3. Ähnlichkeitsabbildungen

Größe: px
Ab Seite anzeigen:

Download "3. Ähnlichkeitsabbildungen"

Transkript

1 3. Ähnlichkeitsabbildungen 3.1 Definitionen: Ähnlichkeitsabbildungen, Dilatationen Bis jetzt haben wir Isometrien (Kongruenzabbildungen) betrachtet. Diese bbildungen wurden aufgebaut aus den Geradenspiegelungen. Isometrien sind bijektive bbildungen, die längentreu, geradentreu und winkeltreu sind. Kongruente Figuren sind deckungsgleiche Figuren (! ). Wir verzichten nun auf die Längentreue. Dies führt zu den Ähnlichkeitsabbildungen. Definition: Eine geradentreue und winkeltreue, bijektive bbildung der Ebene auf sich heisst eine Ähnlichkeitsabbildung. 27 Die Bildfigur entsteht durch Vergrösserung des Urbildes (oder Verkleinerung). Jede Strecke wird im gleichen Massstab verändert (z.b. verdoppelt). Das Längenverhältnis zweier Strecken im Urbild und im Bild ist gleich. Man schreibt für zwei ähnliche Figuren und : ~. Nun fordern wir zusätzlich, dass jede Gerade auf eine zu ihr parallele Geraden abgebildet wird. Eine solche bbildung nennt man Dilatation. Definition Eine bijektive bbildung der Ebene auf sich heisst Dilatation, wenn sie jede Gerade auf eine zu ihr parallele Gerade abbildet.! g g'

2 Eigenschaften der Dilatationen 28 Die Dilatationen sind winkeltreu, also Ähnlichkeitsabbildungen.! g! h g g h h Die Translationen sind Dilatationen. Sie sind die einzigen Dilatationen ohne Fixpunkt. (Eigenschaft 6 der Translationen, Seite 22)! Translation (" id) #! Dilatation ohne Fixpunkt Bei einer Dilatation mit Fixpunkt ist jede Gerade durch einen Fixpunkt eine Fixgerade. S g = g Eine von der Identität verschiedene Dilatation hat höchstens einen Fixpunkt. Eine Dilatation mit genau einem Fixpunkt S heisst zentrische Streckung. Beweis?

3 3.2 Zentrische Streckung 29 Definition Eine Dilatation mit genau einem Fixpunkt S heisst zentrische Streckung. Der Fixpunkt S heisst Streckzentrum. Die zentrischen Streckungen sind ausser der Identität die einzigen Dilatationen mit Fixpunkt. bbildung eines Dreiecks durch eine zentrische Streckung mit Zentrum S: C C S B B Eigenschaften der zentrischen Streckung 1. Bei einer zentrischen Streckung mit dem Zentrum S liegen ein beliebiger Punkt P ( S) und sein Bild P' auf einer Geraden durch den Fixpunkt S. 2. Bei einer zentrischen Streckung wird jede Gerade g, die nicht durch das Zentrum S geht, auf eine von g verschiedene Parallele abgebildet. Bemerkung Eine zentrische Streckung ist durch ihr Zentrum S und durch einen von S verschiedenen Punkt und sein Bild ' eindeutig festgelegt.

4 Satz 1: Bei einer zentrische Streckung mit dem Zentrum S gilt für jeden Punkt und sein Bild '! S' = k!s 30 wobei k ( 0) eine feste reelle Zahl ist. k heisst Streckfaktor. Bezeichnung: zentrische Streckung mit Streckzentrum S und Streckfaktor k: Z S' k Bemerkung k > 1: Vergrösserung der Entfernung von S k < 1: Verkleinerung der Entfernung von S k > 0: Urbild und Bild liegen auf derselben Seite von S k < 0: Urbild und Bild liegen auf entgegengesetzten Seiten von S Beweis von Satz 1: Untersuchung der Längenverhältnisse 1. Wir wählen einen beliebigen Punkt P, sein Bild sei P. Die Vektoren SP!, SP' seien! gleichgerichtet und SP' = k SP, wobei k!#, k > 0 k = m, m,n!! n Nun wählen wir den Punkt E, so dass gilt:!! " Damit wird SP' = ksp! = m n nse nse = SP = mse P g P S E F Q Q h

