Kopfrechnen (Dezember 2010)
|
|
|
- Axel Hauer
- vor 9 Jahren
- Abrufe
Transkript
1 Kopfrechnen (Dezember 2010) Folgend sind einige Tipps und Tricks für ein sicheres, schnelles Kopfrechnen zusammengestellt. Neben den aufgeführten Tricks existieren aber noch viele weitere Methoden. Sollte also eine Technik jemandem nicht weiterhelfen, so kann man immer noch auf andere Techniken ausweichen. Multiplikation Dieser Trick zeigt, wie man zwei zweistellige Zahlen schnell und korrekt miteinander multiplizieren kann. Wichtig dabei ist, dass man absolut konzentriert ist, damit man sich die Zwischenresultate gut merken kann und somit Fehler vermeiden kann. Möglicherweise muss man folgende Anleitung mehrmals langsam durchlesen und dabei jeden Schritt einzeln verfolgen. Auf der nächsten Seite ist dieselbe Technik nochmals anders erklärt. Verfolgen Sie Schritt für Schritt die Technik anhand eines Beispiels. Die Farben helfen Ihnen, sich zu orientieren. Beispiel 35 x 67 =? Man multipliziert nun erstes die letzte Ziffer der ersten Zahl mit der letzten Ziffer der zweiten Zahl. Ist das Resultat eine zweistellige Zahl, so schreibt man von diesem Resultat die letzte Ziffer ins Antwortfeld, die erste Ziffer des Resultats (sofern vorhanden) merkt man sich. In folgendem Beispiel wird also die 5 ins Antwortfeld ganz rechts geschrieben, die 3 merkt man sich diese Zahl entspricht dem Rest. Beispiel 35 x 67 5 x 7 = 35 Im Antwortfeld steht nun also folgendes: _ 5 Anschliessend wird die erste Ziffer der ersten Zahl mit der zweiten Ziffer der zweiten Zahl multipliziert, in unserem Beispiel also die 3 mit der 7, was 21 ergibt. Gleichzeitig multipliziert man die zweite Ziffer der ersten Zahl mit der ersten Ziffer der zweiten Zahl, also 5 multipliziert mit 6, was 30 ergibt. Diese beiden Zwischenresultate addiert man nun, dies ergibt 51. Auch hier würde man wieder die letzte Ziffer ins Antwortfeld schreiben (an die zweite Stelle von rechts, also links neben der 5). Hier muss aber noch der Rest beachtet werden, dieser wird zum soeben erhaltenen Zwischenresultat addiert, d.h = 54. Beispiel 35 x 67 3 x 7 = x 67 5 x 6 = (Rest von oben) = 54 Nun kann man die letzte Ziffer ins Antwortfeld rechts neben der ersten Zahl (5) notiert werden. Die zweite Ziffer merkt man sich wiederum als Rest. Im Antwortfeld steht nun also folgendes: 4 5 PILOTLINE Kopfrechnen 1
2 Nun multipliziert man noch die erste Ziffer der ersten Zahl mit der ersten Ziffer der zweiten Zahl, d.h. 3 x 6 = 18. Diese ganze Zahl (18) wird nun mit dem Rest von der vorherigen Zahl (Rest 5) zusammengezählt, d.h = 23. Diese beiden Ziffern kann man nun ins Antwortfeld schreiben: Beispiel Im Antwortfeld steht nun also folgendes: Dies ist nun das Endresultat, denn 35 x 67 ergibt tatsächlich Diese Methode lässt sich auch in einer anderen Form veranschaulichen: Zur Abbildung: Die erste Ziffer der mittleren Zahl wird normal zur gesamten ersten Zahl hinzuaddiert. In diesem Beispiel ergibt dies folgende Addition: 18+5= bildet somit die ersten beiden Ziffern des Endresultats. PILOTLINE Kopfrechnen 2
