Grundkurs Mathematik I
|
|
|
- Hermann Böhme
- vor 9 Jahren
- Abrufe
Transkript
1 Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 26 Dezimalbrüche Zu jeder rationalen Zahl x kann man die Potenzen x n, n Z, betrachten. Bei ganzzahligem x 2 sind die x n (beliebig) groß für positives n und (beliebig) klein für negatives n. Solche Potenzen stellen ein wichtiges Vergleichsmaß für die Größenordnung von Zahlen dar. Da wir im Dezmialsystem arbeiten, sind insbesondere die Zehnerpotenzen 10 n, n Z, wichtig. Für n 0 treten die Zehnerpotenzen insbesondere bei der Dezimaldarstellung natürlicher Zahlen auf. Die Zehnerpotenzen zu negativem n spielen auch eine wichtige Rolle bei der Erfassung und Beschreibung von beliebigen rationalen Zahlen. Definition Eine rationale Zahl, die man mit einer Zehnerpotenz als Nenner schreiben kann, heißt Dezimalbruch. Dezimalbrüche sind beispielsweise sämtliche ganzen Zahlen (man kann 1 = 10 0 als Nenner nehmen), ferner Zahlen wie 1 10, 1 100, , , ,... Nach unserer Definition liegt ein Dezimalbruch vor, wenn man die dadurch gegebene rationale Zahl mit einer Zehnerpotenz als Nenner schreiben kann. Das heißt nicht, dass die Zahl in dieser Form vorliegen muss. Beispielsweise sind auch die Brüche 1 2, 1 5, 7 5, 13 20, Dezimalbrüche, da man sie nach einer Erweiterung mit einer Zehnerpotenz als Nenner schreiben kann. Dies gilt für alle Brüche mit der Eigenschaft, dass in der Primfaktorzerlegung des Nenners nur Potenzen von 2 und von 5 vorkommen. Wenn der Bruch gekürzt ist, so sind genau die Brüche der Form a die Dezimalbrüche, siehe Aufgabe i 5 j Die Linealversion des Zahlenstrahles markiert neben den ganzen Zahlen die ganzzahligen Vielfachen des Dezimalbruches Wenn man den Meter als Einheit nimmt, zeigt es die ganzzahligen Vielfachen von
2 2 Einen Dezimalbruch a 10 m (mit m 0) kann man auch in der Form a10 m schreiben. Dies ergibt wohl die kompakteste Charakterisierung eines Dezimalbruches, eine rationale Zahl der Form a 10 k mit a,k Z. Aus dieser Darstellung ist unmittelbar ersichtlich, dass man Dezimalbrüche miteinander addieren und multiplizieren kann und dabei wieder einen Dezimalbruch erhält. Lemma Die Summe und das Produkt von zwei Dezimalbrüchen ist wieder ein Dezimalbruch. Das Negative eines Dezimalbruches ist ein Dezimalbruch. Die Menge der Dezimalbrüche bilden einen Ring 1 innerhalb der rationalen Zahlen. Beweis. Die Brüche seien und x = a 10 k y = b 10 l mit a,b Z und mit k,l Z. Wegen der Symmetrie können wir k l annehmen. Dann ist a 10 k +b 10 l = a 10 k l 10 l +b 10 l = ( a 10 k l +b ) 10 l wieder von der gleichen Bauart, also ein Dezimalbruch. Für das Produkt ist a 10 k b 10 l = a b 10 k+l. Die anderen Behauptungen sind ebenfalls klar. Die Menge der Dezimalbrüche bilden keinen Körper, da zwar sämtliche ganzen Zahlen Dezimalbrüche sind, ihre inversen Elemente aber im Allgemeinen nicht. Beispielsweise sind 3 1 und 7 1 keine Dezimalbrüche. Für zwei Dezimalbrüche ist es einfach, einen Hauptnenner zu finden, da die Nenner im gekürzten Fall grundsätzlich von der Form 2 i 5 j sind. Insofern spielt sich bei Rechnungen mit Dezimalbrüchen alles Wesentliche im Zähler ab. Beispiel Es ist und = = = Man spricht von einem Unterring.