5 31 Liegt der Punkt Q nicht auf der Geraden g durch S und P und ist h die Gerade durch S und Q, so schneiden die Parallelen zu PQ durch alle Teilpunkte von g auf der Geraden h kongruente Teilstrecken aus. Der Vektor SE auf g entspricht dem Vektor SF auf h und es gilt: SB = nsf!! " # SB' = msf $#! m % SB' = n SB = ksb Liegt der Punkt R auf der Geraden g, so kann jetzt wie vorher, aber von der Geraden h aus argumentiert werden. Ist k!! irrational, dann muss die irrationale Zahl durch rationale Zahlen ( z.b. mit Intervallschachtelungen) approximiert werden. 2. Sind die Vektoren SP!, SP' parallel, aber entgegengesetzt, also k < 0, dann spiegelt man zuerst an S, ergibt * und folgert wie bei 1. *! S' == ks, k < 0!! S S * =!ks! " 3. Ist k = 0, also S' = 0, dann wird jeder Punkt auf S abgebildet. Diese bbildung ist aber nicht injektiv! Ende Beweis uch die Umkehrung von Satz 1 ist richtig. Damit kann man eine zur Definition der zentrischen Streckung äquivalente Definition angeben. Satz 2: Eine bbildung ϕ = Z S' k der Ebene auf sich ist eine zentrische Streckung mit Zentrum S und Streckfaktor k Jedem Punkt wird ein Punkt ' so zugeordnet, dass und ' auf einer Geraden durch S liegen und dass gilt:! S' = k!s. Verallgemeinern wir nun Satz 1, dann gilt:

6 Satz 3: Bildet die zentrische Streckung Z S' k!!!!! " Vektoren: ' B' = k!b 32 auf ' und B auf B' ab, dann gilt für die Das Bild einer Strecke hat also die k - fache Länge der Urbildstrecke. B B S Bemerkungen k = 1: Die Identität ist ein Spezialfall einer zentrischen Streckung. k = -1: Die Punktspiegelung ist auch eine spezielle zentrische Streckung. Die Sätze 2 und 3 sind gleichbedeutend mit den Strahlensätzen. 1. Strahlensatz Werden zwei von einem Punkt ausgehende Strahlen (oder deren entgegengesetzte Strahlen) von parallelen Geraden geschnitten, so verhalten sich die Längen der bschnitte auf dem einen Strahl wie die Längen der entsprechenden bschnitte auf dem anderen Strahl. S! S = S B! = k SB 1 B' S B ' S B ' B'

7 2. Strahlensatz Werden zwei von einem Punkt ausgehende Strahlen von zwei Parallelen 33 geschnitten, so verhalten sich die Längen der bschnitte auf den Parallelen wie die der zugehörigen Scheitelabschnitte auf einem Strahl. ' B' B = S' S = k Weitere Eigenschaften der zentrischen Streckung Z S' k Das Längenverhältnis zweier Bildstrecken ist gleich dem Längenverhältnis ihrer Urbildstrecken. Ein Dreieck und sein Bild haben dieselbe Orientierung. Die Flächeninhalte von Bild und Urbild verhalten sich wie 1. Die zur zentrischen Streckung Z inverse bbildung hat dasselbe Streckzentrum und S' k den Streckfaktor 1 k. (ZS,k )!1 = ZS, 1 k k 2 Die Eigenschaft c) überlegt man sich zuerst für Dreiecke. Dann betrachtet man Polygone (geschlossene Streckenzüge), die man vollständig mit Dreiecken ausschöpfen kann. Schliesslich können krummlinig begrenzte Figuren durch Dreiecke beliebig genau approximiert werden. Beispiele 1. In ein Dreieck BC soll ein Quadrat PQRS mit P, Q B, R BC, S C eingezeichnet werden. 2. Konstruiere durch den Schnittpunkt S zweier Kreise k 1 und k 2 eine Sekante, sodass die beiden auf ihr liegenden Sehnen sich wie 2 :3 verhalten.

