Vedische Multiplikation
|
|
|
- Alexa Wolf
- vor 9 Jahren
- Abrufe
Transkript
1 Vedische Multiplikation Aus den vedischen Schriften des alten Indien stammt diese Methode der Multiplikation mit dem Namen Überkreuz-und-übereinander oder Urdhva-tiryag bhyam. Diese Methode und andere vedische Rechenweisen werden auf vielen Webseiten beschrieben; Ich persönlich finde [Blogannath] sehr informativ und gut geschrieben. Multiplizieren wir also auf indisch : Verfahren Man schreibt die beiden Faktoren Stelle für Stelle übereinander. Der Faktor mit weniger Stellen wird mit führenden Nullen aufgefüllt, so dass beide die gleiche Stellenzahl haben. Nun multipliziert und addiert man die Ziffern des oberen und unteren Faktors nach dem hier beschriebenen Schema. Man kann, wie im Beispiel, von links nach rechts aber auch von rechts nach links arbeiten. Zuerst multipliziert man die beiden äußersten linken Stellen der Faktoren und schreibt das Ergebnis in die Zwischenergebnis-Zeile darunter. Im zweiten Schritt werden die zwei linken Stellen der Faktoren überkreuz multipliziert und die beiden Produkte addiert. Das Ergebnis schreibt man in die zweite Spalte der Zwischenergebnis-Zeile. Alle Rechnungen werden im Kopf ausgeführt. Die Kästchen mit den Überkreuzmultiplikationen schreibt man nicht hin, sie dienen hier nur der Veranschaulichung Im dritten Schritt werden die drei linken Stellen verwendet. Die vier im Kästchen außen stehenden Stellen werden überkreuz multipliziert, die verbleibenden mittleren übereinander. Wieder werden die Produkte addiert. Das Ergebnis ist diesmal eine zweistellige Zahl. Deren Einerstelle wird in die dritte Spalte geschrieben, die Zehnerstelle als Übertrag in eine zweite Zwischenergebnis-Zeile
2 Im vierten Schritt werden die linken vier, im fünften Schritt schließlich alle fünf Stellen der Faktoren wie gezeigt multipliziert und addiert. Die Ergebnisse werden in den gezeigten Spalten der Zwischenergebnis-Zeilen notiert Beim Überkreuz-Multiplizieren arbeitet man in den Kästchen (vorzugsweise) von außen nach innen. Wenn bei einer ungeraden Anzahl von Stellen in der Mitte ein Paar übrig bleibt, multipliziert man übereinander. In den nächsten Schritten überkreuz-multipliziert man zuerst die rechten vier, dann die rechten drei, die rechten beiden und schließlich die beiden äußersten rechten Stellen und trägt die Ergebnisse an den entsprechenden Stellen der Zwischenergebnis- Zeilen ein Das Endergebnis erhält man schließlich durch Addition der Zwischenergebnis-Zeilen, wobei Additionsüberträge auftreten können. Wenn man die klein geschriebenen Additionsüberträge nicht mag, kann man auch eine weitere Zwischenergebnis-Zeile dafür freilassen Zwischenergebnisse Zwischenergebnis-Überträge und Additionsüberträge Endergebnis 5 Natürlich können auch schon ganz zu Beginn der Rechnung Überträge auftreten oder die Summe der Produkte kann eine dreistellige Zahl ergeben wie im folgenden Beispiel :
