die zu merken sind und häufig in
9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen
9. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1969/1970 Aufgaben und Lösungen 1 OJM 9. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.
GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle
Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung).
Grundwissen 5 - Aufgaben 22.01.2016 Seite 1 1. Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). a) Gib an, welche dieser drei Figuren den größten und welche den kleinsten
Vorwort Seite 3. Das Geheimnis Seite 4 der Hüte. Die Abschneideregel Seite 6. Das Problem mit Seite 15 der Brücke. Die 1,3,2-Regel Seite 17 der Zahl 7
Vorwort Seite 3 Das Geheimnis Seite 4 der Hüte Die Abschneideregel Seite 6 Das Problem mit Seite 15 der Brücke Die 1,3,2-Regel Seite 17 der Zahl 7 Nichttransitive Seite 28 Glücksräder Witze Seite 34 Und
Lösung zur Aufgabe Würfel färben von Heft 20
Lösung zur Aufgabe Würfel färben von Heft 20 (1) Jedes der 24 Teilquadrate grenzt an genau eine der acht Ecken. Da nach unserer Vorschrift die drei Teilquadrate an jeder Ecke unterschiedlich gefärbt sein
Beispielaufgaben rund um Taylor
Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.
Die Zeilen mit geraden Zahlen beim Halbieren werden gestrichen.
Napier s Rechenbrett Die Bedeutung des Zweiersystems ist im Computer-Zeitalter kein Geheimnis mehr. Verdoppeln und Halbieren sind Tätigkeiten, welche uralt sind. Sie erfordern weder ein Zählen noch Rechnen,
1 Modulare Arithmetik
$Id: modul.tex,v 1.11 2012/04/16 19:15:39 hk Exp $ $Id: gruppen.tex,v 1.11 2012/04/17 10:30:56 hk Exp $ 1 Modulare Arithmetik 1.3 Restklassen Wir waren gerade damit beschäftigt eine Beispiele zum Rechnen
U. Rausch, 2010 Ganze Zahlen 1
U. Rausch, 2010 Ganze Zahlen 1 Ganze Zahlen 1 Einleitung Als ganze Zahlen bezeichnet man die natürlichen Zahlen 1, 2,, 4,..., die Null 0 und die negativen ganzen Zahlen 1, 2,, 4,... Wir verabreden die
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Kompetenzen und Aufgabenbeispiele Mathematik Check P3
Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele Mathematik Check P3 Informationen für Lehrpersonen und Eltern 1. Wie sind die Ergebnisse dargestellt?
Symmetrien und Winkel
Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild
II. Grundlagen der Programmierung
II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123
Terme, Rechengesetze, Gleichungen
Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =
Mathematik II. Kantonale Vergleichsarbeit 2012/ Klasse Primarschule. Prüfungsnummer: Datum der Durchführung: 16.
Volksschulamt Prüfungsnummer: (wird von der Lehrperson ausgefüllt) Kantonale Vergleichsarbeit 2012013 6. Klasse Primarschule Mathematik II Datum der Durchführung: 16. Januar 2013 Hinweise für Schülerinnen
Kompetenzen und Aufgabenbeispiele Mathematik
Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele Mathematik Informationen für Lehrpersonen und Eltern 1. Wie sind die Ergebnisse dargestellt?
Lesen - rechnen - malen
Zahlen-Logical 1 Lesen - rechnen - malen * Eine Zahl steht Kopf! Male sie blau aus! * Die schwarze Zahl steht nicht neben der roten Zahl! * rote Zahl + grüne Zahl = blaue Zahl * Die gelbe Zahl steht zwischen
Runde 2 Aufgabe 1. Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf?
Aufgabe 1 Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf? Aufgabe 2 Udo gibt seinem Freund ein Rätsel auf: Ich denke mir eine dreistellige
Lernwerkstatt 7 Detailübersicht Mathematik
Lernwerkstatt 7 Detailübersicht Mathematik ZAHLENRECHEN- 23 Übungen S Name Anzahl der Sterne, versch. Aufgaben Zahlenraum Art Zahlenmauern Zahlenschlange Zahlenhäuser Zauberdreiecke Rechendreiecke Zahlen
Vedische Multiplikation
Vedische Multiplikation Aus den vedischen Schriften des alten Indien stammt diese Methode der Multiplikation mit dem Namen Überkreuz-und-übereinander oder Urdhva-tiryag bhyam. Diese Methode und andere
10 Das Anstoß-Problem
10 Das Anstoß-Problem 101 Einleitung Wieder so ein unangenehmes Silvester, an dem man sich um Mitternacht so schrecklich viel für das neue Jahr vornimmt Aber die Vorhaben des alten Jahres sind ja noch
Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang :
Seite 1 Algorithmen zur Erzeugung von Kaprekar- Konstanten Autor : Dipl.- Ing. Josef Meiler ; Datum : März 015 Vorab : Von dem indischen Mathematiker D. R. Kaprekar stammt folgender Zusammenhang : a) man
5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy
5. bis 10. Klasse SMS Schnell-Merk-System Mathematik Kompaktwissen Testfragen Mit Lernquiz fürs Handy 2 Zahlen und Rechnen Rechnen mit natürlichen Zahlen Multiplikation ist die mehrfache Addition gleicher
Symmetrie ist dein Freund
139 Symmetrie ist dein Freund Es gibt eine zusätzliche Konstruktionstechnik, die mit der Punkt-für-Punkt- und der Formkonstruktionsmethode kombiniert werden und Ihre Arbeit wirklich beschleunigen kann:
Jahresplanung 1.Klasse 100% Mathematik
Jahresplanung 1.Klasse 100% Mathematik Unterrichtswoche Schuljahr 2015/2016 Kapitel Seitentitel Schulbuchseiten 1 - Wiederholung von Lerninhalten der Volksschule 2 1 Statistik Wie viele Geschwister hast
Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.
Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht
Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1
Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße
1 Karol stellt sich vor
Kapitel 1 Karol stell sich vor Seite 1 1 Karol stellt sich vor 1.1 Algorithmus Fritz hat zum Geburtstag einen CD-Player als Geschenk erhalten. Natürlich will er sofort das Geschenk ausprobieren und legt
Zahlen und elementares Rechnen (Teil 1)
und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung
Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)
Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag
3 Lösungsstrategien für Mathematik-Rätsel
3 Lösungsstrategien für Mathematik-Rätsel 3.1 Das Schubfachprinzip Ein Mensch hat höchstens 300000 Haare auf dem Kopf. Beweisen Sie, dass es zwei Deutsche gibt, die die gleiche Anzahl von Haaren auf dem
Primitiv? Primzahlen und Primfaktoren schätzen lernen. Dr. Heinrich Schneider, Wien. M 1 Grundlegende Zahlenmengen wiederhole dein Wissen!
S 1 Primitiv? Primzahlen und Primfaktoren schätzen lernen Dr. Heinrich Schneider, Wien M 1 Grundlegende Zahlenmengen wiederhole dein Wissen! Die natürlichen Zahlen n 1, 2, 3, 4, 5, heißen natürliche Zahlen.
Grundlagen der Mathemagie
Übungen zur Vorlesung Grundlagen der Mathemagie Helmut Glas und Martin Kreuzer ASG Passau und Universität Passau Lehrerfortbildung Bezaubernde Mathematik Universität Passau, 16.12.2014 1 Die vier Asse
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
Kapitel 3. Natürliche Zahlen und vollständige Induktion
Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine
Aufgabenheft Mathematik
Vergleichsarbeiten in 3. Grundschulklassen Aufgabenheft Mathematik Name: Klasse: Vergleichsarbeiten in der Grundschule VERA 2007 VERA 2007 Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen)
Im Original veränderbare Word-Dateien
Binärsystem Im Original veränderbare Word-Dateien Prinzipien der Datenverarbeitung Wie du weißt, führen wir normalerweise Berechnungen mit dem Dezimalsystem durch. Das Dezimalsystem verwendet die Grundzahl
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik
Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey
Download. Selbstkontrollaufgaben Mathematik Klasse 5. Addition und Subtraktion. Kerstin-Andrea Schmidt. Downloadauszug aus dem Originaltitel:
Download Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathematik Klasse 5 Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathe 5. Klasse Sekundarstufe I Lehrplanrelevante Arbeitsblätter mit integrierter
MATHEMATIK Grundkurs 11m3 2010
MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010
Beuth Hochschule Zahlensysteme WS15/16, S. 1
Beuth Hochschule Zahlensysteme WS15/16, S. 1 Zahlensysteme Eine natürliche Zahl (wie z.b. drei oder siebzehn etc.) kann man auf verschiedene Weisen darstellen, etwa als römische Zahl (z.b. XVII) oder durch
Addieren und subtrahieren
Addieren und subtrahieren Zahlenmauern Mirko und Luca schreiben möglichst oft die Ziffer in ihre Zahlenmauer.. Mirko 0 0 8 Luca 0 0 Basissteine:, 0, (Die Zahl 0 ist verboten.) 90 0 Basissteine:,,, 0 (Die
Zahlenwinkel: Forscherkarte 1. alleine. Zahlenwinkel: Forschertipp 1
Zahlenwinkel: Forscherkarte 1 alleine Tipp 1 Lege die Ziffern von 1 bis 9 so in den Zahlenwinkel, dass jeder Arm des Zahlenwinkels zusammengezählt das gleiche Ergebnis ergibt! Finde möglichst viele verschiedene
Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009
Übung 1 Titelfolie, Schriftfarbe, Objekte
Übung 1 Titelfolie, Schriftfarbe, Objekte 1. Starten Sie das Programm PowerPoint. 2. Wählen Sie im Startmenü Leere Präsentation aus. 3. Wählen Sie als neue Folie eine Folie mit dem AutoLayout: Titelfolie
Erklärungen zum Binomialkoeffizienten
Erklärungen zum Binomialkoeffizienten Mirko Getzin Universität Bielefeld Fakultät für Mathematik 5. November 01 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen)
