Übung 6. Rot-Schwarz-Bäume

Größe: px
Ab Seite anzeigen:

Download "Übung 6. Rot-Schwarz-Bäume"

Transkript

1 Übung 6. Rot-Schwarz-Bäume Top-Down Bäume Zum Ausschluß des ungünstigsten Falls bei binären Suchbäumen ist eine gewisse Flexibilität in den verwendeten Datenstrukturen nötig. Das kann bspw. durch Aufnahme von mehr als einem Schlüssel in Baumknoten erreicht werden. So soll es 3-Knoten bzw. 4-Knoten geben, die 2 bzw. 3 Schlüssel enthalten können: - Ein 3-Knoten besitzt 3 von ihm ausgehende Verkettungen -- eine für alle Datensätze mit Schlüsseln, die kleiner sind als seine beiden Schlüssel -- eine für alle Datensätze, die zwischen den beiden Schlüsseln liegen -- eine für alle Datensätze mit Schlüsseln, die größer sind als seine beiden Schlüssel. - Ein 4-Knoten besitzt vier von ihm ausgehende Verkettungen, nämlich eine Verkettung für jedes der Intervalle, die durch seine drei Schlüssel definiert werden. Rot-Schwarz-Bäume Es ist möglich Bäume als gewöhnliche binäre Bäume (mit nur zwei Knoten) darzustellen, wobei nur ein zusätzliches Bit je Knoten verwendet wird. Die Idee besteht darin, 3-Knoten und 4 -Knoten als kleine binäre Bäume darzustellen, die durch rote Verkettungen miteinander verbunden sind, im Gegensatz zu den schwarzen Verkettungen, die den Baum zusammenhalten: oder Abb.: Rot-schwarze Darstellung von Bäumen 4-Knoten werden als 2-Knoten dargestellt, die mittels einer roten Verkettung verbunden sind. 3-Knoten werden als 2 Knoten dargestellt, die mit einer roten Markierung verbunden sind. Zu jedem Baum gibt es viele ihm entsprechende Rot-Schwarz-Bäume. 1

2 Eine Variante von Rot-Schwarz-Bäumen Nach jeder Einfüge -Operation bzw. Entferne-Operation lassen sich Rot-Schwarz-Bäume durch Rotationen ausgleichen. Eine Variante von Rot-Schwarz-Bäumen ist durch folgende Farbeigenschaften definiert: 1. Jeder Knoten ist entweder rot oder schwarz gefärbt. 2. der Wurzelknoten ist schwarz gefärbt. 3. Falls ein Knoten rot gefärbt ist, müssen seine Nachfolger schwarz gefärbt sein. 4. Jeder Pfad von einem Knoten zu einer Null-Referenz muß die gleiche Anzahl von schwarzen Knoten enthalten. Eine Folgerung dieser Farbregeln ist: Die Höhe eines Rot-Schwarz-Baums ist etwa 2 log( + 1) N. Aufgabe: Ermittle, welche Gestalt jeweils ein nach den vorliegenden Farbregeln erstellte Rot-Schwarz- Baum beim einfügen folgenden Schlüssel annimmt

3

4 Die Abbildungen zeigen, daß im Durchschnitt der Rot-Schwarz-Baum ungefähr die Tiefe eines AVL- Baums besitzt. Der Vorteil von Rot-Schwarz-Bäumen ist der geringere Overhead zur Ausführung von Einfügevorgängen und die geringere Anzahl von Rotationen. Top -Down Rot-Schwarz-Bäume Kann auf dem Weg nach unten festgestellt werden, daß ein Knoten X zwei rote Nachfolgeknoten hat, dann wird X rot und die beiden Kinder schwarz: X X c1 c2 c1 c2 Das führt zu einem Verstoß gegen Bedingung 3, falls der Vorgänger von X auch rot ist. In diesem Fall können aber geeignete Rotationen herangezogen werden: 4

5 G P P S X G C A X B B S A C G X P S P G X C A A B1 B2 S B1 B2 C Der folgende Fall kann nicht eintreten: Der Nachbar vom Elternknoten ist rot gefärbt. Auf dem Weg nach unten muß der Knoten mit zwei roten Nachfolgern einen schwarzen Großvaterknoten haben. Implementierung Sie wird dadurch erschwert, daß einige Teilbäume (z.b. der rechte Teilbaum des Knoten 10 im vorliegenden Bsp.) leer sein können, und die Wurzel des Baums (, da ohne Vorgänger, ) einer speziellen Behandlung bedarf. Aus diesem Grund werden hier Sentinel -Knoten verwendet: - einer für die Wurzel. Dieser Knoten speichert den Schlüssel und einen rechten Link zu dem realen Knoten - einen Nullknoten (nullnode), der eine Null-Referenz anzeigt. Der Inorder-Durchlauf nimmt aus diesem Grund folgende Gestalt an: Ausgabe der im Baum gespeicherten Datenelemente in sortierter Reihenfolge. public void printtree( ) if( isempty() ) System.out.println("Leerer Baum"); else printtree( header.rechts ); * Interne Methode fuer die Ausgabe des Baum in sortierter Reihenfolge. * b ist der Wurzelknoten. private void printtree(rotschwarzknoten b) if (b!= nullnode ) printtree(b.links); System.out.println(b.daten ); printtree(b.rechts ); 5