3 Dezimalbrüche multipliziert man genau wie im Normalverfahren, indem man die Kommas für die Zwischenergebnisse ignoriert und erst im Endergebnis wieder ein Komma hinzufügt; Die Zahl der Nachkommastellen des Endergebnisses ermittelt man wie im Normalverfahren als Summe der Nachkommastellen der Faktoren., Nachkommastellen 2 4, 8 Nachkommastelle , Nachkommastellen Wenn die Faktoren viele anhängende oder führende Nullen enthalten (z.b oder.64), schreibt man die Zahlen besser in Potenzschreibweise (4.534 bzw ) und konzentriert sich auf die Multiplikation der signifikanten Stellen ( ). Ergänzungen und Kommentare Obwohl Überkreuz-und-Übereinander mit beliebigen Faktoren funktioniert, gibt es doch ein paar Punkte zu bedenken: Wenn die Stellenzahl der Faktoren größer (als etwa sechs) ist, muss man entsprechend viele Produkte im Kopf addieren. Das spart zwar Platz, ist aber auch fehleranfällig. Bei großen Faktoren sollte man also entweder sehr gut Kopfrechnen üben, oder das Normalverfahren anwenden, bei dem man ja alle Zwischenergebnisse aufschreibt. Man kann aber auch weitere Zwischenergebnis-Zeilen für Teilergebnisse vorsehen. Wenn man einige der Überkreuz-Produkte aufsummiert hat, notiert man dieses Zwischenergebnis, die Summe der weiteren Produkte in zusätzlichen Zwischenergebnis- Zeilen darunter. Für mein Gefühl funktioniert Überkreuz-und-Übereinander am angenehmsten bei Faktoren von etwa gleicher Stellenzahl. Um einen mehrstelligen Faktor mit einer zwei- bis vierstelligen Zahl zu multiplizieren, kann man auch die Regenbogen- Multiplikation auf der nächsten Seite verwenden.
4 Regenbogen -Multiplikation Dieselbe Kombination von Multiplikationen und Additionen der Stellen wie bei Überkreuz-und-Übereinander aber nach einem anderen Muster bietet dieses Verfahren, das ich nach [Glad] (und aus unten erkennbaren Gründen) Regenbogen- Multiplikation getauft habe. Die Bögen zeigen an, welche Ziffern miteinander zu multiplizieren sind. Das Notieren der Zwischenergebnisse und die Berechnung des Endergebnisses erfolgt genau wie oben bei der Überkreuz-und-Übereinander-Multiplikation = = = 4 3 Der Bogen von der letzten Stelle des zweiten Faktors zeigt immer auf die Position, an der die Einerstelle der Produktsumme notiert werden muss. Die Nebenrechnungen und die Bögen schreibt man nicht hin; sie dienen hier nur zur Veranschaulichung der Rechenmethode = =
5 = Nach der letzten Multiplikation werden die Zwischenergebnisse zum Endergebnis aufaddiert: = Auch bei dieser Methode kann man die Multiplikation in der anderen Richtung von links nach rechts durchführen, wobei sich die Reihenfolge der Schritte einfach umkehrt. Ergänzungen und Kommentare ) Wenn man von links nach rechts arbeitet, kann man die Notation der Zwischenergebnisse unter der höchsten Stelle des ersten Faktors beginnen und dadurch etwas Platz sparen. 2) Die Multiplikation von rechts nach links ist fürs Kopfrechnen geeignet, wenn man sich die Zwischenergebnisse z.b. mit den Fingern merkt. Nur die Faktoren und das Endergebnis werden aufgeschrieben. 3) Wenn man sich das Rechenschema lieber immer mit dem vollständigen Regenbogen vorstellen möchte, kann man (in Gedanken) hinter und vor dem ersten Faktor eine entsprechende Anzahl von Leerstellen lassen, die in den Produktsummen als Null zu rechnen sind = = (Für mein Gefühl ist das nicht unbedingt übersichtlicher aber man hat immerhin stets einen Zeiger auf die nächste Zwischenergebnis-Stelle.)
