Energieverbrauch ~ Energieentwertung

Größe: px
Ab Seite anzeigen:

Download "Energieverbrauch ~ Energieentwertung"

Transkript

1 2.7 Entropie Irreversible Vorgänge: Der wohl grundlegendste Satz der Physik ist der Energieerhaltungssatz. Dieser besagt, dass Energie jeglicher Art in einem abgeschlossenen System niemals verbraucht werden kann. Energie wird lediglich in andere Energieformen umgewandelt. Trotzdem ist im Alltag häufig von Energieverbrauch die Rede. Es wird zum Beispiel empfohlen, den Energieverbrauch eines Haushalts zu senken um die Umwelt zu schonen. Was kann man sich nun unter dem Begriff Energieverbrauch vorstellen? Mit dem Begriff Energieverbrauch ist nicht der Verlust an Energie gemeint, sondern eine Entwertung der Energie während der Energieumwandlung. Energieverbrauch ~ Energieentwertung (umgangssprachlich) (physikalisch) Unter der Entwertung der Energie versteht man den Vorgang, bei dem Energie aus einer wertvollen Energieform in eine weniger wertvolle Energieform umgewandelt wird. Eine Energieform bezeichnet man als wertvoll, wenn sie in andere Energieformen umgewandelt werden kann, ohne dass zusätzlich Arbeit verrichtet werden muss. Beispiele: mechanische Energie (z.b. Lageenergie oder Spannenergie) chemische Energie (Energie in fossilen Brennstoffen) Kernenergie (Bindungsenergie der Nukleonen im Atomkern) Energie, die nicht ohne zusätzlich von außen verrichtete Arbeit in andere Energieformen umgewandelt werden kann, nennt man weniger wertvolle Energie. Beispiel: Thermische Energie (Wärme) Zur Verdeutlichung des Begriffs der Energieentwertung soll im Folgenden ein kleines Beispiel aus der Mechanik betrachtet werden. Setzt man einen Holzklotz auf den höchsten Punkt einer schiefen Ebene, so besitzt er dort Lage- bzw. potenzielle Energie. Ist der Neigungswinkel der Ebene groß genug, so kann der Klotz die Ebene

2 hinuntergleiten. Falls nun die Oberfläche der schiefen Ebene sehr rau ist, rutscht der Klotz langsam mit gleichbleibender Geschwindigkeit die schiefe Ebene herab, bis er am tiefsten Punkt stehen bleibt. Die am Anfang zur Verfügung stehende Lageenergie ist bei diesem Vorgang scheinbar verloren gegangen. Bei genauerer Betrachtung ist jedoch festzustellen, dass sich die Ebene und der Holzklotz beim Herabrutschen leicht erwärmt haben. Die wertvolle potentielle Energie ist in Reibungswärme umgewandelt worden. Nach dem Energieerhaltungssatz wäre es nun kein Problem die thermische Energie der Ebene und des Klotzes zu nutzen, um den Holzklotz wieder die Ebene heraufzubefördern. Ein derartiger Vorgang kann jedoch in der Natur nicht beobachtet werden (Anschaulich gesprochen würde es der thermischen Energie niemals einfallen sich in potentielle Energie zurück zu verwandeln). Vorgänge die selbstständig nur in einer Richtung ablaufen, werden irreversible Vorgänge genannt. Am obigen Beispiel wird nun auch deutlich, dass die Begriffe wertvolle und weniger wertvolle Energieform sinnvoll sind. So ist die weniger wertvolle Energieform Wärme in der Regel das Endprodukt einer Energieumwandlung und die wertvollen Energieformen wie mechanische oder chemische Energie das Startprodukt eines irreversiblen Vorgangs. Irreversible, also nicht reversible Vorgänge findet man überall in der Physik. So wird ein einmal angestoßenes Faden- oder Federpendel niemals unendlich lange pendeln, sondern nach einer gewissen Zeit zur Ruhe kommen. Die mechanische Energie des Pendels wird schließlich in Wärmeenergie der Umgebungsluft oder des Pendels selbst umgewandelt. Dieser Vorgang ist nicht umkehrbar. Auch ein Autofahrer, der sein Auto mit einer gewissen kinetischen Energie vor einen Brückenpfeiler fährt kommt zu dem Schluss, dass soeben ein irreversibler Vorgang stattgefunden hat. Die kinetische Energie des Autos wurde in Verformungsenergie umgewandelt. Ein rückwärts Ablaufen dieses Vorgangs würde den Autofahrer zwar freuen ist aber leider physikalisch unmöglich. Auch in der Thermodynamik finden irreversible Vorgänge statt. Bringt man zum Beispiel zwei Körper mit unterschiedlicher Temperatur in Kontakt miteinander, so findet ein Temperaturausgleich zwischen den Körpern statt. Auch dieser Vorgang ist irreversibel. Die beiden Körper gehen niemals wieder in ihren Ausgangszustand zurück.