3 Division Eine Divisionsaufgabe löst man im Kopf genau gleich wie im Schriftlichen. Dabei gibt es unterschiedliche Varianten, wie man eine Divisionsaufgabe lösen kann. Folgende ist eine davon. Beispiel =? Hier geht man Schritt für Schritt von links nach rechts durch. Als erstes betrachtet man die erste Ziffer (links) und schaut, ob man diese mit 3 dividieren kann. Falls nicht, nimmt man die Ziffer rechts noch hinzu (also 22). Die Zahl 22 ist zwar nicht (gerade) mit 3 teilbar, aber die Zahl 3 ist in 22 sieben Mal enthalten. Die erste Ziffer im Resultat ist somit 7. Da aber 7 x 3 nicht 22, sondern 21 ergibt, resultiert ein Rest von 1. Beispiel = 7 1 Nun fährt man analog zu oben weiter: in jedem Fall nimmt man zum Rest die nächste Ziffer (in unserem Fall wäre es die nächste Ziffer nach 22, also die Drei) hinzu. Im Wert 13 hat die Zahl 3 genau vier Mal Platz, denn 3 x 4 ergibt 12. Daraus folgt, dass auch hier wieder ein Rest mit dem Wert 1 übrig bleibt. Beispiel = 7 4 _ 13 Zum erhaltenen Rest (Wert 1) fügt man nun noch die letzte Zahl (Fünf) hinzu. Hier sieht man, dass die 3 restlos genau fünf Mal im Wert 15 enthalten ist. Die letzte Ziffer im Resultat ist somit 5. Beispiel = PILOTLINE Kopfrechnen 3
4 Addition Auch bei der Addition sowie Subtraktion gibt es einen kleinen Trick, wie man eine Rechnung mit vierstelligen Zahlen schneller ausrechnen kann. Bei einer Rechnung mit zwei vierstelligen Zahlen bildet man jeweils zwei Gruppen (die ersten beiden Ziffern beider Zahlen addiert sowie die letzten beiden Ziffern beider Zahlen addiert) und rechnet diese separat aus. Die Summe der ersten beiden Zahlenpaare beider vierstelligen Zahlen bildet das erste Zahlenpaar im Resultat (siehe Farben im Beispiel). Folgend drei Beispiele. Dabei ist das letzte Beispiel besonders zu beachten: Beispiel = = = 9351 Beispiel = = = [!] Beispiel = = 110 Die Summe, die im Resultat das hintere Zahlenpaar darstellt, ist grösser als 100! Die erste Zahl (links) des Zahlentrios (110) wird also von den 110 weggenommen (110 10) und beim ersten Zahlenpaar hinzugefügt (41 42): FALSCH: = RICHTIG: = 4210 PILOTLINE Kopfrechnen 4
5 Subtraktion Die Subtraktion erfolgt genau gleich wie die Addition. Auch hier ist darauf zu achten, wenn die Differenz zwischen der ersten, hinteren Zweierzahl kleiner ist als die zweite, hintere Zweierzahl. Auch hier zwei Beispiele: Beispiel = = = 1701 [!] Beispiel = = -90 ist in diesem Falle UNGÜLTIG somit: = 10 Ist die Differenz zwischen zweier Gruppen (Beispiel 2, grüne Farbe) negativ, so muss bei der unteren Rechnung bei der vorderen Zahl eine 1 hinzugefügt werden (00 100) und beim Resultat der ersten beiden Zahlenpaare eine 1 subtrahiert werden (17 16). Anschliessend folgt also das korrekte Resultat und nicht das Falsche: RICHTIG: = 1610 HINWEIS Um die Funktionsweise der obenstehenden Methoden zu verstehen, ist es ratsam, wenn man mehrere Beispiele selber anhand der Anleitung erst schriftlich löst und mit dem Taschenrechner kontrolliert. Anschliessend sollten solche Aufgaben ohne Hilfsmittel (keine Anleitung, kein Papier) gelöst werden können. PILOTLINE Kopfrechnen 5
6 Quadrat- und Kubikzahlen Folgende Resultate sollten auswendig gelernt werden. So kann man bei einer Rechnung mit einer Quadrat- bzw. Kubikzahl schneller weiterfahren. Beim Sphair-Screening kann man mit Quadratzahlen bis 30, sowie mit Kubikzahlen bis 10 ausgehen. Quadratzahlen Kubikzahlen 1 ² 1 1 ³ 1 2 ² 4 2 ³ 8 3 ² 9 3 ³ 27 4 ² 16 4 ³ 64 5 ² 25 5 ³ ² 36 6 ³ ² 49 7 ³ ² 64 8 ³ ² 81 9 ³ ² ³ ² 121 Rechnung Resultat 12 ² 144 Quadratzahlen werden jeweils mit sich selber multipliziert. Beispielsweise bedeutet 9² dasselbe wie 9 x 9. Beides ergibt ² ² ² ² ² ² ² ² ² ² ² ² ² ² ² ² ² ² 900 Rechnung Resultat Die Umkehrfunktion davon ist die Quadratwurzel. Kubikzahlen jeweils 3 mal mit sich selber multipliziert. So bedeutet 9³ beispielsweise dasselbe wie 9x9x9; beides ergibt 729. Die Umkehrfunktion davon ist die Kubikwurzel. Alle Angaben ohne Gewähr PILOTLINE Kopfrechnen 6