Basistext Rechentricks. Voraussetzung: Die Zehnerstellen der Zahlen müssen gleich sein
Basistext Rechentricks Trick 1 - Multiplikation zweistelliger Zahlen Voraussetzung: Die Zehnerstellen der Zahlen müssen gleich sein Verfahren anhand eines Beispiels: 13 * 14 Man zieht die Einer der ersten
Kubikwurzeln exakt berechnen
Kubikwurzeln exakt berechnen Sehr ähnlich wie die exakte Berechnung von Quadratwurzeln, aber leider mit viel mehr Rechenaufwand verbunden, funktioniert das Verfahren zur Berechnung von Kubikwurzeln. Berechnen
Anleitung zum Ausführen der vier Grundrechenarten mit dem russischen Abakus ( Stschoty )
Zahlen darstellen 1 Anleitung zum Ausführen der vier Grundrechenarten mit dem russischen Abakus ( Stschoty ) 1 Zahlen darstellen 1.1 Stschoty in Grundstellung bringen Der Stschoty wird hochkant gehalten
Anleitung zum Ausführen der vier Grundrechenarten mit dem japanischen Abakus ( Soroban )
Grundlagen 1 1 Grundlagen Anleitung zum Ausführen der vier Grundrechenarten mit dem japanischen Abakus ( Soroban ) Abb. 1: Ein Soroban mit dem 4+1-System, 15 Stäben und einem Rückstellmechanismus Der Soroban
Skript zum Thema Rechnen wie Adam Ries
Skript zum Thema Rechnen wie Adam Ries Xenia Rendtel 16. März 2010 Inhaltsverzeichnis 1 Motivation 1 2 Die Theorie 1 2.1 Die schriftliche Addition.................................... 1 2.2 Die schriftliche
Englische Division. ... und allgemeine Hinweise
Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser
Multiplikation langer Zahlen
Multiplikation langer Zahlen Aljoscha Rudawski 20.5.2017 Inhaltsverzeichnis 1 Einleitung 1 2 Multiplikation nach Lehrbuch 1 2.1 Addition langer Zahlen............................. 2 2.2 Multiplikation
Zahldarstellung mit negativen Ziffern
Zahldarstellung mit negativen Ziffern In Dezimalschreibweise ist der Wert einer n-stelligen Zahl d n 1... d 3 d 2 d 1 d gegeben durch den Term d n 1 1 n 1 +... + d 3 1 3 + d 2 1 2 + d 1 1 + d 1, wobei
Trachtenberg-Division
Trachtenberg-Division Wiederum in [Trachtenberg] findet man eine Divisionsmethode, deren zentrale Idee es ist, vor dem Dividieren eine Liste aller Vielfachen von bis 9 des Divisors aufzuschreiben; Die
Helmut Lange. Besser RECHNEN. ohne Taschenrechner. Erstaunliche Rechentricks
Helmut Lange Besser RECHNEN ohne Taschenrechner Erstaunliche Rechentricks Vorwort In der Schule wir das Kopfrechnen kaum noch vermittelt. Werden wir im Alltag mit Rechenaufgaben konfrontiert, sind Smartphone
Begriffe, die auf eine Multiplikation oder Division hinweisen
Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend
Wie subtrahiert man ungleichnamige Brüche? Wie addiert man gemischte Zahlen? muss man Brüche auf den Hauptnenner bringen?
A Was ist ein Hauptnenner? A Für welche Rechenarten muss man Brüche auf den Hauptnenner bringen? A9 Wie subtrahiert man ungleichnamige Brüche? A0 Wie addiert man gemischte Zahlen? A A A A Wie nennt man
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =
Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel.
Der Würfelturm drei Spielwürfel Notizzettel und Stift Ein Kind baut aus den drei Spielwürfeln einen Turm. Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Das Kind wird
Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK
Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK Die Beitragskontonummer besteht aus einem 6-stelligen numerischen Begriff und einer Prüfziffer Die Prüfziffer wird auf folgende Art berechnet:
02 Dezimalzahlen in der Stellenwerttafel
9 Dezimalbrüche LS 02.M1 02 Dezimalzahlen in der Stellenwerttafel A1 a) Ergänze die Stellenwerttafel. Lege mit den drei Plättchen fünf verschiedene Zahlen. Wie heißen deine Zahlen? Notiere sie. Komma Tausender
Mathematik-Aufgabenpool > Grundrechnen mit Dezimalzahlen
Michael Buhlmann Mathematik-Aufgabenpool > Grundrechnen mit Dezimalzahlen Einleitung: Dezimalzahlen (Dezimalbrüch sind (rational Zahlen von der Form Vorkommastellen-Komma- Nachkommastellen. Gerechnet wird
Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.