3 Alle Beispiele zeigen: Es gibt nur eine Richtung des Ablaufs natürlicher Vorgänge. Mit zunehmender Zeit wird immer mehr Energie in thermische Energieformen umgewandelt. Erklärung von irreversiblen Vorgängen mit Hilfe der Wahrscheinlichkeitsrechnung: Die meisten Vorgänge in der Natur laufen irreversibel ab, dass heißt der Ablauf eines Vorgangs findet nur in einer Richtung statt. Der Grund hierfür ist nicht offensichtlich. Scheinbar ist es eine Eigenschaft der Natur bzw. des Universums, dass Vorgänge irreversibel ablaufen. Einen Erklärungsansatz für diese Eigenschaften liefert die Mathematik. Mit Hilfe der Wahrscheinlichkeitsrechnung soll nun folgender irreversibler Vorgang beschrieben werden: Ein Gas befindet sich in einem geschlossenen Behälter, der über ein Ventil mit einem zweiten luftleeren Behälter verbunden ist. Wird das Ventil geöffnet, so strömt ein Teil des Gases in den leeren Behälter. Nach kurzer Zweit befindet sich in beiden Behältern die gleiche Menge an Gas. Auch dieses Experiment zeigt einen irreversiblen Vorgang, der nur in einer Richtung abläuft. Das Gas würde sich niemals vollständig in den Anfangsbehälter zurückziehen. Um dies zu erklären betrachten wir nun zunächst einen Fall in dem sich nur ein einziges Gasatom im linken Behälter befinden soll. Wird das Ventil geöffnet, so kann sich das Gasatom in beiden Behältern frei bewegen. Die Wahrscheinlichkeit, das Teilchen im Ausgangsbehälter anzutreffen, liegt bei 50% bzw. ½. Fügt man ein zweites Gasatom hinzu, so beträgt die Wahrscheinlichkeit dafür, beide Atome im Ausgangsbehälter anzutreffen, 25% bzw. ¼. Bei drei Gasatomen beträgt die Wahrscheinlichkeit nur noch 1/8. Es wird also mit jedem hinzukommendem Atom unwahrscheinlicher die Gasteilchen gleichzeitig im Ausgangsbehälter anzutreffen. Anzahl der Teilchen im Gas Wahrscheinlichkeit, dass sich alle Gasteilchen wieder im Ausgangsvolumen befinden!

4 Bei nur hundert Gasteilchen, also einer noch unvorstellbar geringen Menge an Gas, ist die Wahrscheinlichkeit bereits mal geringer als einen Sechser im Lotto zu tippen. Anzahl der Teilchen im Gas Wahrscheinlichkeit, dass sich alle Gasteilchen wieder im Ausgangsvolumen befinden! Gasteilchen Bei normalen Gasmengen in der Größenordnung eines Mols nähert sich die Wahrscheinlichkeit der Null. Es ist also im gewissen Sinne nicht physikalisch unmöglich, dass sich das Gas auf sein Ausgangsvolumen zurückzieht, sondern nur derart unwahrscheinlich, dass es in der Lebensdauer dieses Universums nicht eintreten wird. Hieraus kann folgender Satz geschlossen werden: Satz: Bei einem irreversiblen Prozess geht ein Zustand mit einer geringen Wahrscheinlichkeit in einen Zustand höherer Wahrscheinlichkeit über! Die Entropie: Der Begriff Energie ist einer der wichtigsten Begriffe der Physik. Die Betrachtung von irreversiblen Prozessen zeigt jedoch, dass dieser nicht ausreicht, um physikalische Vorgänge vollständig zu beschreiben. Es ist notwendig einen weiteren Begriff einzuführen, der auch den Richtungsaspekt bei physikalischen Vorgängen beinhaltet, die sog. Entropie. Der Begriff Entropie ist nicht so leicht verständlich wie der Energiebegriff und wird in der Regel im Physikstudium nur in Rahmen der theoretischen Physik als nicht besonders anschauliche physikalische Größe eingeführt. Aus diesem Grund wird hier der Entropiebegriff mit Hilfe eines Modells anschaulich erklärt. Auf die theoretische und mathematisch recht anspruchsvolle Herangehensweise möchte ich hier verzichten und weise den erfahrenen Leser auf Bücher zur Theoretische Thermodynamik hin (Torsten Fließbach- Lehrbuch zur theoretischen Physik IV). Zur Motivation zunächst ein Zitat von Ludwig Boltzmann: Anschaulich ist das, woran man sich gewöhnt hat Betrachtet man zwei Körper mit unterschiedlicher Temperatur und aber gleicher Masse, so besteht zwischen ihnen die Temperaturdifferenz.

5 Der Körper mit der höheren Temperatur hat mehr Wärme, also mehr thermische Energie gespeichert. Bringt man nun die beiden Körper in Kontakt miteinander, so gibt der Körper mit der höheren Temperatur die Wärmemenge an den kälteren Körper ab, bis ein Temperaturausgleich stattgefunden hat. Die Wärme ist gewissermaßen vom heißeren Körper auf den kälteren Körper geflossen. Dieser Vorgang funktioniert auch, wenn man die Körper nicht direkt miteinander in Kontakt bringt, sondern einen wärmeleitenden Körper zwischen sie bringt. Dabei gehen wir von einem sehr guten Wärmeleiter mit einer sehr geringen Wärmekapazität aus: Auch hier geht die thermische Energie Temperaturausgleich statt. vom heißen auf den warmen Körper über und es findet ein In einem letzten Schritt verbiegen wir nun noch den Wärmeleiter und ändern ein wenig die Form der Körper, sodass eine Analogie zu einem bereits bekannten physikalischen Sachverhalt auffällt:

6 Wie man nun sieht, ist ein derartiges System ähnlich aufgebaut wie ein elektrischer Stromkreis. Die beiden Körper mit der Temperatur und entsprechen den Polen einer Stromquelle. Die Temperaturdifferenz entspricht im elektrischen Stromkreis der Spannung. Genau wie die Spannung den elektrischen Strom antreibt, so treibt die Temperaturdifferenz den Wärmestrom an. Dabei ist anzumerken, dass die Spannung auch als Potentialdifferenz angegeben werden kann: mit. Die elektrischen Potenziale und entsprechen hier den Temperaturen T 1 und T 2. Eine weitere Analogie ergibt sich zwischen thermischer Energie und elektrischer Energie.So wird in der obigen Anordnung die Wärmemenge transportiert und in der unteren Anordnung die elektrische Energie Die Formel für die elektrische Energie wird im Kapitel Elektrizitätslehre eingehend betrachtet Aus diesem Grund wir auf eine Herleitung an dieser Stelle verzichtet. bzw. Die elektrische Energie ergibt sich aus dem Produkt aus Spannung und der elektrischen Ladung. Dabei ist die Spannung gewissermaßen der Antrieb für die elektrischen Ladungsträger, die die elektrische Energie durch den Stromkreis transportieren. Da in der Wärmelehre genau wie in der Elektrizitätslehre Energie transportiert wird, kann eine analoge Formel für die thermische Energie aufgestellt werden. Dabei wird lediglich die Spannung (elektrische Potentialdifferenz) durch die Temperaturdifferenz ersetzt.