6 Programme: 1 // BaumKnoten fuer RotSchwarzBaeume class RotSchwarzKnoten // Instanzvariable public Comparable daten; // Dateninformation der Knoten protected RotSchwarzKnoten links; // linkes Kind protected RotSchwarzKnoten rechts; // rechtes Kind protected int farbe; // Farbe // Konstruktoren RotSchwarzKnoten(Comparable datenelement) this(datenelement, null, null ); RotSchwarzKnoten(Comparable datenelement, RotSchwarzKnoten l, RotSchwarzKnoten r) daten = datenelement; links = l; rechts = r; farbe = RotSchwarzBaum.BLACK; // Die Klasse RotSchwarzBaum // // Konstruktion: mit einem "negative infinity sentinel" // // ******************PUBLIC OPERATIONEN********************* // void insert(x) --> Insert x // void remove(x) --> Entferne x (nicht implementiert) // Comparable find(x) --> Rueckgabe des Datenelements, das x enthaelt // Comparable findmin() --> Rueckgabe des kleinsten Datenelements // Comparable findmax() --> Rueckgabe des groessten Datenelements // boolean isempty() --> Rueckgabe true, falls leer; anderenfalls false // void makeempty() --> Entferne alles // void printtree() --> Ausgabe in aufsteigend sortierter Folge // void ausgrotschwarzbaum() --> Ausgabe des Baums um 90 Grad versetzt * Implementierung eines RotSchwarzBaum. * Vergleiche basieren auf der Methode compareto. public class RotSchwarzBaum private RotSchwarzKnoten header; private static RotSchwarzKnoten nullnode; static // Static Initialisierer for nullnode nullnode = new RotSchwarzKnoten(null); nullnode.links = nullnode.rechts = nullnode; static final int BLACK = 1; // Black must be 1 static final int RED = 0; // Fuer "insert routine" und zugehoerige unterstuetzende Routinen private static RotSchwarzKnoten current; private static RotSchwarzKnoten parent; private static RotSchwarzKnoten grand; 1 PR

7 private static RotSchwarzKnoten great; * Baumkonstruktion. * neginf ist ein Wert, der kleiner oder gleich zu allen anderen Werten ist. public RotSchwarzBaum(Comparable neginf) header = new RotSchwarzKnoten(negInf); header.links = header.rechts = nullnode; * Einfügen in den Baum. Duplikate werden ueberlesen. * "item" ist das einzufuegende Datenelement. public void insert(comparable item) current = parent = grand = header; nullnode.daten = item; while( current.daten.compareto( item )!= 0 ) great = grand; grand = parent; parent = current; current = item.compareto(current.daten ) < 0? current.links : current.rechts; // Pruefe, ob zwei rote Kinder; falls es so ist, fixiere es if( current.links.farbe == RED && current.rechts.farbe == RED ) reorientierung( item ); // Fehlanzeige fuer Einfuegen, falls schon da if( current!= nullnode ) return; current = new RotSchwarzKnoten( item, nullnode, nullnode ); // Anhaengen an die Eltern if( item.compareto( parent.daten ) < 0 ) parent.links = current; else parent.rechts = current; reorientierung( item ); * Entferne aus dem Baum. * Nicht implementiert * x ist das zu entfernemde Datenelement. public void remove( Comparable x ) System.out.println("Entfernen ist nicht implementiert"); * Finde das kleinste Datenelement im Baum. * Rueckgabe kleinstes Datenelement oder null, falls leer. public Comparable findmin( ) if (isempty( )) return null; RotSchwarzKnoten itr = header.rechts; while( itr.links!= nullnode ) itr = itr.links; return itr.daten; * Finde das groesste Datenelement im Baum. 7

8 * Rueckgabe des groessten Datenelemnts oder null, falls leer. public Comparable findmax( ) if (isempty( )) return null; RotSchwarzKnoten itr = header.rechts; while( itr.rechts!= nullnode ) itr = itr.rechts; return itr.daten; * Finde ein Datenelement im Baum. * x enthaelt das zu suchende Datenelement. * Rueckgabe des passenden Datenelements oder null, falls nicht gefunden. public Comparable find(comparable x) nullnode.daten = x; current = header.rechts; for( ; ; ) if( x.compareto( current.daten ) < 0 ) current = current.links; else if( x.compareto( current.daten ) > 0 ) current = current.rechts; else if( current!= nullnode ) return current.daten; else return null; * Mache den Baum logisch leer. public void makeempty( ) header.rechts = nullnode; * Test, ob der Baum logisch leer ist. * Rueckgabe true, falls leer; anderenfalls false. public boolean isempty( ) return header.rechts == nullnode; * Ausgabe der im Baum gespeicherten Datenelemente in sortierter Reihenfolge. public void printtree( ) if( isempty() ) System.out.println("Leerer Baum"); else printtree( header.rechts ); * Interne Methode fuer die Ausgabe des Baum in sortierter Reihenfolge. * b ist der Wurzelknoten. private void printtree(rotschwarzknoten b) 8