1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987
Kopfrechnen (Dezember 2010)
Kopfrechnen (Dezember 2010) Folgend sind einige Tipps und Tricks für ein sicheres, schnelles Kopfrechnen zusammengestellt. Neben den aufgeführten Tricks existieren aber noch viele weitere Methoden. Sollte
Exponentialfunktionen: 10 x und e x
Exponentialfunktionen: 10 x und e x Um Logarithmen wirklich gewinnbringend beim Rechnen einzusetzen, muss man auch die Umkehrfunktion die Exponentialfunktion 10 x berechnen können. Obwohl sie eine extrem
Wenn wir Zahlen schriftlich miteinander addieren wollen, schreiben wir diese untereinander (sauber und ordentlich).
Grundrechenarten: Die Grundrechenarten sind elementar für das gesamte Schulleben und auch für das spätere Berufsleben. Gerade in der Grundschule sollte man also fleißig üben und die vier Grundrechenarten
Grundlagen der Informatik I. Übung
Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz
Download. Mathematik Üben Klasse 5 Multiplikation und Division. Differenzierte Materialien für das ganze Schuljahr.
Download Martin Gehstein Mathematik Üben Klasse 5 Multiplikation und Division Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Multiplikation
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Sachinformation Umkehrzahlen
Sachinformation Umkehrzahlen Zu zweistelligen mit unterschiedlichen Ziffern werden durch Vertauschen der Ziffern auf der Zehner- und Einerstelle (z. B. 63 36) die Umkehrzahlen (in der Literatur findet
16. Algorithmus der Woche Multiplikation langer Zahlen... schneller als in der Schule
16. Algorithmus der Woche Multiplikation langer Zahlen... schneller als in der Schule Autor Arno Eigenwillig, Max-Planck-Institut für Informatik, Saarbrücken Kurt Mehlhorn, Max-Planck-Institut für Informatik,
a) = b) =
Kopfrechnen: Addition und Subtraktion 1 Rechne im Kopf. a) 14 + 12 + 13 + 11 + 17 + 10 + 15 + 16 = b) 21 + 23 + 25 + 20 + 26 + 22 + 29 + 24 = c) 15 + 21 + 9 + 23 + 11 + 16 + 24 + 6 +10 = d) 7 + 32 + 12
DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken
DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Hohe Hausnummer Stellenwert der Zahlen im Hunderterraum 1 Sechser-Würfel,
LS 06. LS 06 Schriftliche Multiplikation mit mehrstelligem Faktor. Multiplikation. Erläuterungen zur Lernspirale
35 Multiplikation LS 06 LS 06 Schriftliche Multiplikation mit mehrstelligem Faktor Zeitrichtwert Lernaktivitäten Material Kompetenzen 1 PL 5 L gibt einen Überblick über den Ablauf der 2 EA 10 S bearbeiten
2.Vorlesung Grundlagen der Informatik
Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik [email protected]
Bankspiel Anleitung. Einleitung: Das Bankspiel ermöglicht die Vertiefung der Multiplikation mit großen Zahlen.
Seite: 1 Bankspiel Anleitung Einleitung: Das Bankspiel ermöglicht die Vertiefung der Multiplikation mit großen Zahlen. Anwendung: Eine Aufgabe wird gewählt: 4523 x 452 Der Multiplikand (4523) wird mit
Grundzüge der Informatik Zahlendarstellungen (7)
Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda [email protected] Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1
Anhangt: Ein Spiel zum Aufwärmen
Anhangt: Ein Spiel zum Aufwärmen Vor einem Rennen betreibt ein Rennläufer Gymnastik, um seine Muskeln aufzuwärmen. Bevor Sie ein in diesem Buch beschriebenes Spiel spielen, möchten Sie vielleicht eine
Bruchrechnen in Kurzform
Teil 1 Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 10 Zu diesen Beispielen gibt es einen Leistungstest in 1049. Ausführliche Texte zur Bruchrechnung findet man
Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?