7 Die Träger der elektrischen Energie, also die Ladungsträger werden hier durch die Träger der thermischen Energie ersetzt. Letztere bezeichnet man schließlich als Entropie. Durch Umformen der Gleichung ergibt sich für die Entropie die Formel: Auch wenn die Vorstellung der Entropie als Träger der thermischen Energie vergleichbar ist mit der Vorstellung von elektrischen Ladungen als Träger der elektrischen Energie, so sollte man sich die Entropie trotzdem nicht als Teilchen vorstellen. So fließen beim Transport von Wärmeenergie nicht wirklich mikroskopisch kleine Entropieteilchen. Genauso fließen beim Transport von elektrischer Energie nicht wirklich elektrische Ladungsträger vom Kraftwerk zur Steckdose. (Die Elektronen bewegen sich bei der Stromstärke von 1A nur mit einer verschwindend kleinen Geschwindigkeit von ca. 0,00734mm/s). Trotzdem besitzen beide Modellvorstellungen aus Anschauungsgründen eine gewisse Berechtigung und führen zu einem besseren Verständnis der eher abstrakten physikalischen Größen Ladung und Entropie.

Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m

Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m GRATIS-Übungsdokument Gymnasium Klasse 8 Physik Thema: Mechanik, Wärmelehre, Elektrizitätslehre CATLUX de Energie Arbeit = Kraft Weg ; W = F s ; 1 Joule = 1 Newton Meter ; 1 J = 1 N m Energie ist gespeicherte

Mehr

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie.

Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Thermodynamik 2. Zweiter Hauptsatz der Thermodynamik. Entropie. Die statistische Definition der Entropie. Die Hauptsätze der Thermodynamik Kurze Zusammenfassung der Hauptsätze 0. Hauptsatz: Stehen zwei

Mehr

Entropie und Temperatur. Entropie von Anfang an

Entropie und Temperatur. Entropie von Anfang an Entropie und Temperatur Entropie von Anfang an Wärmelehre: physikalische Größen Temperatur (zunächst in C - bekannt) Um zu beschreiben, wie viel Wärme ein Körper enthält, braucht man eine zweite Größe:

Mehr

Kraft Arbeit Energie

Kraft Arbeit Energie Kraft Arbeit Energie Definition Kraft mit Beispielen Kraftmessung und Hooke sches Gesetz Gewichtskraft Kräftegleichgewicht Einfache Maschinen und Goldene Regel der Mechanik Definition Physikalische Arbeit

Mehr

Kurze Einführung in die Thermodynamik mit Begriffsklärungen

Kurze Einführung in die Thermodynamik mit Begriffsklärungen Kurze Einführung in die Thermodynamik mit Begriffsklärungen Gliederung 1. Begriffsklärungen 2. Energieumwandlungen 3. Molare Volumenarbeit 4. Hauptsätze der Thermodynamik 5. Quellen 1. Begriffsklärungen

Mehr

Unterricht zur Wärmelehre auf der Basis des KPK

Unterricht zur Wärmelehre auf der Basis des KPK DER KARSLRUHER PHYSIKKURS Unterricht zur Wärmelehre auf der Basis des KPK DER KARSLRUHER PHYSIKKURS Wärmelehre ohne Entropie und Entropieströme ist wie Elektrizitätslehre ohne elektrische Ladung und

Mehr

Mechanik Erhaltungssätze (20 h) ENERGIE Historische Entwicklung des Energiebegriffs Energieerhaltungssatz

Mechanik Erhaltungssätze (20 h) ENERGIE Historische Entwicklung des Energiebegriffs Energieerhaltungssatz Mechanik Erhaltungssätze (0 h) Physik Leistungskurs ENERGIE Was ist Energie? Wozu dient sie? Probleme? 1 Historische Entwicklung des Energiebegriffs "Energie" = "Enérgeia (griechisch), deutsch: "Wirksamkeit".

Mehr

Std Themenbereiche im Lehrplan Inhalte im Lehrplan Kapitel in PRISMA Physik 7/8 Seiten im Buch. Reibungs-, Gewichtskraft und andere Kraftarten 8 17

Std Themenbereiche im Lehrplan Inhalte im Lehrplan Kapitel in PRISMA Physik 7/8 Seiten im Buch. Reibungs-, Gewichtskraft und andere Kraftarten 8 17 Stoffverteilungsplan Lehrplan für den Erwerb des Hauptschul- und des Realschulabschlusses (Regelschule) in Thüringen 2011 PRISMA Physik Thüringen Band 7/8 Schule: Klett 978-3-12-068821-1 Lehrer/ Lehrerin:

Mehr

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene)

Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Das Ideale Gas Kinetische Gastheorie (auf atomarer Ebene) Wir haben gesehen, dass ein sogenanntes 'ideales Gas' durch die Zustandsgleichung pv = νr T [1] beschrieben wird; wir wollen nun verstehen, welchen