9 if (b!= nullnode ) printtree(b.links); System.out.println(b.daten ); printtree(b.rechts ); * Ausgabe des Binaerbaums um 90 Grad vesetzt public void ausgrotschwarzbaum() ausgrotschwarzbaum(header.rechts,0); private void ausgrotschwarzbaum(rotschwarzknoten b, int nspace) if (b!= nullnode) ausgrotschwarzbaum(b.links,nspace += 6); for (int i = 0; i < nspace; i++) System.out.print(" "); System.out.println(b.daten + " " + b.farbe); ausgrotschwarzbaum(b.rechts, nspace); * Interne Routine, die waehrend eines Einfuegevorgangs aufgerufen wird * Falls ein Knoten zwei rote Kinder hat, fuehre Tausch der Farben aus * und rotiere. * item enthaelt das einzufuegende Datenelement. private void reorientierung(comparable item) // Tausch der Farben current.farbe = RED; current.links.farbe = BLACK; current.rechts.farbe = BLACK; if (parent.farbe == RED) // Rotation ist noetig grand.farbe = RED; if ( (item.compareto( grand.daten) < 0 )!= (item.compareto( parent.daten) < 0 ) ) parent = rotation(item, grand); // Start Doppelrotation current = rotation(item, great); current.farbe = BLACK; header.rechts.farbe = BLACK; // Mache die Wurzel schwarz * Interne Routine, die eine einfache oder doppelte Rotation veranlasst. * Da das Ergebnis an "parent" geheftet wird, gibt es vier Faelle. * Aufruf durch reorientierung. * "item" ist das Datenelement reorientierung. * "parent" ist "parent" von der wurzel des rotierenden Teilbaums. * Rueckgabe: Wurzel des rotierenden Teilbaums. private RotSchwarzKnoten rotation(comparable item, RotSchwarzKnoten parent) if (item.compareto(parent.daten) < 0) return parent.links = item.compareto( parent.links.daten) < 0? rotationmitlinksnachf(parent.links) : // LL 9

10 rotationmitrechtsnachf(parent.links) ; // LR else return parent.rechts = item.compareto(parent.rechts.daten) < 0? rotationmitlinksnachf(parent.rechts) : // RL rotationmitrechtsnachf(parent.rechts); // RR * Rotation Binaerbaumknoten mit linkem Nachfolger. static RotSchwarzKnoten rotationmitlinksnachf( RotSchwarzKnoten k2 ) RotSchwarzKnoten k1 = k2.links; k2.links = k1.rechts; k1.rechts = k2; return k1; * Rotate Binaerbaumknoten mit rechtem Nachfolger. static RotSchwarzKnoten rotationmitrechtsnachf(rotschwarzknoten k1) RotSchwarzKnoten k2 = k1.rechts; k1.rechts = k2.links; k2.links = k1; return k2; import java.io.*; public class RotSchwarzBaumTest public static void main(string[ ] args) InputStreamReader isr = new InputStreamReader(System.in); BufferedReader ein = new BufferedReader(isr); String eingabezeile = null; RotSchwarzBaum b = new RotSchwarzBaum(new Integer(Integer.MIN_VALUE)); System.out.println("Eingabe ganzzahliger Werte: "); while (true) try eingabezeile = ein.readline(); int a = Integer.parseInt(eingabeZeile); if (a == 0) break; b.insert(new Integer(a)); b.ausgrotschwarzbaum(); catch(ioexception e) System.out.println(e.toString()); // System.exit(0); // b.printtree(); b.ausgrotschwarzbaum(); 10

Übung 4: Die generische Klasse AvlBaum in Java 1

Übung 4: Die generische Klasse AvlBaum in Java 1 Übung 4: Die generische Klasse AvlBaum in Java 1 Ein binärer Suchbaum hat die AVL -Eigenschaft, wenn sich in jedem Knoten sich die Höhen der beiden Teilbäume höchstens um 1 unterscheiden. Diese Last (

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Übung 3: Die generische Klasse BinärerSuchbaum in Java 1 Datenelemente der Klasse BinaererSuchbaum Das einzige Datenelelement in dieser Klasse ist die Wurzel vom Typ BinaerBaumknoten. Die Klasse BinaerBaumknoten

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen 5. Compiler Gliederung 1. Struktur eines Compilers 2. Syntaxanalyse durch rekursiven Abstieg 3. Ausnahmebehandlung 4. Arrays und Strings 6. Sortieren und Suchen 1. Grundlegende Datenstrukturen 2. Bäume

Mehr

18. Natürliche Suchbäume

18. Natürliche Suchbäume Wörterbuchimplementationen 1. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Hashing: Implementierung von Wörterbüchern mit erwartet sehr schnellen Zugriffszeiten. Nachteile

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Physikalisch Technische Lehranstalt Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt

Physikalisch Technische Lehranstalt Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt Physikalisch Technische Lehranstalt Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt Aufgaben zur Klausur Objektorientierte Programmierung im WS 2003/04 (IA 252) Zeit: 90 Minuten erlaubte Hilfsmittel: keine