1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist
3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen Halbschriftliche Addition und Subtraktion
3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3.1 Halbschriftliche Addition und Subtraktion 3.3.2 Halbschriftliche Multiplikation und Division Rahmenplan Rahmenplan Hessen S. 154:
Exponentialgleichungen und Logarithmen
. Exponentialgleichungen und Logarithmen. Logarithmen Ergänzung 3. Logarithmenregeln Seiten 4. Aufgaben Exponentialgleichungen 5. Didaktisches 6. Was sind Logarithmen? 7. Exponentialgleichungen Kurzfassung
Logarithmen näherungsweise berechnen
Logarithmen näherungsweise berechnen (Zehner)Logarithmen waren vor der Taschenrechner-Ära ein wichtiges Rechenhilfsmittel, da mit ihrer Hilfe Produkte in Summen und, wichtiger noch, Potenzen und Wurzeln
Puzzleteile zur Multiplikation
Puzzleteile zur Multiplikation Vorstellungen von der Operation entwickeln Einmaleins geläufig erwerben Analogien in höheren Dezimalen finden Grundstrategie für große Zahlen anwenden: Zahlen zerlegen und
01 - Zahlendarstellung
01 - Zahlendarstellung Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: [email protected] Zahlendarstellung
DIE NATÜRLICHEN ZAHLEN
Natürliche Zahlen Herbert Paukert 1 DIE NATÜRLICHEN ZAHLEN Version 2.0 Herbert Paukert (1) Die natürlichen Zahlen [ 02 ] (2) Die Addition [ 06 ] (3) Die Geometrie der Zahlen [ 10 ] (4) Die Subtraktion
Tag der Mathematik 2016
Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16
MLAN1 1 MATRIZEN 1 0 = A T =
MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente
Üben für die 2. Schularbeit Mathematik 3
Üben für die 2. Schularbeit Mathematik 3 LÖSUNG wird zwischen 08.12. und 12.12.2016 in Teilen in eurer Klassenkiste auf lernkiste.at verfügbar sein. (1) Rationale Zahlen multiplizieren und dividieren a)
TD: T und D haben gleich viele Dezimalstellen und es ist D T. D passt dann mindestens 1 mal und höchstens 9 mal in T.
Divisionshilfen Divisionen mit langen Divisoren wie z.b. 0293576 : 37215 sind auf den ersten Blick ziemlich abschreckend. Zum Glück ist es aber auch in solchen Fällen nicht allzu schwierig, die Quotientenstellen
Regeln zur Bruchrechnung
Regeln zur Bruchrechnung Brüche und Anteile Zur Beschreibung von Anteilen verwendet man Brüche (von gebrochen, z. B. eine Glasscheibe) wie 5 ; 5 oder 9. Die obere Zahl (über dem Bruchstrich) heißt Zähler,
Grundlagen komplexe Zahlen. natürliche Zahlen
Grundlagen komplexe Zahlen Die Zahlenbereichserweiterungen von den natürlichen Zahlen hin zu den reellen Zahlen waren dadurch motiviert, bestimmte Rechenoperationen uneingeschränkt ausführen zu können.