3 3 Dezimaldarstellung für Dezimalbrüche Wenn man für einen Dezimalbruch, sagen wir , für den Zähler die Dezimalentwicklung einsetzt, so erhält man = = = In diesem Sinne kann man jeden Dezimalbruch auf die Form ± a i 10 i i=k mit Ziffern a i {0,1,...,9} und ganzen Zahlen k l, wobei der untere Summationsindex k bei einem echten Dezimalbruch (also keiner ganzen Zahl) negativ ist. Von dieser Beobachtung her ist es naheliegend, die Dezimaldarstellung auf Dezimalbrüche auszudehnen. Dadurch erhält man abbrechende 2 Kommazahlen. Definition Es sei ein Dezimalbruch a 10 k mit a = ±b Z, b N, und k N gegeben, und es sei n b = b i 10 i = b n b 1 b 0 i=0 die Dezimaldarstellung von b. Dann nennt man ±b n b k,b k 1 b 1 b 0 die Darstellung des Dezimalbruches im Dezimalsystem. Diese Darstellung verwendet also direkt die Zifferndarstellung von b, wobei allein ein Komma eingeführt wird, und zwar so, dass hinter dem Komma genauk Ziffernstehen,nämlichdiehinterenk Ziffernb k 1,...,b 0 vonb.dabei darf man hintere Nullen weglassen. Wenn b weniger als k Stellen besitzt, muss man dies vorne durch hinreichend viele Nullen auffüllen. Wegen Satz 14.1 ist diese Darstellung eindeutig. Für a = b = 1 ergibt sich die folgende Tabelle. 2 Bei unendlichen Kommazahlen handelt es sich um ein viel komplizierteres Konzept, das wir erst richtig im zweiten Semester verstehen werden.
4 4 Potenz Bruch Kommazahl , , , , , Die Potenz 10 n ist also der Bruch, wo im Nenner n Ziffern stehen, nämlich eine 1 und n 1 Nullen, und das ist zugleich die Kommazahlen, bei der nach dem Komma n Ziffern stehen, nämlich n 1 Nullen und eine 1. Für Umrechnungen ist auch folgende Beobachtung hilfreich: Wenn man eine Kommazahl mit 10 multipliziert, so verschiebt sich das Komma um eine Stelle nach rechts, wenn man sie mit 10 1 multipliziert, verschiebt sich das Komma um eine Stelle nach links. Die Stelle zu 10 k nennt man auch die k-te Nachkommastelle. Das Rechnen mit Kommazahlen ist einfach, allerdings ist das richtige Setzen des Kommas eine Fehlerquelle. Beispiel Dezimalbrüche im Dezimalsystem addiert man wie ganze Zahlen im Zehnersystem, d.h. man addiert von hinten nach vorne mit Übertrag, wobei die beiden Kommata deckungsgleich sein müssen. Beispielsweise ist 53, , , 921. Dieses Verfahren ist korrekt, da im Wesentlichen die Zähler bezogen auf einen gemeinsamen Nenner addiert werden. Beispiel Dezimalbrüche im Dezimalsystem multipliziert man wie ganze Zahlen im Zehnersystem, d.h. man multipliziert die eine Zahl nacheinander mit allen Ziffern der anderen Zahl. Abschließend muss man das Komma richtig setzen. Dazu zählt man die Stellen hinter den Kommata der beiden Zahlen zusammen und setzt an der entsprechenden Stelle im Produkt von hinten gezählt das Komma. Dabei muss man, wenn hinten die Zahlen mit 2 bzw. 5 enden, die sich ergebende 0 mitzählen (bei ganzen Zahlen darf man die ja auch nicht weglassen), auch wenn sie letztendlich weggelassen werden darf. Dieses Verfahren ist korrekt, da ihm die Gleichung a 10 k b 10 l = a b 10 k+l zugrunde liegt. Bei nicht zu großen und nicht zu kleinen Zahlen kann man auch durch eine Überschlagsrechnung entscheiden, wo das Komma hingehört.