Mehr

Kapitel 12: Induktive

Kapitel 12: Induktive Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 17/18. Kapitel 14. Bäume. Bäume 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 17/18. Kapitel 14. Bäume. Bäume 1 Kapitel 14 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 14. Bäume. Bäume 1 Kapitel 14 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können

Mehr

Algorithmen und Datenstrukturen. Kapitel 4: Suchverfahren. Skript zur Vorlesung. Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen. Kapitel 4: Suchverfahren. Skript zur Vorlesung. Algorithmen und Datenstrukturen LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Algorithmen und Datenstrukturen Kapitel 4: Suchverfahren Skript zur Vorlesung Algorithmen und Datenstrukturen Sommersemester

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 15/16. Kapitel 13. Bäume. Bäume 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 15/16. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Bäume Bäume 1 Ziele Den Begriff des Baums in der Informatik kennenlernen Bäume als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf Bäumen verstehen und schreiben können

Mehr

9. Natürliche Suchbäume

9. Natürliche Suchbäume Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten

Mehr

Fachhochschule Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt

Fachhochschule Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt Fachhochschule Wedel 31. Januar 2004 Prof. Dr. Uwe Schmidt Aufgaben zur Klausur C und Objektorientierte Programmierung im WS 2003/04 (WI h103, II h105, MI h353) Zeit: 150 Minuten erlaubte Hilfsmittel:

Mehr

Algorithmen und Datenstrukturen. Bäume. M. Herpers, Y. Jung, P. Klingebiel

Algorithmen und Datenstrukturen. Bäume. M. Herpers, Y. Jung, P. Klingebiel Algorithmen und Datenstrukturen Bäume M. Herpers, Y. Jung, P. Klingebiel 1 Lernziele Baumstrukturen und Ihre Verwendung kennen Grundbegriffe zu Bäumen anwenden können Baumstruktur in C anlegen können Suchbäume

Mehr

18. Natürliche Suchbäume

18. Natürliche Suchbäume Bäume Bäume sind. Natürliche Suchbäume [Ottman/Widmayer, Kap..1, Cormen et al, Kap. 12.1-12.] Verallgemeinerte Listen: Knoten können mehrere Nachfolger haben Spezielle Graphen: Graphen bestehen aus Knoten

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

7. Dynamische Datenstrukturen Bäume. Informatik II für Verkehrsingenieure

7. Dynamische Datenstrukturen Bäume. Informatik II für Verkehrsingenieure 7. Dynamische Datenstrukturen Bäume Informatik II für Verkehrsingenieure Übersicht dynamische Datenstrukturen Wozu? Oft weiß man nicht von Beginn an, wieviele Elemente in einer Datenstruktur untergebracht

Mehr

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme

Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Programmieren II Dr. Werner Struckmann 16. August 2013 Name: Vorname: Matrikelnummer: Kennnummer: Anrede: Frau Herr

Mehr

Mengen. Binäre Suchbäume. Mengen: Anwendungen (II) Mengen: Lösung mit Listen 12/3/12. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Mengen. Binäre Suchbäume. Mengen: Anwendungen (II) Mengen: Lösung mit Listen 12/3/12. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps // Mengen Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps n Ziel: ufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: n eines Elements n eines Elements

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Abiturprüfung Informatik, Grundkurs

Abiturprüfung Informatik, Grundkurs Seite 1 von 12 Abiturprüfung 2014 Informatik, Grundkurs Aufgabenstellung: In dem neugegründeten Staat Infonien haben alle Autos ein Kennzeichen, das sich aus zwei Großbuchstaben gefolgt von einer positiven

Mehr

Grundlagen der Informatik / Algorithmen und Datenstrukturen. Aufgabe 139

Grundlagen der Informatik / Algorithmen und Datenstrukturen. Aufgabe 139 Aufgabe 139 Aufgabe 139 Aufgabenstellung Stellen Sie den folgenden in Feldbaum-Darstellung beschriebenen Binärbaum a) graphisch (welcher Knoten ist die Wurzel?), b) in halbsequentieller Darstellung, c)

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einführung in die Informatik für Ingenieure (MSE) Alexander van Renen (renen@in.tum.de)

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 9.6.2017 Giuseppe Accaputo g@accaputo.ch 1 Aufbau des PVK Tag 1: Java Teil 1 Tag 2: Java Teil 2 Tag 3: Algorithmen & Komplexität Tag 4: Dynamische Datenstrukturen,

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Tutoraufgabe 1 (Implementierung eines ADTs):

Tutoraufgabe 1 (Implementierung eines ADTs): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Tutoriumslösung - Übung (Abgabe.05.0) F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Implementierung eines ADTs): Wir spezifizieren den ADT

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Übung zur Vorlesung Algorithmische Geometrie

Übung zur Vorlesung Algorithmische Geometrie Übung zur Vorlesung Algorithmische Geometrie Dipl.-Math. Bastian Rieck Arbeitsgruppe Computergraphik und Visualisierung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen 8. Mai 2012 B. Rieck (CoVis)