Multiplikation von Matrizen
Multiplikation von Matrizen Die Regeln der Multiplikation von Zahlen können nicht direkt auf die Multiplikation von Matrizen übertragen werden. 2-E Ma Lubov Vassilevskaya Multiplikation ccvon Matrizen
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
Orientieren im Zahlenraum bis 1 Million
Inhalt A Orientieren im Zahlenraum bis 1 Million 1 Stellentafel und Zahlenstrahl 6 2 Nachbarzahlen und Runden 8 3 Anordnen 10 B Addieren und Subtrahieren 1 Mündliches Addieren und Subtrahieren 12 2 Schriftliches
Buch-Seite 51 Gross wie klein
IGEL 25 BIS 29.3 Aufgabennummerierung: x,y Igel: Igel-Heft Seite x, Aufgabe y Buch x.y = Aufgabe y auf Seite x Zahlenbuch Buch-Seite 51 Gross wie klein 25. Igel-Seite 25.1. Igel. Die + 60-Raupe ist das
Voransicht. Grundrechen Führerschein: Aufwärmtraining
Grundrechen Führerschein: Aufwärmtraining Mit dieser Seite kannst du dich auf den Grundrechen Führerschein vorbereiten. 1 Additionspuzzle. Zerschneide das Bild rechts, rechne die Aufgabe links in deinem
Potenzen mit ganzzahligen Exponenten
Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten -E -E2 Was sollen wir kennen? die Eigenschaften von Exponenten, die Wissenschaftliche Notation der reellen Zahlen, die Potenzenregeln. -E3 Wozu sind
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 1. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib
Elemente der Arithmetik, Algebra und des Sachrechnens GS WS 2008/09. Aufgabenblatt 6 Multiplikation II Russische Bauernmethode
Elemente der Arithmetik, Algebra und des Sachrechnens GS WS 2008/09 Aufgabenblatt 6 Multiplikation II Russische Bauernmethode Aufgabe 1 Wie können Sie möglichst geschickt herausfinden, wie viele Zeilen
Mathematik im Alltag Größen und ihre Einheiten Größen im Alltag. 16 cm. Ausdrücke wie 2, 9 cm, 69 kg, 12s sind Angaben von Größen.
Mathematik im Alltag 5.4.1 Größen und ihre Einheiten Größen im Alltag Ausdrücke wie 2, 9 cm, 69 kg, 12s sind Angaben von Größen. Maßzahl 16 cm Einheit Geld Euro Cent 100 (--Umrechnungsfaktor) Masse t kg
Grundrechnungsarten mit Dezimalzahlen
Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer
12. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 5 Saison 1972/1973 Aufgaben und Lösungen
12. Mathematik Olympiade Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
Rechnen mit natürlichen Zahlen
Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen
14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen
14. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 9 Saison 1974/1975 Aufgaben und Lösungen 1 OJM 14. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 9 Aufgaben Hinweis: Der Lösungsweg mit
ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE
ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib Länge und Breite des Rechtecks in einer Formel an. Es ist natürlich leicht
1 Goldener Schnitt Pascalsches Dreieck Der Binomische Lehrsatz ( ) ß mit a multipliziert. ( a+ b) 4 = a 3 +3a 2 b+3ab 2 + b 3
1 Goldener Schnitt Pascalsches Dreieck 17 1.3 Pascalsches Dreieck 1.3.1 Der Binomische Lehrsatz Aus der Schule ist Ihnen mit Sicherheit die Binomische Regel bekannt: ( ) 2 = a 2 +2ab+ b 2 a+ b Diese Regel
Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN
RECHNEN MIT BRÜCHEN. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler Nenner. Der Nenner gibt an, in wie viele gleich große
Abakus ca Jahre alt (hier die chinesische Variante, der Suànpán, ca alt) Addiator(Stangenaddierer) ca , Prinzip ist von 1889