7 WICHTIGE HINWEISE - Das gesamte Dokument darf nicht ohne ausdrückliche Zustimmung des Autors (Webmaster von verändert oder weitergegeben werden. - Dieses Dokument darf nur auf der Seite zum Download angeboten werden. - Alle Bilder und Texte dürfen unter keinen Umständen kopiert und/oder übernommen werden. - Alle Angaben sind ohne Gewähr - Dieses Dokument garantiert keinen positiven Erfolg KONTAKTDATEN [email protected] Das Dokument ist geschützt: 2011 by pilotline.ch PILOTLINE Kopfrechnen 7
Kubikwurzeln exakt berechnen
Kubikwurzeln exakt berechnen Sehr ähnlich wie die exakte Berechnung von Quadratwurzeln, aber leider mit viel mehr Rechenaufwand verbunden, funktioniert das Verfahren zur Berechnung von Kubikwurzeln. Berechnen
Basistext Rechentricks. Voraussetzung: Die Zehnerstellen der Zahlen müssen gleich sein
Basistext Rechentricks Trick 1 - Multiplikation zweistelliger Zahlen Voraussetzung: Die Zehnerstellen der Zahlen müssen gleich sein Verfahren anhand eines Beispiels: 13 * 14 Man zieht die Einer der ersten
Regeln zur Bruchrechnung
Regeln zur Bruchrechnung Brüche und Anteile Zur Beschreibung von Anteilen verwendet man Brüche (von gebrochen, z. B. eine Glasscheibe) wie 5 ; 5 oder 9. Die obere Zahl (über dem Bruchstrich) heißt Zähler,
Division Einführung Seite 1 von 5
Division Einführung Seite 1 von 5 Division Einführung Vorstellung - Verständnis Schulkinder kennen den Vorgang des Teilens (z.b. von Süssigkeiten) und Verteilens (z.b. von Spielkarten) aus alltäglichen
1. Grundlagen der Arithmetik
1. Grundlagen der Arithmetik Die vier Grundrechenarten THEORIE Addition (plus-rechnen, addieren, zusammenzählen): Summand + Summand = Summe Subtraktion (minus-rechnen, subtrahieren, wegzählen): Minuend
RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN
RECHNEN MIT VARIABLEN UND BINOMISCHE FORMELN Addition und Subtraktion mit Variablen Es dürfen nur Ausdrücke mit gleichen Variablen addiert oder subtrahiert werden. a und a² sind auch unterschiedliche Variablen.
a) = b) =
Kopfrechnen: Addition und Subtraktion 1 Rechne im Kopf. a) 14 + 12 + 13 + 11 + 17 + 10 + 15 + 16 = b) 21 + 23 + 25 + 20 + 26 + 22 + 29 + 24 = c) 15 + 21 + 9 + 23 + 11 + 16 + 24 + 6 +10 = d) 7 + 32 + 12
Bruchrechnen in Kurzform
Teil 1 Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 10 Zu diesen Beispielen gibt es einen Leistungstest in 1049. Ausführliche Texte zur Bruchrechnung findet man
Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1)
Name: Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1) Inhalt: Terme umformen / Rechenregeln mit Variablen Klammerregeln Verbindung von Operationen verschiedener Stufe
Ich mache eine saubere, klare Darstellung, schreibe die Aufgabenstellung ab und unterstreiche das Resultat doppelt.
Mathplan 8.2.1 Arithmetik Algebra Grundoperationen Terme über Q Teil I Name: (112) 3 = 14 Hilfsmittel : Algebra 2 / AB 8 Zeitvorschlag: 3 Wochen von: Lernkontrolle am: bis Probe 8.2.1 Wichtige Punkte:
Begriffe, die auf eine Multiplikation oder Division hinweisen
Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend
Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK
Beschreibung Prüfziffer Errechnung der Beitragskontonummer für BGKK Die Beitragskontonummer besteht aus einem 6-stelligen numerischen Begriff und einer Prüfziffer Die Prüfziffer wird auf folgende Art berechnet:
schreiben, wobei p und q ganze Zahlen sind.