5 Bemerkung Der Größenvergleich zwischen zwei Dezimalbrüchen im Dezimalsystem ist einfach (wir beschränken uns auf positive Zahlen). Man schreibt die beiden Zahlen übereinander, wobei die beiden Kommata übereinander stehen müssen. Dann vergleicht man wie bei den ganzen Zahlen von links nach rechts. 5 Approximation durch Dezimalzahlen Eine wichtige Motivation zur Einführung der rationalen Zahlen war, beliebige Längen, die beispielsweise bei der gleichmäßigen Unterteilung einer gegebenen Strecke auftreten, möglichst gut messen zu können. Dies können wir erst dann präzise formulieren, wenn wir die reellen Zahlen zur Verfügung haben. Die folgende Aussage zeigt, dass man rationale Zahlen selbst schon beliebig gut mit Dezimalbrüchen approximieren (annähern) kann. Wenn es also nur darum geht, beliebige Längen approximativ zu beschreiben, so sind die Dezimalbrüche genauso gut wie die deutlich größere Menge aller rationalen Zahlen. Lemma Zu jeder rationalen Zahl q und jedem k N + gibt es ein a Z derart, dass a 10 q < a+1 k 10 k gilt. D.h., dass man jede rationale Zahl beliebig gut (nämlich mit einem Fehler, der maximal gleich 1 ist) durch Dezimalbrüche approximieren kann. 10 k Beweis. Es sei Dann ist a := q10 k. a q10 k < a+1. Divisiondurch10 k ergibtdiebehauptung.derzusatzergibtsichdaraus,dass man nach Korollar 25.6 jede beliebige positive Fehlergenauigkeit ǫ durch eine geeignete negative Zehnerpotenz unterbieten kann. In diesem Satz gibt das k über die Potenz 10 k vor, wie groß der Fehler sein darf. Man sagt dann auch, dass die Approximation bis zur k-ten Nachkommaziffer genau ist. Es sei q = z. Wenn man beispielsweise einen Taschenrechner mit acht Nachkommastellen hat, so ergibt sich zu k = 8 die Zahl a als Ergebnis, wenn man n z : n eingibt und das Komma in der Darstellung ignoriert. Beispiel Wir wenden Lemma 26.8 auf q = 3 mit k = 9 an. Eine 7 Rechnung des Taschenrechners mit menschlichen Korrekturen liefert 0, < 3 7 < 0,
6 6 Die beiden Dezimalbrüche links und rechts sind also eine Approximation des wahren Bruches 3 7 mit einem Fehler, der kleiner als ist. Die Rechnung im vorangehenden Beispiel beruht auf dem Divisionsalgorithmus, den wir noch nicht besprochen haben. Der Satz besagt, dass es eine solche eindeutig bestimmte Zahl geben muss. Dass die angeführten Abschätzungen gelten, kann man einfach überprüfen, indem man die beiden Dezimalzahlen mit 7 multipliziert. Mit der Approximation von rationalen Zahlen durch Dezimalzahlen geht die Dezimalrundung einher. Bei der Rundung auf eine ganze Zahl schaut man einfach nach der ganzzahligen Approximation und nimmt von der unteren und der oberen Approximation diejeninge, die näher ist (wobei man bei gleichem Abstand abrundet). Bei der Dezimalrundung zur Stellenanzahl k (bzw. zur Genauigkeit 10 k ) führt man dies für die Nenner a bzw. a+1 in der Approximation durch. Die Zahl 47, ist beispielsweise auf zwei Nachkommastellen gerundet gleich 47, 29. Häufig finden sich auch Rundungsangaben von der Form 7,3 10 k. Halbierung und Division durch 5 Einen im Dezimalsystem gegebenen Dezimalbruch kann man einfach durch 10 teilen, indem man einfach das Komma um eine Stelle nach links verschiebt. Die Zahl 10, die die Grundlage des Dezimalsystems ist, hat die beiden Teiler 2 und 5. Durch diese beiden Zahlen kann man ebenfalls teilen und erhält wieder einen Dezimalbruch (was für andere Primzahlen nicht stimmt), wobei diese Divisionen algorithmisch besonders einfach durchzuführen sind. Eine Besonderheit liegt darin, dass die Ziffern des Ergebnisses nur von der entsprechenden und von der um eins höherstelligen Ziffer des Dividenden abhängen. Man braucht keinen Übertrag und kann an jeder beliebigen Stelle anfangen. Verfahren Es sei z = a i 10 i i=k ein Dezimalbruch, für den die Halbierung (also die Division durch 2) durchgeführt werden soll. Dazu führt man für jede Ziffer a i für i k 1 die Division mit Rest durch 2 durch, d.h. man berechnet Aus diesen Zahlen berechnet man a i = 2b i +r i. c i = b i +5r i+1.