Mehr

Kapitel 2 ARBEIT, ENERGIEERHALTUNG, WÄRME UND ERSTER HAUPTSATZ LERNZIELE INHALT. Definition der mechanischen Arbeit

Kapitel 2 ARBEIT, ENERGIEERHALTUNG, WÄRME UND ERSTER HAUPTSATZ LERNZIELE INHALT. Definition der mechanischen Arbeit Kapitel 2 ARBEIT, ENERGIEERHALTUNG, WÄRME UND ERSTER HAUPTSATZ LERNZIELE Definition der Arbeit Mechanische Energieformen, kinetische Energie, potentielle Energie, Rotationsenergie Mechanischer Energieerhaltungssatz

Mehr

Grundwissen. Physik. Jahrgangsstufe 8

Grundwissen. Physik. Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Grundwissen Physik Jahrgangsstufe 8 Seite 1 1. Energie; E [E] = 1Nm = 1J (Joule) 1.1 Energieerhaltungssatz Formulierung I: Energie kann nicht erzeugt oder vernichtet

Mehr

Unterschiedliche Energieformen Lehrerinformation

Unterschiedliche Energieformen Lehrerinformation Lehrerinformation 1/11 Arbeitsauftrag Die SuS lesen einen Informationstext und ordnen die Bilder den entsprechenden Texten zu. Anschliessend vertiefen sie ihr Wissen bei einem Memory-Spiel. Ziel Die SuS

Mehr

Eine Analogie zwischen Mechanik, Wärmelehre und Elektrizitätslehre. Strukturen und Analogien

Eine Analogie zwischen Mechanik, Wärmelehre und Elektrizitätslehre. Strukturen und Analogien Eine Analogie zwischen Mechanik, Wärmelehre und Elektrizitätslehre 1 1. Analogien in der Naturwissenschaft 2. Analogie zwischen Mechanik, Elektrizitätslehre, Wärmelehre und Stofflehre 3. Gemeinsame Anschauungen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Es gibt kein Zurück - Wärme und Entropie verstehen mit 1 Farbfolie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Es gibt kein Zurück - Wärme und Entropie verstehen mit 1 Farbfolie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Es gibt kein Zurück - Wärme und Entropie verstehen mit 1 Farbfolie Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Der neue Lehrplan für Realschulen Das Grundwissen im Fach Physik I und II/III

Der neue Lehrplan für Realschulen Das Grundwissen im Fach Physik I und II/III Der neue Lehrplan für Realschulen Das Grundwissen im Fach Physik I und II/III (c) 2001 ISB Abt. Realschule Referat M/Ph/TZ Jahrgangsstufen übergreifendes Grundwissen Fähigkeit, Phänomene und Vorgänge unter

Mehr

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas

Die Carnot-Maschine SCHRITT III. Isotherme Kompression bei einer Temperatur T 2 T 2. Wärmesenke T 2 = konstant. Nicolas Thomas Die Carnot-Maschine SCHRITT III Isotherme Kompression bei einer Temperatur T 2 T 2 Wärmesenke T 2 = konstant Die Carnot-Maschine SCHRITT IV Man isoliert das Gas wieder thermisch und drückt den Kolben noch

Mehr

Kernlehrplan (KLP) für die Klasse 9 des Konrad Adenauer Gymnasiums

Kernlehrplan (KLP) für die Klasse 9 des Konrad Adenauer Gymnasiums Kernlehrplan (KLP) für die Klasse 9 des Konrad Adenauer Gymnasiums Zentrale Inhalte in Klasse 9 1. Inhaltsfeld: Elektrizität Schwerpunkte: Elektrische Quelle und elektrischer Verbraucher Einführung von

Mehr

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007

Versuch 2. Physik für (Zahn-)Mediziner. c Claus Pegel 13. November 2007 Versuch 2 Physik für (Zahn-)Mediziner c Claus Pegel 13. November 2007 1 Wärmemenge 1 Wärme oder Wärmemenge ist eine makroskopische Größe zur Beschreibung der ungeordneten Bewegung von Molekülen ( Schwingungen,

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Energieformen. Energieformen Umwandelbarkeit und Wertigkeit der Energie Prinzip der Wärmekraftmaschine und der Wärmepumpe

Energieformen. Energieformen Umwandelbarkeit und Wertigkeit der Energie Prinzip der Wärmekraftmaschine und der Wärmepumpe Energieformen Energieformen Umwandelbarkeit und Wertigkeit der Energie Prinzip der Wärmekraftmaschine und der Wärmepumpe Was Sie erwartet Verschiedene Energieformen Umwandlung von Energieformen Wertigkeit

Mehr

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell

2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell 2.4 Kinetische Gastheorie - Druck und Temperatur im Teilchenmodell Mit den drei Zustandsgrößen Druck, Temperatur und Volumen konnte der Zustand von Gasen makroskopisch beschrieben werden. So kann zum Beispiel

Mehr

Der Karlsruher Physikkurs

Der Karlsruher Physikkurs Der Karlsruher Physikkurs Holger Hauptmann Abteilung für Didaktik der Physik www.physikdidaktik.uni-karlsruhe.de holger.hauptmann@physik.uni-karlsruhe.de 1. Ausgangspunkt 2. Physikalische Grundlagen 3.