Mehr

B6.1 Introduction. Algorithmen und Datenstrukturen. Algorithmen und Datenstrukturen. B6.1 Introduction. B6.3 Analyse. B6.4 Ordnungsbasierte Methoden

B6.1 Introduction. Algorithmen und Datenstrukturen. Algorithmen und Datenstrukturen. B6.1 Introduction. B6.3 Analyse. B6.4 Ordnungsbasierte Methoden Algorithmen und Datenstrukturen 11. April 2018 B6. Binäre Suchbäume a Algorithmen und Datenstrukturen B6. Binäre Suchbäume 1 Marcel Lüthi and Gabriele Röger Universität Basel 11. April 2018 a Folien basieren

Mehr

Bäume. Prof. Dr. Christian Böhm. in Zusammenarbeit mit Gefei Zhang. WS 07/08

Bäume. Prof. Dr. Christian Böhm. in Zusammenarbeit mit Gefei Zhang.   WS 07/08 Bäume Prof. Dr. Christian Böhm in Zusammenarbeit mit Gefei Zhang http://www.dbs.ifi.lmu.de/lehre/nfinfosw WS 07/08 2 Ziele Standardimplementierungen für Bäume kennen lernen 3 Bäume (abstrakt) Bäume sind

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Institut für Programmierung und Reaktive Systeme 17. Juli Programmieren II. Übungsklausur

Institut für Programmierung und Reaktive Systeme 17. Juli Programmieren II. Übungsklausur Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 17. Juli 2015 Hinweise: Klausurtermine: Programmieren II Übungsklausur Programmieren I: 7. September

Mehr

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps

Binäre Suchbäume. Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Binäre Suchbäume Mengen, Funktionalität, Binäre Suchbäume, Heaps, Treaps Mengen n Ziel: Aufrechterhalten einer Menge (hier: ganzer Zahlen) unter folgenden Operationen: Mengen n Ziel: Aufrechterhalten einer

Mehr

Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen

Algorithmen und Datenstrukturen 2. Dynamische Datenstrukturen Algorithmen und Datenstrukturen 2 Dynamische Datenstrukturen Algorithmen für dynamische Datenstrukturen Zugriff auf Variable und Felder durch einen Ausdruck: Namen durch feste Adressen referenziert Anzahl

Mehr

Anwendungsbeispiel MinHeap

Anwendungsbeispiel MinHeap Anwendungsbeispiel MinHeap Uns seien n ganze Zahlen gegeben und wir möchten darin die k größten Zahlen bestimmen; zudem gelten, dass n deutlich größer als k ist Wir können das Problem mit Laufzeit in O(n

Mehr

Übung Datenstrukturen. Bäume

Übung Datenstrukturen. Bäume Übung Datenstrukturen Bäume Übung Binärbaum 7 2 10 1 3 5 9 34 8 7 11 13 17 7 25 19 3 Aufgabe 1 Geben Sie die Reihenfolge der besuchten Knoten nach Prä-, In-, Post- und Levelorder an! Übung Binärbaum Aufgabe

Mehr

Prof. Dr. Uwe Schmidt. 1. Februar Aufgaben zur Klausur C und Objektorientierte Programmierung im WS 2010/11 (WI h103, II h105, MI h353)

Prof. Dr. Uwe Schmidt. 1. Februar Aufgaben zur Klausur C und Objektorientierte Programmierung im WS 2010/11 (WI h103, II h105, MI h353) Prof. Dr. Uwe Schmidt 1. Februar 2011 Aufgaben zur Klausur C und Objektorientierte Programmierung im WS 2010/11 (WI h103, II h105, MI h353) Zeit: 165 Minuten erlaubte Hilfsmittel: keine Bitte tragen Sie

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n)

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) .6 Ausgeglichene Mehrweg-Suchbäume Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) Methoden: lokale Transformationen (AVL-Baum) Stochastische

Mehr

Manipulation von Mengen

Manipulation von Mengen Manipulation von Mengen Thomas Röfer Vorrangwarteschlange Linksbaum Heap HeapSort Union-Find-Strukturen Allgemeiner Rahmen für Mengenmanipulationen Rückblick Hashing Streuspeicherverfahren Hashfunktion

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Städtisches Gymnasium Olpe Java Ht Informatik - Q1 Die Klasse List im Abitur Methoden und Beispielcode Hier alle wichtigen Methoden. Ein Beispielcode

Städtisches Gymnasium Olpe Java Ht Informatik - Q1 Die Klasse List im Abitur Methoden und Beispielcode Hier alle wichtigen Methoden. Ein Beispielcode Die Klasse List im Abitur Methoden und Beispielcode Hier alle wichtigen Methoden. Ein Beispielcode folgt im Anschluss. Beispielcode Es gibt eine Klasse Benutzerverwaltung, welche eine Liste mit Benutzern

Mehr

Bäume. Martin Wirsing. Ziele. Implementierung von Knoten. Bäume (abstrakt) Standardimplementierungen für Bäume kennen lernen

Bäume. Martin Wirsing. Ziele. Implementierung von Knoten. Bäume (abstrakt) Standardimplementierungen für Bäume kennen lernen 2 Ziele Bäume Standardimplementierungen für Bäume kennen lernen Martin Wirsing in Zusammenarbeit mit Michael Barth, Philipp Meier und Gefei Zhang 02/0 4 Bäume (abstrakt) Implementierung von Knoten Bäume

Mehr

Aufgaben, Hilfestellungen und Musterlösungen zum Modul 5 Druckversion

Aufgaben, Hilfestellungen und Musterlösungen zum Modul 5 Druckversion Abschnitt 1 Aufgaben, Hilfestellungen und Musterlösungen zum Modul 5 Druckversion Aufgabe 1: Binäre Suchbäume: Iteratives Suchen/Einfügen/Löschen Das Material dieser Übung enthält in der Klasse Tree0 die

Mehr

Grundlagen der Informatik / Algorithmen und Datenstrukturen. Aufgabe 143

Grundlagen der Informatik / Algorithmen und Datenstrukturen. Aufgabe 143 Aufgabe 143 Aufgabe 143 Aufgabenstellung Gegeben ist der folgende AVL-Baum: a) Fügen Sie in diesen AVL-Baum nacheinander Knoten mit den Inhalten 34, 42, 1701 und 30 ein. Führen Sie die ggf. notwendigen

Mehr

Umstrukturierung durch Rotationen

Umstrukturierung durch Rotationen Umstrukturierung durch Rotationen (Folie 109, Seite 52 im Skript) P P T A A D B T B C C D Eine Rechtsrotation um T. Die Suchbaumeigenschaft bleibt erhalten. B, C, D können nur aus externen Knoten bestehen.

Mehr

5 Bäume. 5.1 Suchbäume. ein geordneter binärer Wurzelbaum. geordnete Schlüsselwertmenge. heißt (schwach) sortiert, g.d.w. gilt:

5 Bäume. 5.1 Suchbäume. ein geordneter binärer Wurzelbaum. geordnete Schlüsselwertmenge. heißt (schwach) sortiert, g.d.w. gilt: 5 Bäume 5.1 Suchbäume Sei ein geordneter binärer Wurzelbaum. Sei Abbildung der Knotenmenge eine in eine vollständig geordnete Schlüsselwertmenge. heißt (schwach) sortiert, g.d.w. gilt: Falls sortiert ist,

Mehr

Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT

Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT Komplexität eines Algorithmus, Grössenordnung, Landau-Symbole, Beispiel einer Komplexitätsberechnung (Mergesort) 7. KOMPLEXITÄT Komplexität eines Algorithmus Algorithmen verbrauchen Ressourcen Rechenzeit

Mehr

Übungsblatt 10. Thema: Abstrakte Datentypen, Datenstrukturen in Java

Übungsblatt 10. Thema: Abstrakte Datentypen, Datenstrukturen in Java Informatik I WS 05/06 Prof. Dr. W. May Dipl.-Inform. Oliver Fritzen Dipl.-Inform. Christian Kubczak Übungsblatt 10 Ausgegeben am: Abgabe bis: 13.01.2006 24.1.2006 (Theorie) 27.1.2006 (Praktisch) Thema:

Mehr

Einführung in die Programmierung II. 9. Dynamische Datenstrukturen: Binärbäume

Einführung in die Programmierung II. 9. Dynamische Datenstrukturen: Binärbäume -1- Einführung in die Programmierung II 9. Dynamische Datenstrukturen: Binärbäume Thomas Huckle, Stefan Zimmer 20. 6. 2007 Binärbäume Als Beispiel für eine interessantere dynamische Datenstruktur sehen

Mehr

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst.

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen (Folie 28, Seite 15 im Skript) Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen

Mehr

Informatik II Übung 02. Benjamin Hepp 8 March 2017

Informatik II Übung 02. Benjamin Hepp 8 March 2017 Informatik II Übung 02 Benjamin Hepp benjamin.hepp@inf.ethz.ch 8 March 2017 Nachbesprechung U1 08.03.2017 Informatik II - Übung 01 2 Nachbesprechung U1.1 f(a,b) = a x b = a) Induktionsbeweis ueber a nicht

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

13. Bäume: effektives Suchen und Sortieren

13. Bäume: effektives Suchen und Sortieren 13. Bäume: effektives Suchen und Sortieren Java-Beispiele: Baum.java Traverse.java TraverseTest.java Version: 25. Jan. 2016 Schwerpunkte Aufgabe und Vorteile von Bäumen Sortieren mit Bäumen Ausgabealgorithmen:

Mehr

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16 Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein

Mehr

13. Bäume: effektives Suchen und Sortieren

13. Bäume: effektives Suchen und Sortieren Schwerpunkte Aufgabe und Vorteile von Bäumen 13. Bäume: effektives Suchen und Sortieren Java-Beispiele: Baum.java Traverse.java TraverseTest.java Sortieren mit Bäumen Ausgabealgorithmen: - Preorder - Postorder

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 15b (13.06.2018) Graphenalgorithmen IV Algorithmen und Komplexität Prims MST-Algorithmus A = while A ist kein Spannbaum do e = u, v ist

Mehr

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume B-Bäume Digitale Suchbäume

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume B-Bäume Digitale Suchbäume Teil 1: Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume B-Bäume Digitale Suchbäume M.O.Franz; Oktober 07 Algorithmen und Datenstrukturen - B-Bäume 1-1

Mehr

elementare Datenstrukturen

elementare Datenstrukturen elementare Datenstrukturen Wie die Daten das Laufen lernten Andreas Ferber af@myipv6.de elementare Datenstrukturen p./40 KISS elementare Datenstrukturen p./40 KISS (Keep It Simple, Stupid) Immer die einfachste

Mehr

Objektorientierung II & die Java Klassenbibliothek. Kristian Bergmann und Arthur Lochstampfer

Objektorientierung II & die Java Klassenbibliothek. Kristian Bergmann und Arthur Lochstampfer Java Kurs Objektorientierung II & die Java Klassenbibliothek Kristian Bergmann und Arthur Lochstampfer Vergleich class Apfel { String farbe; int gewicht; String geerntetin; class Erdbeere { String farbe;

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

Binärbäume: Beispiel

Binärbäume: Beispiel Binärbäume Als Beispiel für eine interessantere dynamische Datenstruktur sehen wir uns jetzt Binärbäume an Ein Binärbaum wird rekursiv definiert: Er ist leer oder besteht aus einem Knoten (die Wurzel des

Mehr

B-Bäume. Suchbäume. Suchen, Einfügen, Löschen. Thomas Röfer. Balancierte Bäume (AVL-Bäume) Universität Bremen. Bäume 2

B-Bäume. Suchbäume. Suchen, Einfügen, Löschen. Thomas Röfer. Balancierte Bäume (AVL-Bäume) Universität Bremen. Bäume 2 Bäume 2 Thomas Röfer Suchbäume Suchen, Einfügen, Löschen Balancierte Bäume (AVL-Bäume) B-Bäume Rückblick Bäume 1 Begriffe Durchlaufen von Bäumen Spielprobleme Eigene Züge Gegnerische Züge Eigene Züge Gegnerische

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 10, Donnerstag 8. Januar 2015 (Verkettete Listen, Binäre Suchbäume) Junior-Prof. Dr.

Mehr

CoMa 04. Java II. Paul Boeck. 7. Mai Humboldt Universität zu Berlin Institut für Mathematik. Paul Boeck CoMa 04 7.

CoMa 04. Java II. Paul Boeck. 7. Mai Humboldt Universität zu Berlin Institut für Mathematik. Paul Boeck CoMa 04 7. CoMa 04 Java II Paul Boeck Humboldt Universität zu Berlin Institut für Mathematik 7. Mai 2013 Paul Boeck CoMa 04 7. Mai 2013 1 / 13 Verzweigungen Wenn-Dann Beziehungen if (BEDINGUNG) { else if (BEDINGUNG2)

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa AG Softech FB Informatik TU Kaiserslautern Lernziele Die Definition wichtiger Begriffe im Zusammenhand mit Bäumen zu kennen. Markierte Bäumen, insbesondere Suchbäume,

Mehr

Überblick. Rekursive Methoden. Backtracking. Memorization. Einfache rekursive Datenstrukturen. Aufzählen, Untermengen, Permutationen, Bitmengen

Überblick. Rekursive Methoden. Backtracking. Memorization. Einfache rekursive Datenstrukturen. Aufzählen, Untermengen, Permutationen, Bitmengen Überblick 2 Rekursive Methoden Backtracking Memorization Bäume Aufzählen, Untermengen, Permutationen, Bitmengen Memorization Nochmals Fibonacci-Zahlen int fibo(int n) { if(n == 0) { return 0; else if(n

Mehr

Übung 10: Dynamische Datenstrukturen und Rekursion

Übung 10: Dynamische Datenstrukturen und Rekursion Übung 10: Dynamische Datenstrukturen und Rekursion Abgabetermin: TT.MM.JJJJ Name: Matrikelnummer: Gruppe: G1 (Prähofer) G2 (Wolfinger) G3 (Wolfinger) Aufgabe Punkte gelöst abzugeben schriftlich abzugeben

Mehr

Überblick. 1 Bäume. 2 Traversierung von Bäumen. 3 Suchbäume. 4 Ausgeglichene Bäume. 5 Digital- und Präfix-Bäume. 6 Heaps und Prioritätswarteschlangen

Überblick. 1 Bäume. 2 Traversierung von Bäumen. 3 Suchbäume. 4 Ausgeglichene Bäume. 5 Digital- und Präfix-Bäume. 6 Heaps und Prioritätswarteschlangen Teil VI Bäume Überblick 1 Bäume 2 Traversierung von Bäumen 3 Suchbäume 4 Ausgeglichene Bäume 5 Digital- und Präfix-Bäume 6 Heaps und Prioritätswarteschlangen 7 Heap-Sort Prof. G. Stumme Algorithmen & Datenstrukturen

Mehr

Java. public D find(k k) { Listnode K, D n = findnode(k); if(n == null) return null; return n.data; Java

Java. public D find(k k) { Listnode K, D n = findnode(k); if(n == null) return null; return n.data; Java Einführung Elementare Datenstrukturen (Folie 27, Seite 15 im Skript) Java Java public D find(k k) { Listnode K, D n = findnode(k); if(n == null) return null; return n.data; } protected Listnode K, D findnode(k

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / Vorlesung 10, Donnerstag 9.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / Vorlesung 10, Donnerstag 9. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 10, Donnerstag 9. Januar 2014 (Verkettete Listen, Binäre Suchbäume) Junior-Prof. Dr.

Mehr

12 Abstrakte Klassen, finale Klassen und Interfaces

12 Abstrakte Klassen, finale Klassen und Interfaces 12 Abstrakte Klassen, finale Klassen und Interfaces Eine abstrakte Objekt-Methode ist eine Methode, für die keine Implementierung bereit gestellt wird. Eine Klasse, die abstrakte Objekt-Methoden enthält,

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 216 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda Vorstellung des 6. Übungsblatts. Hashing Binäre Suchbäume AVL-Bäume 2 Aufgabe: Hashing mit

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 7

Grundlagen der Algorithmen und Datenstrukturen Kapitel 7 Grundlagen der Algorithmen und Datenstrukturen Kapitel 7 Christian Scheideler + Helmut Seidl SS 2009 27.05.09 Kapitel 7 1 Wörterbuch S: Menge von Elementen Jedes Element e identifiziert über e.key(). Operationen:

Mehr

public interface Stack<E> { public void push(e e); public E pop();

public interface Stack<E> { public void push(e e); public E pop(); ADS Zusammenfassung René Bernhardsgrütter 02.04.2012 1 Generics Gewähren Typsicherheit und können für verschiedene Datentypen ohne Casts verwendet werden. Beim Erstellen der Klasse werden Platzhalter für

Mehr

AVL-Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. AVL-Bäume 1/38

AVL-Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. AVL-Bäume 1/38 AVL-Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 AVL-Bäume 1/38 Balancierte Bäume in einem zufällig erzeugten Binärbaum haben die Algorithmen Suchen,

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Algorithmen und Datenstrukturen I AVL-Bäume

Algorithmen und Datenstrukturen I AVL-Bäume Algorithmen und Datenstrukturen I AVL-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 01.12.2017 14:42 Algorithmen und Datenstrukturen I, AVL-Bäume 1/38 Balancierte Bäume in einem zufällig erzeugten Binärbaum

Mehr

3 Dynamische Datenstrukturen

3 Dynamische Datenstrukturen 3 Dynamische Datenstrukturen Beispiele für dynamische Datenstrukturen sind Lineare Listen Schlangen Stapel Bäume Prof. Dr. Dietmar Seipel 128 Praktische Informatik I - Algorithmen und Datenstrukturen Wintersemester

Mehr

3. Übungsblatt zu Algorithmen I im SoSe 2017

3. Übungsblatt zu Algorithmen I im SoSe 2017 Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799

Mehr

Semestralklausur Informatik I - Programmierung

Semestralklausur Informatik I - Programmierung RHEINISCH- WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN LEHR- UND FORSCHUNGSGEBIET INFORMATIK II RWTH Aachen D-52056 Aachen GERMANY http://www-i2.informatik.rwth-aachen.de/lufgi2 Prof. Dr. Jürgen Giesl LuFG

Mehr

Tutoraufgabe 1 (2 3 4 Bäume):

Tutoraufgabe 1 (2 3 4 Bäume): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Übung F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe ( Bäume): a) Löschen Sie den Wert aus dem folgenden Baum und geben Sie den dabei

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 -

! 1. Rekursive Algorithmen.! 2. Rekursive (dynamische) Datenstrukturen. II.3.2 Rekursive Datenstrukturen - 1 - ! 1. Rekursive Algorithmen! 2. Rekursive (dynamische) Datenstrukturen II.3.2 Rekursive Datenstrukturen - 1 - Ausdruck Ausdruck Grundwert ( Typ ) Präfix-Operator Name Methodenaufruf [ Ausdruck ] ( Ausdruck

Mehr

Technische Universität Braunschweig

Technische Universität Braunschweig Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Programmieren II Dr. Werner Struckmann 28. August 2015 Name: Vorname: Matrikelnummer: Kennnummer: Anrede: Frau Herr

Mehr

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1

Teil 1: Suchen. Ausgeglichene Bäume B-Bäume Digitale Suchbäume. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Binärbäume 1-1 Teil : Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume (Wiederholung aus Prog 2) Bäume: Begriffe, Eigenschaften und Traversierung Binäre Suchbäume Gefädelte Suchbäume Ausgeglichene

Mehr

Bäume. Martin Wirsing. Ziele. Baumknoten. Bäume - 2-dimensionale Listen. Standardimplementierungen für Bäume kennenlernen

Bäume. Martin Wirsing. Ziele. Baumknoten. Bäume - 2-dimensionale Listen. Standardimplementierungen für Bäume kennenlernen 2 Ziele Bäume Standardimplementierungen für Bäume kennenlernen Das Composite-Muster kennenlernen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl, Piotr Kosiuczenko, Dirk Pattinson 06/03 3 4 Bäume -

Mehr