8 3.3 Harmonische Teilung und polloniuskreis 34 Gegeben ist eine Strecke B (B ) und ein Streckfaktor k ( 1). Wo liegt das Streckzentrum S? Es gilt: SB = k! S k 1 > 0 :!! S 1 B = k1 S 1 k 2 < 0 :!! S 2 B = k2 S 2 S 1 B S 2 B S 1 heisst äusserer Teilpunkt S 2 heisst innerer Teilpunkt Definition Ist k 2 = k 1 = k (> 0), so wird die Strecke B durch die Punkte S 1 und S 2 harmonisch geteilt. S 1 BS 1 = S 2 BS 2 = k Die Konstruktionsideen werden durch folgende Beispiele klar. 1. Beispiel: Die Strecke B soll harmonisch im Verhältnis 2 : 3 geteilt werden. B 2. Beispiel: Kennt man die Strecke B und einen Teilpunkt S, so ist der andere Teilpunkt T eindeutig bestimmt. S B

9 Satz 4: 35 Teilen die Punkte S und T die Strecke B harmonisch im Verhältnis k, so teilen die Punkte und B die Strecke ST auch harmonisch, und zwar im Verhältnis! = k + 1 k " 1. (Beweis in der nächsten Uebungsserie!) Wir zeichnen im Dreieck BC die Winkelhalbierende von γ. Diese schneidet die gegenüberliegende Seite B = c im Punkt D. Warum gilt folgender Satz? Satz 5: In einem Dreieck teilt die Winkelhalbierende eines Innenwinkels die gegenüberliegende Seite im Verhältnis der anliegenden Seiten. C Äussere Winkelhalbierende w γ b a T c D B E a Innerere Winkelhalbierende w γ Satz 5': Ist das Dreieck nicht gleichschenklig, so teilt auch die Winkelhalbierende des ussenwinkels die gegenüberliegende Seite im Verhältnis der anliegenden Seiten. Damit erhalten wir den berühmten Satz des pollonius.

10 Satz 6: Kreis des pollonius 36 Die Menge aller Punkte, für die das bstandsverhältnis zu zwei festen Punkten und B den konstanten Wert k annimmt, ist der Kreis mit dem Durchmesser ST, wobei S und T die Strecke B harmonisch im Verhältnis k teilen. C b a S B M T 3. Beispiel: Konstruieren Sie ein Dreieck aus den Seiten b = 6, c = 3 und der Winkelhalbierenden w! = 3.5.

11 37 Satz 7: Die Seitenhalbierenden eines Dreiecks schneiden sich in einem Punkt S, der jede Seitenhalbierende innen im Verhältnis 2:1 teilt. S heisst der Schwerpunkt des Dreiecks. C B' ' S C' B Satz 8: In einem Dreieck schneiden sich die drei Winkelhalbierenden in einem Punkt. w β C b W a w α B w γ

12 Verschiedene Ähnlichkeitsabbildungen 3.41 Ähnlichkeitsabbildungen allgemein Satz 9: Eine Ähnlichkeitsabbildung ϑ ist durch drei nicht kollineare Punkte und ihre Bildpunkte eindeutig bestimmt. ϑ: ' B B' C C' a) Zwei Dreiecke sind genau dann ähnlich, wenn zwei Winkel des einen Dreiecks gleich den entsprechenden Winkeln des anderen Dreiecks sind. b) Zwei Dreiecke sind genau dann ähnlich, wenn sie in den Verhältnissen der drei Seitenlängen übereinstimmen. a b = a' b', a c = a',! =!', " = "', # = # '. c' C b γ C α a b γ a c α β β c B B Satz 10: Eine bbildung ist genau dann eine Ähnlichkeitsabbildung ϑ, wenn sie darstellbar ist als Verknüpfung einer Isometrie ϕ und einer zentrischen Streckungen Z S' k.! Ähnlichkeitsabbildung "! = Z S,k!# Beweis: "! " : Ist ϕ eine Isometrie und Z S,k eine zentrische Streckung, so ist die Verknüpfung der beiden bbildungen eine Ähnlichkeitsabbildung. "! " : Ist ϑ eine Ähnlichkeitsabbildung, dann ist sie durch 3 nicht kollineare Punkte und ihre Bilder eindeutig bestimmt.! :!BC "!' B'C '

13 39 Man kann die bbildung zum Beispiel zerlegen in eine Translation gefolgt von einer Rotation und einer zentrischen Streckung.! = Z ',k! R ',µ!t"""" # ' C C 2 C 1 B B 2 µ C B 1! """! v = ' B