7 7 Dies sind die Ziffern der Halbierung von z, also z 2 = c i 10 i. Da die Ziffern a i zwischen 0 und 9 liegen, sind die b i zwischen 0 und 4 und die r i sind 0 oder 1. Ohne die Division mit Rest kann man diesen Algorithmus auch mit der folgenden Fallunterscheidung darstellen. Es ist c i = a i, falls a 2 i und a i+1 gerade, a i +5, falls a 2 i gerade und a i+1 ungerade, a i 1 2, falls a i ungerade und a i+1 gerade, a i 1 +5, falls a 2 i und a i+1 ungerade. Beispiel Wir wollen den Dezimalbruch 509, 273 mit dem Verfahren halbieren. Wir fangen hinten an, auch wenn wir an jeder Stelle anfangen könnten, und zwar an der Stelle mit dem Index 4 (die Zehntausendstel- Stelle). Es ist a 4 = 0, und weil a 3 = 3 ungerade ist, ist c 4 = 5. Aus a 3 = 3 ergibt sich b 3 = = 1 und da a 2 = 7 ungerade ist, ist c 3 = 6. Aus a 2 = 7 ergibt sich b 2 = = 3 und da a 1 = 2 gerade ist, ist c 2 = b 2 = 3. So fährt man weiter und erhält schließlich 254,6365. Lemma Der Algorithmus zur Berechnung der Halbierung eines Dezimalbruches ist korrekt. Beweis. Es sei z = a i 10 i gegeben und es sei a i = 2b i +r i mit b i N und r i gleich 0 oder 1 und i=k c i = b i +5r i+1. Da a i 9 ist, ist diese Zahl eine erlaubte Ziffer. Zum Nachweis der Korrektheit müssen wir einfach das Ergebnis l c i10 i mit 2 multiplizieren und zeigen, dass man so z zurückerhält. Es ist ( ) 2 c i 10 i = 2 c i 10 i
8 8 = = = = = = z = z, 2 (b i +5r i+1 )10 i (2b i +10r i+1 )10 i 2b i 10 i + (a i r i )10 i + a i 10 i l+1 10r i+1 10 i r i 10 i + r i 10 i + r j 10 j j=k r i+1 10 i+1 r i+1 10 i+1 wobei sich die beiden Summanden rechts wegheben, da r k 1 und r l+1 gleich 0 sind. Auch für die Division durch 5 gibt es einen entsprechenden Algorithmus. Verfahren Es sei z = a i 10 i i=k ein Dezimalbruch, für den der fünfte Anteil (also die Division durch 5) berechnet werden soll. Dazu führt man für jede Ziffer a i für i k 1 die Division mit Rest durch 5 durch, d.h. man berechnet Aus diesen Zahlen berechnet man a i = 5b i +r i. c i = b i +2r i+1. Dies sind die Ziffern der Fünftelung von z, also z 5 = c i 10 i. Lemma Der Algorithmus zur Berechnung des fünften Anteils eines Dezimalbruches ist korrekt. Beweis. Siehe Aufgabe
9 Ein weiterer wichtiger Gesichtspunkt in diesem Zusammenhang ist, dass die Division durch 2 das gleiche ist wie Multiplikation mit 0,5 (also im Wesentlichen Multiplikation mit 5) und dass die Division durch 5 das gleiche ist wie die Multiplikation mit 0, 2. Daher kann man die zuletzt genannten Ergebnisse zur Division durch 2 bzw. 5 auch mit Bemerkung 16.4 begründen. Die in dieser Vorlesung angestellten Betrachtungen kann man in jedem Zahlensystem wie hier im Zehnersystem durchführen. Die Aussagen gelten entsprechend, wobei die zuletzt genannten Ergebnisse dann für die Teiler der Grundzahl gelten. 9
10
11 Abbildungsverzeichnis Quelle = Zahlenstrahl 2.gif, Autor = Benutzer Daniel Wolf2 auf de Wikipedia, Lizenz = gemeinfrei 2 11
Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche.