Schülerinfotag 1. Man zeige, dass keine rationale Zahl ist. Das heißt lässt sich nicht als p q schreiben, wobei p und q ganze Zahlen sind. Proof. Wir werden das Prinzip Beweis durch Widerspruch verwenden.
a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.
1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert
Quadrat- und Kubikwurzeln näherungsweise berechnen
Quadrat- und Kubikwurzeln näherungsweise berechnen Um für Quadrat- und Kubikwurzeln schnell einen Näherungswert zu bestimmen, bedient man sich am bequemsten des sogenannten Newton-Verfahrens, aus dem eine
Klapptest Lineare Gleichungen I
Klapptest Lineare Gleichungen I (Lösungen als ganze Zahlen) 1. 6(x + 2)(x - 7) = x(6x + 6) - 48 1. x = -1 2. -7(x + 3)(x + 1) = x(-7x - 2) - 255 2. x = 9 3. 4(x - 7)(x + 7) = x(4x - 8) - 156 3. x = 5 4.
Terme und Gleichungen
Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,
Grundrechnungsarten mit Dezimalzahlen
Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer
Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel.
Der Würfelturm drei Spielwürfel Notizzettel und Stift Ein Kind baut aus den drei Spielwürfeln einen Turm. Der Zauberer schaut sich den Turm an und schreibt eine Zahl auf seinen Notizzettel. Das Kind wird
die ganze Zahl die rationale Zahl
die ganze Zahl Beispiele für ganze Zahlen:..., 3, 2, 1, 0, 1, 2, 3,... Ganze Zahlen sind die natürlichen Zahlen und die negativen Zahlen (Minuszahlen). Z = {..., 3, 2, 1, 0, 1, 2, 3, } die rationale Zahl
Teil 1. Bruchrechnen in Kurzform DEMO. Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 10
Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:
Werkstatt Multiplikation Posten: Abakus. Informationsblatt fÿr die Lehrkraft. Abakus
Informationsblatt fÿr die Lehrkraft Abakus Informationsblatt fÿr die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Abakus - Antike Rechenhilfe Mittelschule, technische Berufsschule, Fachhochschule
Bruchrechnen in Kurzform
Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:
Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.
Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 1. Mai 014 ALGEBRA Quadratwurzeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des 1-jährigen
Trachtenberg-Division
Trachtenberg-Division Wiederum in [Trachtenberg] findet man eine Divisionsmethode, deren zentrale Idee es ist, vor dem Dividieren eine Liste aller Vielfachen von bis 9 des Divisors aufzuschreiben; Die
= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)
GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis
Eine Menge ist die Zusammenfassung von bestimmten unterschiedenen Objekten zu einem Ganzen.
1. Grundlagen Damit wir uns im Gebiet der Zahlen orientieren können, müssen wir uns einer gemeinsam festgelegten Sprache bedienen. In diesem ersten Kapitel erhalten Sie einen kurzen Abriss über die gängigsten
DOWNLOAD VORSCHAU. Einfache Würfelspiele Zahlenraum bis 100. zur Vollversion. Motivierend und schnell einsetzbar. Ruth Hölken
DOWNLOAD Ruth Hölken Einfache Würfelspiele für den Zahlenraum bis Motivierend und schnell einsetzbar Downloadauszug aus dem Originaltitel: Rechen-Craps Addition, Konzentration 2 Sechser-Würfel, 1 Spielvorlage
Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m.