14 Drehstreckungen und Klappstreckungen Definition Eine Drehstreckung ist die Verknüpfung einer zentrischen Streckung und einer Rotation mit demselben Zentrum! = R S,"! Z S,k Es gilt:! = R S,"! Z S,k = Z S,k! R S," Spezielle Drehstreckungen: i) α = 0 : zentrische Streckung R S,0! Z S.k = Z S,k ii) k = 1: Rotation R S,!! Z S,1 = R S,! iii) k = 1, α = 0 : Identität R S,0! Z S,1 = id Eine Drehstreckung, die nicht die Identität ist, hat genau einen Fixpunkt. Bei Drehstreckungen genügt es, positive k zu betrachten, denn! = R S,"! Z S,k = R S," +180! Z S,# k

15 Definition Eine Klappstreckung ist die Verknüpfung einer zentrischen Streckung und einer Geradenspiegelung, deren chse durch das Streckzentrum geht. 41! = S g! Z S,k Es gilt:! = S g! Z S,k = Z S,k! S g Spezielle Klappstreckung: k = 1: Geradenspiegelung S g! Z S,1 = S g Eine Klappstreckung mit k 1 hat genau einen Fixpunkt. Satz 11: Die Verknüpfung einer gleichsinnigen Isometrie und einer zentrischen Streckung (k 1) ist eine Drehstreckung. Die Verknüpfung einer ungleichsinnigen Isometrie und einer zentrischen Streckung (k 1) ist eine Klappstreckung.

16 Satz 12: Die Verknüpfung zweier zentrischer Streckungen Z S2,k 2! Z S1,k 1 mit 42 verschiedenen Zentren S 1 S 2 und k = k 2! k 1 ist: a) eine zentrische Streckung Z S,k, falls k 1, und einem Zentrum S, das auf der Geraden S 1 S 2 liegt.! 1! k Für die Lage von S gilt: S 1 S = 2!!!! " S 1 S 2 1! k 1 k 2 b) eine Translation T! v, falls k = 1, wobei v! parallel zur Geraden S 1 S 2 ist und! """"! v = (1! k 2 )S 1 S 2 Satz 13: Gegeben sind eine Translation T! v und eine zentrische Streckung Z S,k (k! 1). Dann ist die Verknüpfung wieder eine zentrische Streckung. #### " k " Z S,k!T" v = Z S*,k, wobei SS * = v. 1! k

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

MA 430 Geometrie 1. Universität Zürich Institut für Mathematik

MA 430 Geometrie 1. Universität Zürich Institut für Mathematik Universität Zürich Institut für Mathematik HS09 MA 430 Geometrie 1 Johanna Schönenberger-Deuel Dr. sc. math. Email: [email protected]; [email protected] Büro: Y27J30 Tel.: +41(0)44 63 55863 2

Mehr

Strahlensätze und Ähnliches

Strahlensätze und Ähnliches Strahlensätze und Ähnliches Dr. Elke Warmuth Sommersemester 2018 1 / 27 Zentrische Streckung Strahlensätze Ähnliche Figuren 2 / 27 Was ist hier passiert? 3 / 27 Zentrische Streckung mit Streckungszentrum

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen Gruppe A: Verschiebungen Eine Abbildung heißt Verschiebung v r, wenn für jeden Punkt P und seinen Bildpunkt P jeweils gilt: r OP' = OP + v. Eine Figur heißt verschiebungssymmetrisch, wenn sie durch eine

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

MA S410 Geometrie. Johanna Schönenberger-Deuel

MA S410 Geometrie. Johanna Schönenberger-Deuel MA S410 Geometrie Johanna Schönenberger-Deuel 31. Oktober 2010 Inhaltsverzeichnis 1 Einführung 1 2 Isometrien oder Kongruenzabbildungen 7 2.1 Einführende Überlegungen........................... 7 2.2 Geradenspiegelung

Mehr

6. Ähnlichkeitsabbildungen

6. Ähnlichkeitsabbildungen 3 6. Ähnlichkeitsabbildungen Ein gegebenes Vieleck ABCDE ist durch Hintereinanderausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

MA S410 Geometrie und Lineare Algebra. Johanna Schönenberger-Deuel

MA S410 Geometrie und Lineare Algebra. Johanna Schönenberger-Deuel Johanna Schönenberger-Deuel 16. September 2012 Inhaltsverzeichnis 1 Isometrien oder Kongruenzabbildungen 1 1.1 Einführende Überlegungen........................... 1 1.2 Geradenspiegelung S g..............................

Mehr

Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen

Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen 3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine

Mehr

Beispiel: Die abgebildeten Geo-Dreiecke und das Wandtafelmodell habe dieselbe Form.