1 Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc Über die Darstellung von rationalen Zahlen als Dezimalbrüche. Anmerkung: Die Beschränkung auf die Dezimaldarstellung ist unnötig.
Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st
Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche
Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.
1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu
Skript Bruchrechnung. Erstellt: 2014/15 Von:
Skript Bruchrechnung Erstellt: 2014/15 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Erweitern / Kürzen... 5 3. Gemischte Brüche... 8 4. Multiplikation von Brüchen...
Corinne Schenka Vorkurs Mathematik WiSe 2012/13. Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen:
2. Zahlbereiche Besonderheiten und Rechengesetze Die kleineren Zahlbereiche sind jeweils Teilmengen von größeren Zahlbereichen: 2.1. Die natürlichen Zahlen * + besitzt abzählbar unendlich viele Elemente
5 Grundlagen der Zahlentheorie
5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk
Zahlen und elementares Rechnen (Teil 1)
und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung
Teilbarkeit von natürlichen Zahlen
Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch
1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen
Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,
U. Rausch, 2010 Ganze Zahlen 1
U. Rausch, 2010 Ganze Zahlen 1 Ganze Zahlen 1 Einleitung Als ganze Zahlen bezeichnet man die natürlichen Zahlen 1, 2,, 4,..., die Null 0 und die negativen ganzen Zahlen 1, 2,, 4,... Wir verabreden die
Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen
Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0
Grundwissen Mathematik
Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den
Rationale Zahlen Kurzfragen. 26. Juni 2012
Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )
Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen
Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch
1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.
5 5.1 Einführung Die Gleichung 3x 9 hat die Lösung 3. 3x 9 3Z 9 x 3 3 Die Gleichung 3x 1 hat die Lösung 1 3. 3x 1 1 3 Z 1 x 3 Definition Die Gleichung bx a, mit a, b Z und b 0, hat die Lösung: b x a a
Rechnen mit rationalen Zahlen
Zu den rationalen Zahlen zählen alle positiven und negativen ganzen Zahlen (-2, -2,,,...), alle Dezimalzahlen (-,2; -,; 4,2; 8,; ) und alle Bruchzahlen ( 2, 4, 4 ), sowie Null. Vergleichen und Ordnen von
J Quadratwurzeln Reelle Zahlen
J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,
Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6
Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven
kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf
* Rechnen und Mathematik Crash kurs Ein Übungsbuch für Ausbildung und Beruf Duden Crashkurs Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf Dudenverlag Mannheim Leipzig Wien Zürich Bibliografische
1.2 Eigenschaften der ganzen Zahlen
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen
Vorkurs Mathematik 1
Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler
Zahlen und elementares Rechnen
und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3
1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24
Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale
Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?
1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei
Grundwissen JS 5 Algebra
GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009
Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/
14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale
Analysis I. Vorlesung 9. Reihen
Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen
Einführung in die Bruchrechnung
- Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken
Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade
Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit
Reelle Zahlen (R)
Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große
Examensaufgabe 2010/I, 2: Dezimalbrüche. Schülerschwierigkeiten, daraus resultierende Fehler und Maßnahmen zur Vorbeugung bzw.
Universität Regensburg Didaktik der Mathematik Seminar für Examenskandidaten Hauptschule SS 01 Dozent: Andreas Eberl Referentin: Ramona Gruber 5.06.01 Examensaufgabe 010/I, : Dezimalbrüche 1. Erläutern
Mathematik Quadratwurzel und reelle Zahlen
Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel
1. Definition von Dezimalzahlen
. Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.