1 Ein rechteckiger Garten hat die Seitenlängen a = 55,0 m und b = 42,0 m. Welche Seitenlänge hat ein quadratischer Garten, der einen um 10% größeren Flächeninhalt hat? Von einem Quadrat ist die Länge der
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis
ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich
Anleitung zum Ausführen der vier Grundrechenarten mit dem russischen Abakus ( Stschoty )
Zahlen darstellen 1 Anleitung zum Ausführen der vier Grundrechenarten mit dem russischen Abakus ( Stschoty ) 1 Zahlen darstellen 1.1 Stschoty in Grundstellung bringen Der Stschoty wird hochkant gehalten
Wieviel Uhr ist es in hundert Stunden? Eine Antwort durch Modulo- Rechnen
Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Zahlentheorie I Wieviel Uhr ist es in hundert Stunden? Modulo-Rechnen XI XII I X II IX III VIII IV Zahlentheorie I VII VI V Die
DOWNLOAD. Vertretungsstunde Mathematik Klasse: Grundrechenarten. Marco Bettner/Erik Dinges. Downloadauszug aus dem Originaltitel:
DOWNLOAD Marco Bettner/Erik Dinges Vertretungsstunde Mathematik 2 5. Klasse: auszug aus dem Originaltitel: Schriftliche Addition. Addiere schriftlich: 34 574 + 8 547. Schreibe zunächst die Ziffern an die
Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.
Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen
Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis
Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur
Gleichungen, Ungleichungen, Beträge
KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2
Skript Bruchrechnung. Erstellt: 2014/15 Von:
Skript Bruchrechnung Erstellt: 2014/15 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Erweitern / Kürzen... 5 3. Gemischte Brüche... 8 4. Multiplikation von Brüchen...
Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.
Name: Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Inhalt: Potenzen Die zweite Wurzel (Quadratwurzel) Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der
Vedische Multiplikation
Vedische Multiplikation Aus den vedischen Schriften des alten Indien stammt diese Methode der Multiplikation mit dem Namen Überkreuz-und-übereinander oder Urdhva-tiryag bhyam. Diese Methode und andere
Aufgabe 8: Runden, schriftliches Rechnen
Schüler/in Aufgabe 8: Runden, schriftliches Rechnen LERNZIELE: Zahlen runden und Resultate schätzen Die schriftlichen Verfahren kennen Achte darauf: 1. Du hältst dich beim Runden an die Rundungsregel (Aufgabe
3 heißt 1. Faktor und 4 heißt 2. Faktor. 12 heißt Wert des Produkts. Beispiele : a) 4 5 = = 20. b) 3 12 = = 36
VI. Die Multiplikation und Division natürlicher Zahlen ================================================================= 6.1 Die Multiplikation 3 4 Wir schreiben 4 + 4 + 4 = 3 4 und damit ist 3 4 = 12.
Skript zum Thema Rechnen wie Adam Ries
Skript zum Thema Rechnen wie Adam Ries Xenia Rendtel 16. März 2010 Inhaltsverzeichnis 1 Motivation 1 2 Die Theorie 1 2.1 Die schriftliche Addition.................................... 1 2.2 Die schriftliche
Wir entdecken Rechenvorteile
Wir entdecken Rechenvorteile 1 =1 1+3 =4 1+3+5 =9...... Wie wird es weitergehen? 1+3+5+...+... =625... Berechne. 1 1 6 6 11 11 16 16 2 2 3 3 4 4 5 5 Rechne mit dem Taschenrechner. Entdecke Rechenvorteile!
Quadratische Gleichungen
Quadratische Gleichungen Alle aufgezeigten Lösungswege gelten für Gleichungen, die schon vereinfacht und zusammengefasst wurden. Es darf nur noch + vorhanden sein!!! (Also nicht + und auch nicht 3 ; bitte
Darstellen, Ordnen und Vergleichen
Darstellen, Ordnen und Vergleichen negative Zahlen positive Zahlen 1_ 6 < 3,5 3 < +2 +1 2 < +5 Um negative Zahlen darstellen zu können, wird der Zahlenstrahl zu einer Zahlengeraden erweitert. Wenn zwei
Illustrierende Aufgaben zum LehrplanPLUS
Division mit Rest Jahrgangsstufe 4 Fach Mathematik Kompetenzerwartungen M 3/4 1 M 3/4 1.2 Zahlen und Operationen Im Zahlenraum bis zur Million rechnen und Strukturen nutzen Die Schülerinnen und Schüler
R. Brinkmann Seite
R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung
Mein Indianerheft: Richtig rechnen 4. Lösungen
M Mein Indianerheft: Richtig rechnen Lösungen 8 5 5 7 = 7 + = 5 5 9 85 = 85 +So lernst = du 9 mit dem Indianerheft 7 8 7 = 7 + = 8 Ergänzen e geschickt. 999 = + = 7 999 = + 9 785 = 85 + = 5 5 7 = 57 8
0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0
0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a
Repetitionsaufgaben Termumformungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben Termumformungen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Vorbemerkung... 1 B) Lernziele... 1 C)
Termumformungen. Binomische Formeln und Faktorisierung Teil 1. Klasse 8. Datei Nr
Term-Umformungen 5 ALGEBRA Terme Termumformungen Binomische Formeln und Faktorisierung Teil 1 Klasse 8 Datei Nr. 110 Diese Datei enthält nicht alle Lösungen. Auf der Mathematik-CD befinden sich alle Läsungen.
Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau. Über Polynome mit Arithmetik modulo m.
19 Fingerprinting Martin Dietzfelbinger Fakultät für Informatik und Automatisierung, Technische Universität Ilmenau Anhang: Über Polynome mit Arithmetik modulo m Dieser Abschnitt ergänzt Kapitel 19 Fingerprinting
Mathematik II. Kantonale Vergleichsarbeit 2012/ Klasse Primarschule. Datum der Durchführung: 16. Januar Lösungen und Korrekturanweisungen
Volksschulamt Kantonale Vergleichsarbeit 2012013 6. Klasse Primarschule Mathematik II Datum der Durchführung: 16. Januar 2013 Lösungen und Korrekturanweisungen Es gibt keine Punktabzüge für fehlende Sorten!
Mathematik 1 -Arbeitsblatt 1-4: Rechnen mit Brüchen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB RECHNEN MIT BRÜCHEN
RECHNEN MIT BRÜCHEN. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler Nenner. Der Nenner gibt an, in wie viele gleich große
Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung).
Grundwissen 5 - Aufgaben 22.01.2016 Seite 1 1. Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). a) Gib an, welche dieser drei Figuren den größten und welche den kleinsten
Rechnen mit natürlichen Zahlen
Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen
Multiplikation und Division - Division
Multiplikation und Division - Division Qualifizierungseinheit Multiplikation und Division Lernziele: Wenn Sie diese Qualifizierungseinheit bearbeitet haben, können Sie ganze Zahlen multiplizieren und dividieren
Eine Hilfe, wenn du mal nicht mehr weiterweisst...
Rechnen./. Klasse 0 Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Zeichenerklärungen Addition Subtraktion Multiplikation Division Durchschnitt Massstab Primzahlen Teilbarkeit von Zahlen
Verstehst du die Sprache der Mathematik? Arbeitsblatt 1
Verstehst du die Sprache der Mathematik? Arbeitsblatt 1 1. Erstelle für folgende Aufgabe einen Term: Die Rechnung ist nicht verlangt. Subtrahiere von der Summe der Zahlen 987 und 654 die Differenz der
Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen
Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.
Wie subtrahiert man ungleichnamige Brüche? Wie addiert man gemischte Zahlen? muss man Brüche auf den Hauptnenner bringen?
A Was ist ein Hauptnenner? A Für welche Rechenarten muss man Brüche auf den Hauptnenner bringen? A9 Wie subtrahiert man ungleichnamige Brüche? A0 Wie addiert man gemischte Zahlen? A A A A Wie nennt man
Über Polynome mit Arithmetik modulo m
Über Polynome mit Arithmetik modulo m Um den Fingerprinting-Satz über die Fingerabdrücke verschiedener Texte aus dem 37. Algorithmus der Woche ( http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo37.php
ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein
4 Liter! Wie ist die Einheitsstrecke sinnvoller Weise zu wählen, damit man die gegebenen Zahlen möglichst genau auf der Zahlengeraden markieren kann?
Zahlen und Maße Welche Zahlen haben den Betrag? Gib mindestens zwei Zahlen an! Gegeben ist die Zahl 0,. Welche Darstellungen entsprechen dieser Zahl? Kreuze an! % 0 % 0 00 0 0 0,0 0,00 Markiere auf dem
Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.
Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die
UND MOSES SPRACH AUCH DIESE GEBOTE
UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und
Gleichungen entstehen dann, wenn einfach oder kompliziert aufgebaute Rechenausdrücke einander gleichgesetzt werden. a) 3. 7 = 21
Gleichungen Gleichungen entstehen dann, wenn einfach oder kompliziert aufgebaute Rechenausdrücke einander gleichgesetzt werden. a) 3. 7 = 21 b) 2 5 + 4 6 = 2 17 c) 6 2 7 3 5 2 4 = 3 4 9 + 8 13 Das Gleichheitszeichen
Richtig rechnen H 3/4 Fördern und Inklusion
M Mein Indianerheft: Richtig rechnen H / Fördern und Inklusion Lösungen = 0 = 00 = 000 = 0 000 = So lernst du mit dem Indianerheft 0 8 = 00 8 = = 0 = 0 80 = = 00 = 000 = 80 000 = = 0 000 = 00 = 0 8 = 0
Wiederholung der Grundlagen
Terme Schon wieder! Terme nerven viele von euch, aber sie kommen immer wieder. Daher ist es wichtig, dass man besonders die Grundlagen drauf hat. Bevor es also mit der richtigen Arbeit los geht solltest
Schnelle Multiplikation
Informationsblatt für die Lehrkraft Schnelle Multiplikation $&*&*& 999 3 x 3 =? 10001110 π/3 7 X 6 14 666 x 987 Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Schnelle
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition
ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie
Mathematikbegriffe Größen Geometrische Formen und Körper
Mathematikbegriffe Größen Geometrische Formen und Körper Rechenausdrücke addieren subtrahieren multiplizieren dividieren Addition Subtraktion Multiplikation Division Summe Differenz Produkt Quotient (+)
Rationale Zahlen Kurzfragen. 26. Juni 2012
Rationale Zahlen Kurzfragen 26. Juni 2012 Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... ) in einer Menge M abgeschlossen? Rationale Zahlen Kurzfrage 1 Wann ist eine Operation (+,,,... )
Demo-Text für Klasse 5 Einfache Gleichungen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.
Klasse 5 Einfache Gleichungen Intuitiver Zugang ohne große Gleichungslehre Datei Nr. 10013 Stand 10. April 2016 Demo-Text für FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 10013 Einfache Gleichungen
Der Nenner eines Bruchs darf nie gleich 0 sein! Der Zähler eines Bruchs kann dagegen auch 0 sein. Dies besagt, dass kein Teil zu nehmen ist.
Bruchteile Bruchteile von Ganzen lassen sich mit Hilfe von Brüchen angeben. Der Nenner gibt an, in wie viele gleiche Teile ein Ganzes zerlegt wird. Der Zähler gibt an, wie viele dieser gleichen Teile zu
Terme, Rechengesetze, Gleichungen
Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =
Teilbarkeit. 1. Maria stellt zwei Behauptungen auf:
1. Maria stellt zwei Behauptungen auf: Teilbarkeit (a) Die Zahl 123456789 ist durch 9 teilbar. (b) Wenn man die Ziffern einer 53-stelligen Zahl, die durch 9 teilbar ist, auf irgend eine Weise vertauscht,
Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.
ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die
Fertige Unterrichtsstunde zum Thema rationale Zahlen
Johanna Harnischfeger (Hg.), Heiner Juen (Hg.) Wiederholung Grundrechenarten für Brüche Fertige Unterrichtsstunde zum Thema rationale Zahlen Nach der Lernmethodik von Dr. Heinz Klippert Downloadauszug
1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24
Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale
Aufgabe des Monats (Januar 2018)
Aufgabe des Monats (Januar 2018) Finde die richtige Ziffernkärtchenfolge Die im Folgenden vorgestellte Aufgabe dient besonders der Wiederholung und Festigung mathematischer Fachbegriffe (Addition, Subtraktion,
BRUCHRECHNEN. Erweitern und Kürzen:
BRUCHRECHNEN Jede Bruchzahl läßt sich als Dezimalzahl darstellen 5 5:8 0.65 endlicher Dezimalbruch 8 0,6 unendlicher Dezimalbruch Nachfolgend werden die wesentlichen Zusammenhänge der Bruchrechnung angeführt.