Beispiel: Die abgebildeten Geo-Dreiecke und das Wandtafelmodell habe dieselbe Form. 1 5. Abbildung durch zentrische Streckung Beispiel: Die abgebildeten Geo-Dreiecke und das Wandtafelmodell habe dieselbe Form. a) Worin stimmen die Dreiecke überein? b) Angenommen die Kathete des Wandtafeldreiecks

Mehr

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2 1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................

Mehr

Geometrische Abbildungen der Ebene

Geometrische Abbildungen der Ebene Geometrische Abbildungen der Ebene Dr. Elke Warmuth Sommersemester 2018 1 / 29 Bezeichnungen Kongruenzabbildungen Spiegelungen Klassifikation aller Kongruenzabbildungen 2 / 29 Abbildung, Funktion, Transformation

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen. Die zwei sehen ganz ähnlich aus

Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen. Die zwei sehen ganz ähnlich aus Kapitel 4: Ähnlichkeitsabbildungen Beispiele Verkleinerungen Vergrößerungen Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen. Mathematische Präzisierung, aber

Mehr

Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen.

Bijektive, geradentreue und winkeltreue Abbildungen der Ebene heißen Ähnlichkeitsabbildungen. Vergrößerungen entrische Streckung 1 Kapitel 4: Ähnlichkeitsabbildungen Beispiele Verkleinerungen Vergrößerungen Bijektive, geradentreue und winkeltreue bbildungen der Ebene heißen Ähnlichkeitsabbildungen.

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur mit weiteren Erläuterungen in der Veranstaltung genutzt werden. Fehler sind

Mehr

Zentrische Streckung Mündliche Aufgaben

Zentrische Streckung Mündliche Aufgaben Zentrische Streckung Mündliche Aufgaben Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor k? Aufgabe 1 Was ist eine zentrische Streckung mit Zentrum Z und Streckungsfaktor

Mehr

Mathematik Geometrie

Mathematik Geometrie Inhalt: Mathematik Geometrie 6.2003 2003 by Reto Da Forno bbildung / bbildungsvorschriften - Ähnlichkeitsabbildungen Seite 1 - Zentrische Streckung Seite 1 - Die Strahlensätze Seite 1 - Kongruenzabbildungen

Mehr

G e o m e t r i e Ähnlichkeit

G e o m e t r i e Ähnlichkeit G e o m e t r i e Ähnlichkeit uf Java und Bali in Indonesien hat das Schattenspiel, das Wayang kulit (wayang = Theater, kulit = Haut) eine jahrhundertealte Tradition. Im Wayang kulit wird in hinduistischen

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

4 Ähnlichkeitsabbildungen

4 Ähnlichkeitsabbildungen EINFÜHRUNG IN DIE GEOMETRIE SS 05 41 DEISSLER 4 Ähnlichkeitsaildungen eispiele Verkleinerungen, Vergrößerungen ijektive, geradentreue ildungen, ei denen die Winkel erhalten werden, aer nicht notwendig

Mehr

1. Winkel (Kapitel 3)

1. Winkel (Kapitel 3) 1. Winkel (Kapitel 3) 1.1 Winkel Einführung 1.2 Winkel an Geraden bjak 1 1.3 Winkel am Dreieck bjak 2 1.4 Winkel am Kreis bjak 3 bjak 4 2. Dreiecke (Kapitel 3) 2.1 Linien am Dreieck bjak 5 2.2 Flächeninhalt

Mehr

Die Strahlensätze. Ben Hambrecht. 1 Zentrische Streckungen 2. 2 Der 1. Strahlensatz 7. 3 Der Streckfaktor Der 2.

Die Strahlensätze. Ben Hambrecht. 1 Zentrische Streckungen 2. 2 Der 1. Strahlensatz 7. 3 Der Streckfaktor Der 2. Die Strahlensätze Ben Hambrecht Inhaltsverzeichnis 1 Zentrische Streckungen 2 2 Der 1. Strahlensatz 7 3 Der Streckfaktor 11 4 Der 2. Strahlensatz 14 5 Der 3. Strahlensatz 18 6 Die Umkehrungen der Strahlensätze

Mehr

Weitere geometrische Abbildungen

Weitere geometrische Abbildungen Weitere geometrische Abbildungen Anna Wegener, Matthias Wegen, Daniel Kretschmer 15.01.2015 1 / 38 Affinitätsabbildungen - Motivation Kongruenzabbildungen Ähnlichkeitsabbildungen Affinitätsabbildungen

Mehr

Licht wählt unter allen möglichen Wegen den kürzesten (im Allgemeinen: den schnellsten) Was ist der kürzeste Weg von P über S nach A?

Licht wählt unter allen möglichen Wegen den kürzesten (im Allgemeinen: den schnellsten) Was ist der kürzeste Weg von P über S nach A? Kapitel 2: Kongruenzabbildungen 2.1 Geradenspiegelungen a) Spiegel Wie wirkt ein Spiegel? Modellvorstellung: Jeder beleuchtete Punkt P sendet nach allen Seiten Lichtstrahlen aus Wie verlaufen die Lichtstrahlen

Mehr

Kapitel 2. Abbildungsgeometrie

Kapitel 2. Abbildungsgeometrie Kapitel 2 Abbildungsgeometrie 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

3: Bewegungen und Ähnlichkeiten:

3: Bewegungen und Ähnlichkeiten: 3: Bewegungen und Ähnlichkeiten: Was sind kongruente (bzw. deckungsgleiche) Figuren? [Box2-94] [Kra2-138] [Rei2-173a] [Rei2-173b] Zwei Teilmengen M,M einer Euklidischen Ebene (E,G) heißen kongruent, wenn

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 401 Kreise Lernumgebung Hans Walser: Modul 401, Kreise. Lernumgebung ii Inhalt 1 Im regelmäßigen Zwölfeck... 1 Siebeneck... 3 Faltbild... 3 4 Peripheriewinkel...

Mehr

Ähnlichkeit. GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Name: Vorname:

Ähnlichkeit. GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN. Ronald Balestra CH Zürich  Name: Vorname: Ähnlichkeit GEOMETRIE Kapitel 1 NProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 6. März 2016 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

Kapitel 7: Ähnlichkeit

Kapitel 7: Ähnlichkeit Kapitel 7: Ähnlichkeit 1. Gleiche Form andere Grösse Zwei Figuren, die die gleiche Form haben, sind.! Ähnliche Figuren lassen sich durch Vergrössern oder Verkleinern einer Figur herstellen. Wie viel vergrössert

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

3 Längenmessung, Flächeninhalt, Ähnlichkeit

3 Längenmessung, Flächeninhalt, Ähnlichkeit 28 3 Längenmessung, Flächeninhalt, Ähnlichkeit 3.1 Längenmessung von Strecken Durch das Axiom (D1) haben wir jeder (nicht zu einem Punkt entarteten) Strecke eine positive reelle Zahl zugewiesen, die wir

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck. Haus der Vierecke. Dr. Elke Warmuth. Sommersemester 2018

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck. Haus der Vierecke. Dr. Elke Warmuth. Sommersemester 2018 Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 39 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck 2 / 39 Wir betrachten nur konvexe Vierecke:

Mehr

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich

Grundwissen JS 7: Geometrie 17. Juli (a) Wann heißt eine Figur achsensymmetrisch? Welche Bedeutung hat die Symmetrieachse anschaulich GYMNASIUM MIT SCHÜLERHEIM EGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 91257 EGNITZ FERNRUF 09241/48333 FAX 09241/2564 Grundwissen JS 7: Geometrie 17 Juli 2007 1(a) Wann heißt

Mehr

1 Zahlen und Funktionen

1 Zahlen und Funktionen 1 Zahlen und Funktionen 1.1 Variablen Variablen sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge. Bsp.: a IN, b Z oder x QI Betrag einer Variablen a falls a 0 a = Bsp.: 7 = 7; -5 = -(-5) =

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 1. Alle Eckpunkte mit Z verbinden 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k 0.5) C 3. Parallelverschieben CB // durch C B 4. AB //

Mehr

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen.

4. Symmetrien. 4.1 Gruppen ! 1. Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. 4. Symmetrien 25 4. Symmetrien 4.1 Gruppen Geometrische und algebraische Untersuchungen werden vergleichbar wegen ihrer Strukturen. Eine Verknüpfung auf einer Menge M ist eine Abbildung, die zwei Elementen

Mehr

Ähnlichkeit von Figuren

Ähnlichkeit von Figuren Ähnlichkeit von Figuren Beispiele: In dem Bild von Escher sind alle Fische einander ähnlich, d.h. sie besitzen dieselbe Form. Alle DIN-Format-Papiere sind einander ähnlich. Es handelt sich um Rechtecke,

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Elementare Geometrie Vorlesung 16

Elementare Geometrie Vorlesung 16 Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Geometrie 1.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 1.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 1.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 1.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Elementare Geometrie Vorlesung 11

Elementare Geometrie Vorlesung 11 Elementare Geometrie Vorlesung 11 Thomas Zink 29.5.2017 1.Verhältnisse Es sei g eine Gerade. Es seien A, B, C, D g vier Punkte, so dass A B und C D. Wir definieren: AB CD = AB CD, wenn die Strahlen AB

Mehr

Ähnlichkeitsabbildungen und Ähnlichkeitslehre

Ähnlichkeitsabbildungen und Ähnlichkeitslehre Ähnlichkeitsabbildungen und Ähnlichkeitslehre Lisa Laudan, Christopher Wolf 1 Rahmenlehrplan Sek I Berlin Klasse 9/10 Standards für das Ende der Klasse 10: Die SuS berechnen Streckenlängen und Winkelgrößen

Mehr

Umfangreichere Aufgaben (Zeichnung/Rechnung)

Umfangreichere Aufgaben (Zeichnung/Rechnung) Umfangreichere Aufgaben (Zeichnung/Rechnung) 1. Zeichnezwei parallelegeradeng undg imabstandvon2cmundwählezwei Punkte A g und A g, die einen gegenseitigen Abstand von 3cm haben. (Hinweis: Fertige zunächst

Mehr

Geometrie 2.1. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie 2.1. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 2.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 2.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

ABBILDUNGEN. Schiebung, Drehung, Spiegelung, Streckung. Version 2.0 Herbert Paukert. Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ]

ABBILDUNGEN. Schiebung, Drehung, Spiegelung, Streckung. Version 2.0 Herbert Paukert. Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ] Ein PAUMEDIA-Projekt Herbert Paukert 1 ABBILDUNGEN Schiebung, Drehung, Spiegelung, Streckung Version 2.0 Herbert Paukert Definition der Abbildungen [ 02 ] Theorie der Abbildungen [ 07 ] Hauptachsen-Transformationen

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen

MB1 LU 20, 21,23,24 Kongruenzabbildungen MB1 LU 20, 21,23,24 Kongruenzabbildungen Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung, die

Mehr

Grundwissen Klasse 7

Grundwissen Klasse 7 Grundwissen Klasse 7 Zahlenmengen = {1; 2; 3; 4; 5; 6;... } Die Menge der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die Menge der ganzen Zahlen. Die Menge der rationalen Zahlen. Multiplikation

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Grundlagen Stefan Witzel Punkte, Abstand Die Euklidische Ebene E 2 besteht aus Punkten. Zwei Punkte P, Q E 2 haben einen Abstand PQ 0. Axiome

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung,

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag):

Seite 10 Aufgaben Zentrische Streckung 1 a) Konstruktionsbericht (Vorschlag): Seite 10 1 a) Konstruktionsbericht (Vorschlag): 2. Die Strecke ZC halbieren (das entspricht der Streckung mit k = 0.5) C 3. Parallelverschieben CB // durch C B 4. AB // durch B A 5. AE // durch A E 6.

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Grundlagen Stefan Witzel Punkte, Abstand Die Euklidische Ebene E 2 besteht aus Punkten. Zwei Punkte P, Q E 2 haben einen Abstand PQ 0. Axiome

Mehr

LÖSUNG ELEMTARGEOMETRIE AUFGABE 1 P''' P'' -1 1

LÖSUNG ELEMTARGEOMETRIE AUFGABE 1 P''' P'' -1 1 LÖSUNG ELEMTRGEOMETRIE UFGE 1 GHS/LT, THEM I, UFGE ; RL/LT, THEM I, UFGE ; SOPÄD/NEU, THEM I, UFGE ; GHS/NEU, THEM I, UFGE ; RL/NEU, THEM I, UFGE UFGE Entsprechend bbildung 1 wird der Punkt der Reihe nach

Mehr

Übersicht zur Vorlesung

Übersicht zur Vorlesung Stand: 19.1.2012 Übersicht zur Vorlesung Ausgewählte Kapitel der Geometrie Definitionen/Axiome Anordnungsaxiome Archimedisches Axiom Definition von größer in den reellen Zahlen Intervalle Punkte, Geraden

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $ $Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten

Mehr

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.

Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind. 1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets

Mehr

Einige Ergebnisse der euklidischen Geometrie

Einige Ergebnisse der euklidischen Geometrie 1 Teil I Einige Ergebnisse der euklidischen Geometrie In Teil I setzen wir den euklidischen Raum als bekannt voraus (aus der Schule oder aus der Vorlesung Lineare lgebra und nalytische Geometrie). Da wir

Mehr

Übersicht zu den Textinhalten

Übersicht zu den Textinhalten Abbildungen Übersicht zu den Textinhalten Zum Thema Abbildungen gibt es mehrere Texte. Hier wird aufgelistet, wo man was findet. Datei Nr. 11050 Stand 3. Oktober 2013 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK

Mehr

( ) ( ) 1 Zahlen und Funktionen ( ) ( ) ( a + b) ( c + d ) = ac + ad + bc + bd

( ) ( ) 1 Zahlen und Funktionen ( ) ( ) ( a + b) ( c + d ) = ac + ad + bc + bd 1 Zahlen und Funktionen 1.1 Terme und Variable Buchstaben, die als Platzhalter für eine Zahl stehen, heißen Variable. Terme sind Rechenausdrücke, die aus Zahlen, Variablen, Rechenzeichen und Klammen bestehen.

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

XIII Geometrische Abbildungen und Matrizen

XIII Geometrische Abbildungen und Matrizen XIII Geometrische Abbildungen und Matrizen Geometrische Abbildungen und Abbildungsgleichungen 0 8 k= R' 6 S' R S P' Q' Q x P Z=O 6 8 0 Fig. Bei einer zentrischen Streckung wird von einem Punkt, dem Zentrum,

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

2. Strahlensätze Die Strahlensatzfiguren

2. Strahlensätze Die Strahlensatzfiguren 2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?

Mehr

Aehnlichkeit. 1. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter

Aehnlichkeit. 1. Kapitel aus meinem Lehrgang Geometrie. Ronald Balestra CH St. Peter Aehnlichkeit 1. Kapitel aus meinem Lehrgang Geometrie Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 31. Oktober 2009 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................

Mehr

Elementare Geometrie Vorlesung 2

Elementare Geometrie Vorlesung 2 Elementare Geometrie Vorlesung 2 Thomas Zink 24.4.2017 Vierecke Definition Ein Viereck ABCD ist ein Streckenzug aus vier Strecken AB, BC,CD, DA ohne Selbstüberschneidungen. Vierecke Definition Ein Viereck

Mehr

Ähnlichkeit. GEOMETRIE Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich

Ähnlichkeit. GEOMETRIE Kapitel 1 MNProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Ähnlichkeit GEOMETRIE Kapitel 1 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 27. Februar 2017 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................

Mehr

Ähnlichkeit. GEOMETRIE Kapitel 1 WRProfil - Mittelstufe KZN. Ronald Balestra CH Zürich

Ähnlichkeit. GEOMETRIE Kapitel 1 WRProfil - Mittelstufe KZN. Ronald Balestra CH Zürich Ähnlichkeit GEOMETRIE Kapitel 1 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 1. April 2015 Inhaltsverzeichnis 1 Aehnlichkeit 1 1.1 Definition & Eigenschaften.....................

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktionen mit Zirkel und Lineal Vor den eigentlichen Konstruktionen möchte ich einige emerkungen zu Faltungen machen, da sie leider in der Schule ein Stiefkind darstellen. Mit anderen Worten, sie

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Geometrie 1. Johanna Schönenberger-Deuel Dr. sc. math. Büro: Y27J30 Tel.: +41(0)

Geometrie 1. Johanna Schönenberger-Deuel Dr. sc. math.   Büro: Y27J30 Tel.: +41(0) M 430 Master UNIZH HS07 Geometrie 1 Johanna Schönenberger-Deuel Dr. sc. math. Email: [email protected] Büro: Y27J30 Tel.: +41(0)44 63 55863 2 1. Einführung Die Geometrie ist die älteste,

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Elementare Geometrie Vorlesung 12

Elementare Geometrie Vorlesung 12 Elementare Geometrie Vorlesung 12 Thomas Zink 31.5.2017 1.Die Winkelhalbierende Es seien s und t zwei Strahlen, die sich in einem Punkt O schneiden. Es sei (s, t) < 180 o. Die Winkelfläche besteht aus

Mehr