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Der 1. Hauptsatz. Energieerhaltung:

Der 1. Hauptsatz. Energieerhaltung: Der 1. Hauptsatz Energieerhaltung: Bei einer Zustandsänderung tauscht das betrachtete System Energie ( W, Q mit seiner Umgebung aus (oft ein Wärmereservoir bei konstantem. Für die Energiebilanz gilt: U

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. November 2015 HSD. Physik. Energie

Hochschule Düsseldorf University of Applied Sciences. 12. November 2015 HSD. Physik. Energie Physik Energie Skalarprodukt Vektormultiplikation Typ Name Schreibweise Resultat Skalar mal Vektor Produkt mit einem Skalar ~a 0 = c ~a Vektor Vektor mal Vektor Skalarprodukt (inneres Produkt) s = ~a ~b

Mehr

Nabil Gad. Grundwissen Energie Klasse. Bergedorfer Kopiervorlagen

Nabil Gad. Grundwissen Energie Klasse. Bergedorfer Kopiervorlagen Nabil Gad Grundwissen Energie 5. 10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Die Arbeitsblätter der vorliegenden Kopiervorlagenmappe geben Ihren Schülerinnen und Schülern die Möglichkeit,

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Physikalische Chemie 1

Physikalische Chemie 1 Physikalische Chemie 1 Christian Lehmann 31. Januar 2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Teilgebiete der Physikalischen Chemie............... 2 1.1.1 Thermodynamik (Wärmelehre)............... 2 1.1.2

Mehr

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine:

4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik. Thermischer Wirkungsgrad einer Arbeitsmaschine: 4. Zweiter Hauptsatz der Thermodynamik 4.1. Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung des 2. Hauptsatzes der Thermodynamik Thermischer Wirkungsgrad einer Arbeitsmaschine: Beispiel Ottomotor

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Thermodynamik mit Entropie und Temperatur.

Thermodynamik mit Entropie und Temperatur. Thermodynamik mit Entropie und Temperatur michael@kit.edu 1 1 Wärme und Entropie 2 Entropie und Temperatur 3 Entropiestrom 4 Entropie und zweiter Hautsatz 5 Entropie und Energie 6 Messen von Entropiemengen

Mehr

Klasse 9/10 Blatt 1. Kerncurriculum für das Fach Physik Schulcurriculum (kursiv) Rosenstein- Gymnasium Heubach

Klasse 9/10 Blatt 1. Kerncurriculum für das Fach Physik Schulcurriculum (kursiv) Rosenstein- Gymnasium Heubach Klasse 9/10 Blatt 1 1 Wärmelehre Wdh. Temperaturmessung (Celsius) absolute Temperatur (Kelvin) Entropie (qualitativ), Wdh. Energieübertragung durch Wärme und Arbeit Innere Energie Wärmeleitung, Wärmestrahlung,

Mehr

6 Elektromagnetische Schwingungen und Wellen

6 Elektromagnetische Schwingungen und Wellen 6 Elektromagnetische Schwingungen und Wellen Gegen Ende des 19.Jahrhunterts gelang dem berühmten deutschen Physiker Heinrich Rudolph Hertz (1857-1894) zum ersten Mal in der Geschichte der Menschheit der

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas)

Beispiel für ein thermodynamisches System: ideales Gas (Edelgas) 10. Hauptsätze tze der Wärmelehre Thermodynamik: zunächst: Klassische Mechanik punktförmiger Teilchen, starrer und deformierbarer Körper aber: Bewegungsgleichungen für N=10 23 Teilchen mit 6N ariablen

Mehr

Energieverteilung lost and useful energy

Energieverteilung lost and useful energy 21a Entropie 1 Energieverteilung lost and useful energy 2 Prozesse, die wir selten beobachten Zeit Kaffeetasse wird wärmer in kälterer Umgebung Es fließt Strom, wenn man einen iderstand erhitzt enn man

Mehr

Gemeinsame Strukturen und Analogien nutzen bei der Arbeit mit dem neuen Lehrplan Physik

Gemeinsame Strukturen und Analogien nutzen bei der Arbeit mit dem neuen Lehrplan Physik Gemeinsame Strukturen und Analogien nutzen bei der Arbeit mit dem neuen Lehrplan Physik 1 Lehrplan physik Zielvorstellung Zielvorstellung Lehrplan soll nicht so überladen sein Zielvorstellung Lernen Kein

Mehr

Grundlagenfach Physik

Grundlagenfach Physik 1. Stundendotation 1. Klasse 2. Klasse 3. Klasse 4. Klasse 5. Klasse 6. Klasse 1. Semester 2 3 2. Semester 2 2 2 2. Allgemeine Bildungsziele Physik erforscht mit experimentellen und theoretischen Methoden

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Die Analogie das Herz des Denkens. Strom Antrieb Widerstand Kapazität eine Fünfer-Analogie

Die Analogie das Herz des Denkens. Strom Antrieb Widerstand Kapazität eine Fünfer-Analogie Die Analogie das Herz des Denkens Bekannte und überraschende Analogien in der Physik 08.05.2015 Strom Antrieb Widerstand Kapazität eine Fünfer-Analogie Peter Schmälzle, Staatliches Seminar für Didaktik

Mehr

Hydrodynamik: bewegte Flüssigkeiten

Hydrodynamik: bewegte Flüssigkeiten Hydrodynamik: bewegte Flüssigkeiten Wir betrachten eine stationäre Strömung, d.h. die Geschwindigkeit der Strömung an einem gegebenen Punkt bleibt konstant im Laufe der Zeit. Außerdem betrachten wir zunächst

Mehr

(17PH10T09Entropie.docx) FLG, Schich 30. Mai 2017 Seite 1 von 9

(17PH10T09Entropie.docx) FLG, Schich 30. Mai 2017 Seite 1 von 9 (17PH10T09Entropie.docx) FLG, Schich 30. Mai 2017 Seite 1 von 9 1. Lässt man eine heiße Tasse Kaffee auf dem Tisch stehen, so kühlt sie sich ab. Dabei gibt sie ihre Energie thermisch so lange an die Umgebung

Mehr

Hauptsätze der Thermodynamik

Hauptsätze der Thermodynamik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Hauptsätze der Thermodynamik Dominik Pfennig, 31.10.2012 Inhalt 0. Hauptsatz Innere Energie 1. Hauptsatz Enthalpie Satz von Hess 2. Hauptsatz

Mehr

Grundwissen. Physik. Jahrgangsstufe 7

Grundwissen. Physik. Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Grundwissen Physik Jahrgangsstufe 7 Seite 1 1. Aufbau der Materie 1.1 Atome Ein Atom besteht aus dem positiv geladenen Atomkern und der negativ geladenen Atomhülle aus

Mehr

Thermodynamik der Atmosphäre II

Thermodynamik der Atmosphäre II Einführung in die Meteorologie Teil I Thermodynamik der Atmosphäre II Der erste Hauptsatz der Thermodynamik Die Gesamtenergie in einem geschlossenen System bleibt erhalten. geschlossen steht hier für thermisch

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Stromkreisspiel. Art: Warmup/Übung

Stromkreisspiel. Art: Warmup/Übung Stromkreisspiel Art: Warmup/Übung Dieses Spiel eignet sich als Einstiegsübung in das Thema Stromkreise. Spielerisch wird ein Verständnis von Stromkreisen entwickelt. Symbole ausdrucken und laminieren.

Mehr

Onsagersche Gleichung. Energetische Beziehungen

Onsagersche Gleichung. Energetische Beziehungen Onsagersche Gleichung. Energetische Beziehungen R I 4 V t t 1 r 8... D A p l J LX c x Zustandsgrössen sind Grössen, die zur Beschreibung des Zustandes eines stofflichen Systems dienen, T, V, p, m,... T,

Mehr

Schulcurriculum für das Fach Physik

Schulcurriculum für das Fach Physik Schulcurriculum für das Fach Physik 1 S Jahrgangsstufe 7 Akustik Schülerversuch; Schülervortrag; 20 Entstehung, Ausbreitung und Vernetzung mit Musik, Biologie Empfangen des Schalls; und Mathematik. Schwingungsphänomene;

Mehr

3.8 Das Coulombsche Gesetz

3.8 Das Coulombsche Gesetz 3.8 Das Coulombsche Gesetz Aus der Mechanik ist bekannt, dass Körper sich auf Kreisbahnen bewegen, wenn auf sie eine Zentripetalkraft in Richtung Mittelpunkt der Kreisbahn wirkt. So bewegt sich beispielsweise

Mehr

SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie in der Systemanalyse

SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie in der Systemanalyse Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 8: Thermodynamik und Informationstheorie

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #10 30/10/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Thermisches Gleichgewicht Soll die Temperatur geändert werden, so muss dem System Wärme (kinetische

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

Schulcurriculum Fach Physik Kl Physik 1 S

Schulcurriculum Fach Physik Kl Physik 1 S SchulcurriculumfürdasFach Physik 1 S Jahrgangsstufe 7 Kompetenzen Zugeordnete Inhalte Methodencurriculum Zeit Akustik Schülerversuch; Schülervortrag; 20 Entstehung, Ausbreitung und Vernetzung mit Musik,

Mehr

Joule, Kalorie & Co. Was ist eigentlich Energie?

Joule, Kalorie & Co. Was ist eigentlich Energie? Joule, Kalorie & Co. Was ist eigentlich Energie? Dr. Dr. Max-Planck-Institut für Physik Energie in den Schlagzeilen Energieverbrauch Energie sparen Energieverlust Energieverschwendung Energieressourcen

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

Masse von Newton und Einstein zu Higgs und dunkler Materie

Masse von Newton und Einstein zu Higgs und dunkler Materie von Newton und Einstein zu Higgs und dunkler Materie Institut f. Kern- und Teilchenphysik Dresden, 13.11.2008 Inhalt 1 Einleitung 2 Newton träge und schwere 3 Einstein bewegte und Ruhemasse 4 Higgs Ruhemasse

Mehr

Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8

Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8 Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8 1. Physik als Naturbeobachtung unter bestimmten Aspekten a) zwischen Beobachtung und physikalischer Erklärung unterscheiden

Mehr

E2: Wärmelehre und Elektromagnetismus 7. Vorlesung

E2: Wärmelehre und Elektromagnetismus 7. Vorlesung E2: Wärmelehre und Elektromagnetismus 7. Vorlesung 30.04.2018 Heute: - 2. Hauptsatz - Boltzmann-Verteilung https://xkcd.com/1166/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 30.04.2018 Prof. Dr. Jan Lipfert

Mehr

Inhaltsverzeichnis. Kräfte und ihre Wirkungen... 8

Inhaltsverzeichnis. Kräfte und ihre Wirkungen... 8 Inhaltsverzeichnis 1 Kräfte und ihre Wirkungen.... 8 Volumen und Masse... 10 So kannst du vorgehen: Experimentieren... 12 Leichte und schwere Stoffe... 14 Das hast du gelernt... 16 Löse mit Köpfchen...