Körper- und Galoistheorie
Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 17 Kummererweiterungen Ernst Eduard Kummer (1810-1893) Wir haben in der letzten Vorlesung gesehen, dass sich einige Eigenschaften
Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik
Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen
Grundwissen Mathematik 6. Klasse
Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen
Grundwissen. 6. Jahrgangsstufe. Mathematik
Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren
Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen
Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln
Binärzahlen. Vorkurs Informatik. Sommersemester Institut für Informatik Heinrich-Heine-Universität Düsseldorf
Binärzahlen Vorkurs Informatik Institut für Informatik Heinrich-Heine-Universität Düsseldorf Sommersemester 2016 Gliederung 1 Das Binärsystem Einleitung Darstellung 2 Umrechen Modulo und DIV Dezimal in
0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0
0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a
1 Mengen und Mengenoperationen
1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;
Grundwissen Mathematik 6/1 1
Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition
ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie
Sermiversusformel und ABC-Tafel
Sermiversusformel und ABC-Tafel Um die Höhe eines beobachteten Gestirns zu erhalten oder um eine Distanz zwischen zwei geographischen Orten auf einem Großkreis zu erhalten, wendet man den Seitenkosinussatz
3 Zahlen und Arithmetik
In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren
2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen
2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit
BRUCHRECHNEN. Erweitern und Kürzen:
BRUCHRECHNEN Jede Bruchzahl läßt sich als Dezimalzahl darstellen 5 5:8 0.65 endlicher Dezimalbruch 8 0,6 unendlicher Dezimalbruch Nachfolgend werden die wesentlichen Zusammenhänge der Bruchrechnung angeführt.
Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)
4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik
UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100
Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil
M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent
Zahlensysteme. von Christian Bartl
von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.
Analysis I. Vorlesung 4. Angeordnete Körper
Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):
Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die
Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg
Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Mathematik 1 für Chemische Technologie 2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N =
2. Zahlenmenge, Aufbau des Zahlensystems 2.1 Natürliche Zahlen N Die natürlichen Zahlen bilden eine Menge: N = {1, 2, 3, 4,... }. N ist abgeschlossen bezüglich der Addition und Multiplikation: a, b N mit
1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:
Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der
Zuordnung von gemeinen Brüchen zu Dezimalbrüchen
Zuordnung von gemeinen Brüchen zu Dezimalbrüchen Durch schriftliche Division kann ein gemeiner Bruch in einen Dezimalbruch umgewandelt werden. Hierbei können zwei verschiedene Fälle betrachtet werden:
Grundwissen Jahrgangsstufe 6
GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche
Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem
Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT
Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.
Kapitel 3. Natürliche Zahlen und vollständige Induktion
Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine
2.2 Quadratwurzeln. e) f) 8
I. Quadratwurzeln Rechne im Kopf und erkläre, wie du vorgegangen bist!, H a) 7 8 b) 5 6 c) 9 d) 6 9 e) 0 _ f) 8 _ g) 7 _ 00 h) 5 _ 69 Teilweises Wurzelziehen ist dann möglich, wenn sich eine Zahl so zerlegen
(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)
3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten
sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil
M 6. Brüche Brüche beschreiben Bruchteile bzw. Anteile 3 4 von 00kg = 4 von 00kg 3 = (00kg 4) 3 = kg 3 = 7kg (s. auch 6.0) Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil
1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe
Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem
Neben der Addition tritt nun die Multiplikation als weitere Struktureigenschaft
Kapitel 3 Rationale Zahlen 31 Die rationalen Zahlen (Körper, Abzählbarkeit) Was ist mit der Gleichung z q = w in Z? Für gegebene z, w Z ist diese Gleichung in der Menge der ganzen Zahlen im Allgemeinen
1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}
1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung
M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)
M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Erweitern und Kürzen Durch Erweitern und Kürzen ändert sich der Wert des Bruches
Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen
Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis
MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM
MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM Dieses Heft gehört: I. RATIONALE ZAHLEN 1. Brüche, Bruchteile 1.1. Bruchteile von Größen Der Bruchteil z n eines Ganzen bedeutet: Teile das Ganze
M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n
M M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. Inhaltsverzeichnis Grundwissen Brüche Erweitern und Kürzen von Brüchen Prozentschreibweise Rationale Zahlen Dezimalschreibweise
n=1 a n mit reellen Zahlen a n einen
4 Unendliche Reihen 4. Definition und Beispiele Ein altes Problem der Analysis ist es, einer Reihe mit reellen Zahlen einen Wert zuzuordnen. Ein typisches Beispiel ist die unendliche Reihe + +..., die
Vedische Multiplikation
Vedische Multiplikation Aus den vedischen Schriften des alten Indien stammt diese Methode der Multiplikation mit dem Namen Überkreuz-und-übereinander oder Urdhva-tiryag bhyam. Diese Methode und andere
Stoffverteilung Mathematik Klasse 6 auf Basis der Bildungsstandards 2004
Brüche Dezimalbrüche Prozentangaben Diagramm Häufigkeitstabelle Anteile Bruchzahlen 1. Brüche im Alltag 2. Kürzen und Erweitern; rationale Zahlen 3. Brüche, Prozente, Promille 4. Dezimalschreibweise 5.
Einführung in die Algebra
Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv
Die ganze Welt ist Harmonie und Zahl.
Die ganze Welt ist Harmonie und Zahl. Pythagoras http://www.firstlutheranchurch-burbank.org/school/images/piano.jpg 1 Ma 1 Lubov Vassilevskaya, WS 2008 Was sind die Zahlen? Aber, mögen Sie sagen, nichts
1.2 Mengenlehre-Einführung in die reellen Zahlen
.2 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 Dezimalzahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist.......................... 5
Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ]
Bruchzahlen Herbert Paukert 1 DIE BRUCHZAHLEN Version 2.0 Herbert Paukert 1. Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] 4. Multiplizieren und Dividieren [
Grundzüge der Informatik Zahlendarstellungen (7)
Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda [email protected] Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1
Mathematik I. Vorlesung 19. Metrische Räume
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors
Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6
Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (
Musterlösung 1. Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016
Musterlösung 1 Mikroprozessortechnik und Eingebettete Systeme 1 WS2015/2016 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den
Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit
Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert
Bruchrechnen in Kurzform
Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:
U. Rausch, 2010 Potenzrechnung 1
U. Rausch, 2010 Potenzrechnung 1 Potenzrechnung 1 Schreibweise und Potenzrechenregeln Unter einer Potenz versteht man ein Symbol der Form a x, gesprochen a hoch x, wobei a und x (reelle) Zahlen sind. Dabei
Kapitel 2 Die rationalen und die irrationalen Zahlen
Kaitel Die rationalen und die irrationalen Zahlen Inhalt.. Was Was sind sind die die rationalen Zahlen?.. Wie Wie rechnet man man mit mit rationalen Zahlen?.. Ordnung in in den den rationalen Zahlen.4.4
Vorlesung Diskrete Strukturen Gruppe und Ring
Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in
Nummer Seite Bemerkungen
Zahlenmengen A. Zahlenmengen A.1 Einführung siehe Frommenwiler Kapitel 1.1.1 ab Seite 8! A.2 Übungen, Frommenwiler Lösen Sie die folgenden Aufgaben: Nummer Seite Bemerkungen 3 8 4 9 A.3 Doppelstrich-Buchstaben
2.2 Konstruktion der rationalen Zahlen
2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
5. 7. Brüche und Dezimalzahlen. Mathematik. Das 3-fache Training für bessere Noten: Klasse. Klasse
Das 3-fache Training für bessere Noten: WISSEN ÜBEN TESTEN Die wichtigsten Regeln zum Thema Brüche und Dezimalzahlen mit passenden Beispielen verständlich erklärt Zahlreiche Übungsaufgaben in drei Schwierigkeitsstufen
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