Definition, Grundbegriffe, Grundoperationen
Aufgaben 1 Vektoren Definition, Grundbegriffe, Grundoperationen Lernziele - einen Vektor korrekt kennzeichnen bzw. schreiben können. - wissen, was ein Gegenvektor ist. - wissen, wie die Addition zweier
Grundwissen JS 5 Algebra
GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009
Mathematik. Begriffe und Aufgaben
Mathematik Begriffe und Zahlen Zahlen, Ziffern und Stellenwerte Definitionen Zahlen Zahlen, Ziffern und Stellenwerte Begriff Erklärung/Definition Beispiele Ziffern sind die Bausteine der Zahlenschreibweise
Grundlagen der Informatik I. Übung
Grundlagen der Informatik I Übung Studiengang Wirtschaftsingenieurwesen Wintersemester 1/13 Autor: Prof. Dr.-Ing. habil. Hans-Joachim Böhme HTW Dresden, Fachbereich Informatik/Mathematik Friedrich-List-Platz
Anleitung zum Ausführen der vier Grundrechenarten mit dem japanischen Abakus ( Soroban )
Grundlagen 1 1 Grundlagen Anleitung zum Ausführen der vier Grundrechenarten mit dem japanischen Abakus ( Soroban ) Abb. 1: Ein Soroban mit dem 4+1-System, 15 Stäben und einem Rückstellmechanismus Der Soroban
Reelle Zahlen (R)
Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große
VORSCHAU. zur Vollversion. Inhalt. Einleitung 2 Womit soll ich meine Stunde beginnen? 2 Der Aufbau der Handreichung 3
Inhalt Einleitung 2 Womit soll ich meine Stunde beginnen? 2 Der Aufbau der Handreichung 3 4 1. Kopfrechengitter 4 2. Rechenfußball 6 3. Ja-Nein-Rechnen 7 4. Einmaleins-Bingo 8 5. Ping-Pong 9 6. Einmaleins-Quiz
Russische Bauern- Multiplikation
Informationsblatt für die Lehrkraft Russische Bauern- Multiplikation Informationsblatt für die Lehrkraft Thema: Schultyp: Vorkenntnisse: Bearbeitungsdauer: Mittelschule, technische Berufsschule Binäre
M1 2a b Ko Potenzen Regeln/Gesetze 2.Teil bis Buch I S. 51 / II S. 43 / III S. 37
M1 2a b Ko Potenzen Regeln/Gesetze 2.Teil bis Buch I S. 51 / II S. 43 / III S. 37 Dieses Blatt soll ohne TR-Einsatz gelöst werden. Da aber viele Schüler in den unteren Niveaus oft nicht einmal das Einmaleins
Vorkurs Mathematik 2016
Vorkurs Mathematik 2016 Vorkurs Mathematik Grad n p(x) =a n x n + a n 1 x n 1 +...+ a 1 x + a 0 führender Koeffizient Absolutglied a n, a n 1,..., a 1, a 0... Koeffizienten a n = 1... normiertes Polynom
Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen. Rauter Bianca ( ) Graz, am 10. Dezember 2014
Bilder von Zahlen - Arithmetik und Algebra geometrisch darstellen Rauter Bianca (101038) Graz, am 10. Dezember 014 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Abbildungen von Zahlen - Beweise durch Muster
Aufgaben mit zwei Rechenzeichen nebeneinander zum Beispiel: 5 (+ 3) Es gilt:
Hilfe Addition und Subtraktion von Rationalen Zahlen Rechnen mit rationalen Zahlen, also Rechnen im negativen Bereich ist nicht immer so einfach. Ich kann mir das eigentlich ganz gut mit Schulden oder
MATKING MATQUEEN Duell
MATKING MATQUEEN Duell Allgemeines Spielidee «Matking Matqueen» ist ein unterhaltsames Karten- und Rechenspiel für 2 bis 4 Kinder und Erwachsene. In vier spannenden Spielvarianten könnt ihr zeigen, was
3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen Halbschriftliche Addition und Subtraktion
3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3.1 Halbschriftliche Addition und Subtraktion 3.3.2 Halbschriftliche Multiplikation und Division Rahmenplan Rahmenplan Hessen S. 154:
Konzept der Trainingskartei Kopfrechnen
Konzept der Trainingskartei Kopfrechnen Voraussetzungen für den Einsatz Die Kinder müssen wissen, wie sie die Aufgaben rechnen können. Nur wer die Operationen verstanden hat, darf sie automatisierend üben.
Pangea Mathematikwettbewerb FRAGENKATALOG Klasse
Pangea Mathematikwettbewerb FRAGENKATALOG 205 7. Klasse Pangea Ablaufvorschrift Antwortbogen Fülle den Bereich Anmeldedaten auf dem Antwortbogen vollständig aus und achte darauf, dass die entsprechenden