1 Einführung 1.1 Mechanische Hilfsmittel Mechanische Rechenhilfsmittel Abakus ca. 3000 Jahre alt (hier die chinesische Variante, der Suànpán, ca. 2200 alt) Addiator(Stangenaddierer) ca. 1920-1982, Prinzip
I. Zahlen. Brüche Mit Hilfe von Brüchen lassen sich Bruchteile vom Ganzen angeben = 17% 4 = 1 3 4
I. Zahlen Brüche Mit Hilfe von Brüchen lassen sich Bruchteile vom Ganzen angeben. Der Nenner gibt an, in wie viele gleich große Teile ein Ganzes zerlegt wird. Der Zähler gibt an, wie viele von diesen gleichen
Projekt Sudoku 1. Teil Case Select
Projekt Sudoku 1. Teil Case Select Wir wollen eine unterstützende Software erstellen, die nicht komplette Berechnung selbständig vornimmt, sondern nur dem Spieler Hilfen beim Ausfüllen gibt. So sollen
Rechentraining. 4 a) b) c) d) e) f) g) h)
Rechentraining Kopfrechenaufgaben 1 a) 27 + 13 b) 45 + 25 c) 78 + 22 d) 64 + 36 e) 205 + 95 f) 909 + 91 g) 487 + 23 h) 630 + 470 i) 777 + 333 j) 34 23 k) 42 33 l) 177 78 m) 555 444 n) 1010 101 o) 808 88
Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n
Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine
Skript Bruchrechnung. Erstellt: 2014/15 Von:
Skript Bruchrechnung Erstellt: 2014/15 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Erweitern / Kürzen... 5 3. Gemischte Brüche... 8 4. Multiplikation von Brüchen...
Zähler mal Zähler, Nenner mal Nenner
Mathematik Klasse 6 Übersicht über die Bruchrechnung..20 1.) Pflichtbereich So viele Regeln zum Bruchrechnen, da kann man leicht schnell etwas durcheinander bringen! Das muss nicht sein: Verschaffe Dir
Determinanten. W. Kippels 22. Februar 2014
Determinanten W Kippels Februar Inhaltsverzeichnis Einleitung Die Matrix Die Determinante einer Matrix Zweireihige Determinanten Mehrreihige Determinanten Beispiel : Eine dreireigige Determinante Beispiel
Schriftliches Rechnen bis zur Million
1. Addieren (Zusammenzählen), 3 Seiten Schriftliches Rechnen bis zur Million Inhaltsverzeichnis 2.1. Subtrahieren (Abziehen) Abziehverfahren 1 *, 4 Seiten ###### 7 1 6 #82473-34915 #47558 2.2. Subtrahieren
Grundkurs Mathematik I
Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 26 Dezimalbrüche Zu jeder rationalen Zahl x kann man die Potenzen x n, n Z, betrachten. Bei ganzzahligem x 2 sind die x n (beliebig)
Addition und Subtraktion natürlicher Zahlen
0 Minuten Addition und Subtraktion natürlicher Zahlen Kurztest : Addieren und Subtrahieren 1 Bei der linken Rechenmauer wird nach oben addiert, bei der rechten Rechenmauer nach oben subtrahiert. a) b)
1.1 Bruchteile und Bruchzahlen Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen darstellen: 6 3 = Schraffiert:
Zahlen. Bruchteile und Bruchzahlen Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen darstellen: Gelb: 6 = Schraffiert: 20 0 Bruchteile gibt man häufig in Prozent (%) an. Prozent = Hundertstel
Summen und Produkte 19
1 8 101 Rechne möglichst geschickt. A 12 + 41 + 8 = B 65 + 37 + 35 + 63 = C 123 + 69 + 17 = D 451 + 887 + 449 = E Erfinde weitere solche Aufgaben und gib sie andern zu lösen. 102 Rechne. A 200 (150 60
1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24
Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale
In s Ziel treffen - durch Multiplizieren und Dividieren
In s Ziel treffen - durch Multiplizieren und Dividieren Multipliziere oder dividiere so, dass du mit möglichst wenigen Versuchen ins Zielgebiet triffst. Jeder Versuch kostet einen Punkt. Notiere die Anzahl
Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra
Brüche und zahlen zahlen vergleichen zahlen runden 4 Addieren & subtrahieren Multiplizieren & dividieren mit Zehnerzahlen zahlen multiplizieren 7 8 Periodische zahlen 9 + Addition Z E z h t 4,4 9,9 4,4
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen
Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition
ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie
Sermiversusformel und ABC-Tafel
Sermiversusformel und ABC-Tafel Um die Höhe eines beobachteten Gestirns zu erhalten oder um eine Distanz zwischen zwei geographischen Orten auf einem Großkreis zu erhalten, wendet man den Seitenkosinussatz
Grundlagen: Algorithmen und Datenstrukturen
Grundlagen: Algorithmen und Datenstrukturen Sommersemester 2018 Tobias Lasser Computer Aided Medical Procedures Technische Universität München Multiplikation langer Zahlen Schulmethode: gegeben Zahlen
Russische Bauern- Multiplikation
Informationsblatt für die Lehrkraft Russische Bauern- Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Mittelschule, technische Berufsschule Binäre
Summen und Produkte 19
1 8 101 Rechne möglichst geschickt. A 12 + 41 + 8 = B 65 + 37 + 35 + 63 = C 123 + 69 + 17 = D 451 + 887 + 449 = (12 + 8) + 41 = 20 + 41 = 61 (65 + 35) + (63 + 37) = 100 + 100 = 200 (123 + 17) + 69 = 140
Grundlagen der Mathemagie
Übungen zur Vorlesung Grundlagen der Mathemagie Helmut Glas und Martin Kreuzer ASG Passau und Universität Passau Lehrerfortbildung Bezaubernde Mathematik Universität Passau, 16.12.2014 1 Die vier Asse
Grundwissen Mathematik
Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den
Grundoperationen Arbeitsplan
Grundoperationen Arbeitsplan Inhaltsverzeichnis. Grundideen der Planarbeit 2. Termine 3. Arbeitsweise 4. Lernkontrollen 5. Aufträge für die Planarbeit Ausklammern Binome Kürzen von Brüchen Erweitern von
Känguru der Mathematik 2018 Gruppe Junior (9./10. Schulstufe) Österreich
Känguru der Mathematik 2018 Gruppe Junior (9./10. Schulstufe) Österreich 15..2018 - Punkte Beispiele - 1. In meiner Familie hat jedes Kind mindestens zwei Brüder und mindestens eine Schwester. Wie viele
Rechnen ohne Taschenrechner
Helmut Lange Rechnen ohne Taschenrechner Verblüffende Rechentricks Vorwort Rechnen ohne Taschenrechner Vorwort Liebe Leser, es gibt durchaus alternative Strategien, sich Lerninhalte einzuprägen und Matheaufgaben
Wenn ich z. B. auf Zehner (Rundungsstelle) runden will, unterstreiche ich die Einerzahl. Beispielzahl 1: 54
LM Grundrechenarten/ Kopfrechnen S. 7 Übergang Schule - Betrieb Beispiel 1: Runden auf die Zehnerstelle Wenn ich z. B. auf Zehner (Rundungsstelle) runden will, unterstreiche ich die Einerzahl. Beispielzahl
Lernskript Potenzrechnung 2³ = 8
Lernskript Potenzrechnung 2³ = 8 Inhaltsverzeichnis Erklärungen...2 Potenz...2 Basis...3 Exponent...4 Hoch null...5 Punkt- vor Strichrechnung mit Potenzen...5 Potenzen mit gleicher Basis...6 Potenzen mit
Grundwissen JS 5 Algebra
GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009
Bruchrechnen in Kurzform
Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:
Der Nenner eines Bruchs darf nie gleich 0 sein! Der Zähler eines Bruchs kann dagegen auch 0 sein. Dies besagt, dass kein Teil zu nehmen ist.
Bruchteile Bruchteile von Ganzen lassen sich mit Hilfe von Brüchen angeben. Der Nenner gibt an, in wie viele gleiche Teile ein Ganzes zerlegt wird. Der Zähler gibt an, wie viele dieser gleichen Teile zu
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis
ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich