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 8. Thermodynamik und Informationstheorie

Mehr

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen

Thermodynamik. Wechselwirkung mit anderen Systemen Wärme, Arbeit, Teilchen 18a Temperatur 1 Thermodynamik Thermodynamik ist eine phänomenologische Wissenschaft Sie beschreibt die Wechselwirkung von Systemen mit ihrer Umgebung Aus der Erfahrung und durch zahllose Beobachtungen

Mehr

Entropie und Wärme im Karlsruher Physikkurs

Entropie und Wärme im Karlsruher Physikkurs Entropie und Wärme im Karlsruher Physikkurs Beitrag zum Treffen am 10. Jan. 2014 in Frankfurt Jörg Hüfner, Universität Heidelberg Temperatur, Wärme und Entropie sind Größen, die in die Physik eingeführt

Mehr

E2: Wärmelehre und Elektromagnetismus 7. Vorlesung

E2: Wärmelehre und Elektromagnetismus 7. Vorlesung E2: Wärmelehre und Elektromagnetismus 7. Vorlesung 30.04.2018 Heute: - 2. Hauptsatz - Boltzmann-Verteilung https://xkcd.com/1166/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de 30.04.2018 Prof. Dr. Jan Lipfert

Mehr

Schulcurriculum für das 8. Schuljahr am Cornelius-Burgh-Gymnasium Erkelenz. auf der Grundlage vom KLP GY 8 NRW

Schulcurriculum für das 8. Schuljahr am Cornelius-Burgh-Gymnasium Erkelenz. auf der Grundlage vom KLP GY 8 NRW Schulcurriculum für das 8. Schuljahr am Cornelius-Burgh-Gymnasium Erkelenz auf der Grundlage vom KLP GY 8 NRW Fachlicher Kontext Konkretisierungen Unterricht (Spektrum NRW) Methoden und Blickpunkte Versuche

Mehr

Lehrplan. Physik. Fachoberschule. Fachbereiche: Design Ernährung und Hauswirtschaft Sozialwesen Wirtschaft

Lehrplan. Physik. Fachoberschule. Fachbereiche: Design Ernährung und Hauswirtschaft Sozialwesen Wirtschaft Lehrplan Physik Fachoberschule Fachbereiche: Design Ernährung und Hauswirtschaft Sozialwesen Wirtschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach

Mehr

Der Karlsruher Physikkurs. Dr. Holger Hauptmann Marcus Rutz-Lewandowski Heinz-Georg Schneider

Der Karlsruher Physikkurs. Dr. Holger Hauptmann Marcus Rutz-Lewandowski Heinz-Georg Schneider KPK Fachsitzung Kaiserslautern/Landau/Speyer 2012, Folie 1 Der Karlsruher Physikkurs Dr. Holger Hauptmann Marcus Rutz-Lewandowski Heinz-Georg Schneider KPK Fachsitzung Kaiserslautern/Landau/Speyer 2012,

Mehr

Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme?

Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme? Einführung: Wovon handelt die Thermodynamik? Was sind thermodynamische Systeme? Thermodynamische Systeme: 1. Charakteristikum: - sehr große Anzahl von Freiheitsgraden: N = 6 10 23 Teilchen pro Mol - es

Mehr

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre

13.Wärmekapazität. EP Vorlesung 14. II) Wärmelehre 13.Wärmekapazität EP Vorlesung 14 II) Wärmelehre 10. Temperatur und Stoffmenge 11. Ideale Gasgleichung 12. Gaskinetik 13. Wärmekapazität 14. Hauptsätze der Wärmelehre Versuche: Mechanisches Wärmeäquivalent

Mehr

Vorlesung Theoretische Chemie I

Vorlesung Theoretische Chemie I Institut für Physikalische and Theoretische Chemie, Goethe-Universität, Frankfurt am Main 20. Dezember 2013 Teil I Energieeinheiten Joule E kin = 1 2 mv 2 E pot = mgh [E] = kg m2 s 2 = J Verwendung: Energie/Arbeit

Mehr

6.2 Temperatur und Boltzmann Verteilung

6.2 Temperatur und Boltzmann Verteilung 222 KAPITEL 6. THERMODYNAMIK UND WÄRMELEHRE 6.2 Temperatur und Boltzmann Verteilung Im letzten Abschnitt haben wir gesehen, dass eine statistische Verteilung von Atomen eines idealen Gases in einem Volumen

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

Energie was ist denn das konkret? Workshop für den Fächerverbund Biologie, Naturphänomene und Technik (BNT)

Energie was ist denn das konkret? Workshop für den Fächerverbund Biologie, Naturphänomene und Technik (BNT) Energie was ist denn das konkret? Workshop für den Fächerverbund Biologie, Naturphänomene und Technik (BNT) Joachim Lerch 1. Vorsitzender j.lerch@science-days.de www.science-days.de 18. 20. Oktober 2019

Mehr

Wärmelehre Wärme als Energie-Form

Wärmelehre Wärme als Energie-Form Wärmelehre Wärme als Energie-Form Joule's Vorrichtung zur Messung des mechanischen Wärme-Äquivalents alte Einheit: 1 cal = 4.184 J 1 kcal Wärme erwärmt 1 kg H 2 O um 1 K Wird einem Körper mit der Masse

Mehr

Steinbart-Gymnasium Duisburg. Schulinternes Curriculum Physik Sekundarstufe I

Steinbart-Gymnasium Duisburg. Schulinternes Curriculum Physik Sekundarstufe I - 1 - Steinbart-Gymnasium Duisburg Schulinternes Curriculum Physik Sekundarstufe I Schulinternes Curriculum Physik Jahrgangsstufe 5 JGST. 5 TEILGEBIET INHALTSFELD LEHRBUCH KOMPETENZEN U-STD. 5.1 Verschiedene

Mehr

Nabil Gad. Grundwissen Energie Klasse. Bergedorfer Kopiervorlagen

Nabil Gad. Grundwissen Energie Klasse. Bergedorfer Kopiervorlagen Nabil Gad Grundwissen Energie 5. 10. Klasse Bergedorfer Kopiervorlagen Zu diesem Material Die Arbeitsblätter der vorliegenden Kopiervorlagenmappe geben Ihren Schülerinnen und Schülern die Möglichkeit,

Mehr

Prüfungsthemen NTG

Prüfungsthemen NTG Arbeit / Leistung berechnen 1 Atom, Molekül 1 Chemische Formel beschreiben, Reaktionsgleichung 1 Drehzahl, Umfangsgeschwindigkeit berechnen 1 elektrische Leistung / Energie berechnen, Heizleistung 3 Festigkeitsberechnung

Mehr

Grundbegriffe der Elektrotechnik

Grundbegriffe der Elektrotechnik Grundbegriffe der Elektrotechnik Inhaltsverzeichnis 1 Die elektrische Ladung Q 1 2 Die elektrische Spannung 2 2.1 Die elektrische Feldstärke E....................................................... 2 2.2

Mehr

Physik. Schuleigenes Kerncurriculum. Klasse Kepler-Gymnasium Freudenstadt. Schwingungen und Wellen. Elektrodynamik: Felder und Induktion

Physik. Schuleigenes Kerncurriculum. Klasse Kepler-Gymnasium Freudenstadt. Schwingungen und Wellen. Elektrodynamik: Felder und Induktion 1 Klasse 11+12 Elektrodynamik: Felder und Induktion Einführung in die Kursstufe Felder Analogien zwischen Gravitationsfeld, Magnetfeld und elektrischem Feld Eigenschaften, Visualisierung und Beschreibung

Mehr

Fach Physik Jahrgangsstufe 7

Fach Physik Jahrgangsstufe 7 Jahrgangsstufe 7 Das Licht 1. Licht und Sehen 2. Lichtquellen und Lichtempfänger 3. Geradlinige Ausbreitung des Lichts; Schatten Strahlenoptik 1. Licht an Grenzflächen Reflexion am ebenen Spiegel, Brechung

Mehr

Der Bandgenerator (van-de-graff-generator)

Der Bandgenerator (van-de-graff-generator) Der Bandgenerator (van-de-graff-generator) Durch Reibungs-, Polarisations- und Influenzeffekte bewirkt der Bandgenerator eine Ladungstrennung: eine Sorte befindet sich in der Kugel, die andere in der Erde.

Mehr

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung

Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Nachtrag zu 11: 11.6.Statistische Physik: Entropie, Boltzmann-Verteilung Ludwig Boltzmann 1860: Maxwellsche Geschwindigkeitsverteilung 1865: Clausius, thermodynamische Entropie, 2. Hauptsatz: Entropie

Mehr

LEHRPLÄNE, BILDUNGSSTANDARDS UND DER KPK

LEHRPLÄNE, BILDUNGSSTANDARDS UND DER KPK LEHRPLÄNE, BILDUNGSSTANDARDS UND DER KPK KPK-Didaktik-Workshop 31. Mai 2013 Folie 1 ZIELVORSTELLUNG Folie 2 1 KRITIK AM PHYSIKUNTERRICHT Lehrpläne sind überladen Lernen auf Vorrat isoliertes Faktenwissen

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 26.1.2007 Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung.

Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung. Teilchenmodell Teilchenmodell: * Alle Stoffe bestehen aus Teilchen (Atomen, Molekülen). * Die Teilchen befinden sich in ständiger Bewegung. *Zwischen den Teilchen wirken anziehende bzw. abstoßende Kräfte.

Mehr

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen:

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Größen mit Formelzeichen, Einheiten und Umrechnungen: Bsp.: 520 mm : 10 = 52 cm Bsp.: 120 h : 24 = 5 d 6 Weg FZ: s Einheiten: mm; cm;

Mehr

ELEMENTE DER WÄRMELEHRE

ELEMENTE DER WÄRMELEHRE ELEMENTE DER WÄRMELEHRE 3. Elemente der Wärmelehre 3.1 Grundlagen 3.2 Die kinetische Gastheorie 3.3 Energieumwandlungen 3.4 Hauptsätze der Thermodynamik 2 t =? 85 ºC t =? 61.7 ºC Warum wird der Kaffe eigentlich

Mehr

Energie effizient nutzen

Energie effizient nutzen ZPG Biologie, Naturphänomene und Technik ZPG BNT 2017 effizient nutzen 1 effizient nutzen Multiplikatorentagung 22.-24.03.2017 Bad Wildbad effizient nutzen In welchen Gegenständen, die Sie jetzt bei sich

Mehr

Selbst-Test zur Vorab-Einschätzung zum Vorkurs Physik für Mediziner

Selbst-Test zur Vorab-Einschätzung zum Vorkurs Physik für Mediziner Liebe Studierende der Human- und Zahnmedizin, mithilfe dieses Tests können Sie selbst einschätzen, ob Sie den Vorkurs besuchen sollten. Die kleine Auswahl an Aufgaben spiegelt in etwa das Niveau des Vorkurses

Mehr

- + Worin ist also überall Energie gespeichert? Fällt dir noch mehr ein? Ergänze die Tabelle. In welche Energie kann man es umwandeln?

- + Worin ist also überall Energie gespeichert? Fällt dir noch mehr ein? Ergänze die Tabelle. In welche Energie kann man es umwandeln? Energie ist nicht nur Strom Strom ist heute sehr wichtig. Viele Geräte die wir benutzen funktionieren mit Strom. Aber auch das Auto braucht Energie zum fahren. Und natürlich auch die Menschen brauchen

Mehr

14. Mechanische Schwingungen und Wellen

14. Mechanische Schwingungen und Wellen 14. Mechanische Schwingungen und Wellen Schwingungen treten in der Technik in vielen Vorgängen auf mit positiven und negativen Effekten (z. B. Haarrisse, Achsbrüche etc.). Deshalb ist es eine wichtige

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr