Röntgendiffraktometrie
|
|
|
- Roland Hofmann
- vor 9 Jahren
- Abrufe
Transkript
1 Kapitel 3.4. Röntgendiffraktometrie Lothar Schwabe, Freie Universität Berlin 1. Einleitung Die Eigenschaft der Röntgenstrahlen, unterschiedliche Materialien zu durchdringen und dabei mehr oder weniger stark abgeschwächt zu werden, hat zu den bekannten bildgebenden Anwendungen in der Medizin und Technik geführt. Neben dieser Durchleuchtungstechnik kann jedoch auch die Beugung von Röntgenstrahlen analytisch genutzt werden. Die Röntgenbeugung durch Strukturen eines Probenmaterials kann wertvolle Informationen über dessen inneren Aufbau liefern. Diese als Röntgendiffraktometrie bezeichnete Methode wird unter anderem zur Charakterisierung und Feinstrukturuntersuchung von Substanzen und Zubereitungen angewandt. Sie geht auf eine Entdeckung von Max von Laue (1912) zurück. In seiner Versuchsanordnung lenkte ein Kristall einen Röntgenstrahl in unterschiedliche Richtungen ab, so dass dieser auf einer Fotoplatte ein Beugungsmuster hinterließ. Hierdurch war zugleich der Wellencharakter der von Conrad Röntgen entdeckten X-Strahlen bewiesen [1]. 2. Eigenschaften und Erzeugung von Röntgenstrahlen Röntgenstrahlen haben mit dem Licht gemeinsam, dass sie elektromagnetische Wellen darstellen, die sich geradlinig ausbreiten, und gleichzeitig aus Photonen bestehend aufgefasst werden können. Aufgrund ihrer viel kürzeren Wellenlänge sind Röntgenstrahlen allerdings erheblich energiereicher als das sichtbare oder ultraviolette Licht. Eigenschaften von Röntgenstrahlen - Wellenlängenbereich ca. 0,01-10 nm - Durchdringungsvermögen (materialabhängig) - Duch Linsen und magnetische Felder nicht ablenkbar - Keine Interferenz mit gewöhnlichen Beugungsgittern In einer Röntgenröhre werden die an der Glühkathode austretenden Elektronen durch eine zwischen Kathode und Anode angelegte Hochspannung (in der Röntgendiffraktometrie oft im Bereich von ca. 20 bis 60 kv) beschleunigt. Die Elektronen prallen auf die Anode, wobei Röntgenstrahlung aufgrund zweier unterschiedlicher Mechanismen erzeugt wird: 1. Die beschleunigten Elektronen werden in der Nähe von Atomkernen des Anodenmaterials abgebremst und geben dabei einen Teil ihrer Energie als so genannte Bremsstrahlung ab, die das kontinuierliche Röntgenspektrum liefert. Moderne Pharmazeutische Technologie
2 2. Auftreffende Elektronen schlagen aus den K-Schalen der Anodenmetall-Atome Elektronen heraus, so dass in dieser Lücken entstehen, die durch Elektronen der L-Schale oder darüberliegender Schalen ersetzt werden. Bei diesem Übergang wird jeweils ein Photon emittiert, dessen Energie im Bereich der Röntgenstrahlung liegt. Dieser zweite Mechanismus liefert das charakteristische Röntgenspektrum oder Linienspektrum, dessen Peak-Lage vom Anodenmaterial (z.b. Kupfer oder Wolfram) abhängig ist und das kontinuierliche (Brems-)Spektrum überlagert. Für röntgendiffraktometrische Untersuchungen wird eine bestimmte Wellenlänge aus dem Linienspektrum herausfiltriert (monochromatische Röntgenstrahlung). Abb. 1: Röntgenröhre, schematisch Abb. 2: Beispiel eines Röntgenspektrums (modifiziert nach [2]) Moderne Pharmazeutische Technologie
3 3. Beugung von Röntgenstrahlen, Braggsches Gesetz Die Wellenlänge von Röntgenstrahlen liegt im Bereich von Atom- bis Molekülgröße. Kristalle, die ein dreidimensionales Gitter aus Atomen oder Molekülen darstellen, wirken somit auf Röntgenstrahlen wie eine Vielzahl von in parallelen Ebenen angeordneten Beugungsgittern. Die ebenen, parallelen Schichten aus Atomen oder Molekülen werden als Netzebenen bezeichnet. Die Atome in einem Kristall werden durch den auftreffenden Röntgenstrahl zu Schwingungen angeregt und strahlen dabei selbst Wellenfronten gleicher Wellenlänge (Sekundärstrahlung) ab. Diese Wellen der Sekundärstrahlung interferieren miteinander. Sie legen je nach Entstehungsort und Geometrie des Kristallgitters unterschiedlich lange Wege zurück ( Gangunterschied ), so dass parallele Strahlen durch Phasenverschiebung gegeneinander eine Verstärkung oder Abschwächung ihrer Intensität erfahren können. Die Bedingungen, unter denen eine Interferenz im Sinne einer maximalen Verstärkung (Schwingen paralleler Sekundärwellen in Phase) auftreten kann, wird durch das Braggsche Gesetz beschrieben: n λ = 2 d sin θ n = ganze Zahl, d = Netzebenenabstand, θ = Einfallswinkel des Primärstrahls Dies bedeutet, es tritt eine maximale Verstärkung (Intensitätsmaximum) auf, wenn 2 d sin θ einem ganzzahligen Vielfachen der Wellenlänge entspricht. Abb. 3: Prinzip der Röntgendiffraktometrie (modifiziert nach [2]) In der Abbildung 3 sind zwei in Phase schwingende, unter dem Winkel θ einfallende Röntgenstrahlen dargestellt, die in den Punkten A und B an der obersten Netzebene 1 gebeugt werden. Gleichzeitig werden die eindringenden Strahlen auch an der Netzebene 2 in den Punkten C und D gebeugt. Es werden nachfolgend nur die Sekundärstrahlen betrachtet, die unter gleichem Winkel θ (wie bei einer Reflexion) abgelenkt werden. Der in der tieferen Netzebene 2 in Punkt C gebeugte Strahl legt einen um die Strecke 2 l längeren Weg bis zum Punkt S 3 zurück als der an Netzebene 1 in B gebeugte Strahl bis zum Punkt S 2, wobei l = d sin θ ist. Entspricht 2 l (= 2 d sin θ) der Wellenlänge λ, treffen die Sekundärstrahlen in S 2 und S 3 mit einer Wellenlänge Moderne Pharmazeutische Technologie
4 Gangunterschied, d.h. in gleicher Phase auf und interferieren im Sinne einer Intensitätsverstärkung. In einer Pulverprobe liegen kristalline Teilchen räumlich ungeordnet vor, somit können Beugungen an einer Vielzahl unterschiedlichster Netzebenen auftreten (in der Abbildung oben könnte z.b. bei veränderter Lage auch eine Netzebene durch B und D, die nächste durch A und C verlaufen, was einen kleineren Netzebenabstand bedeuten würde). Bei Auftreffen des Primärstrahls auf eine Pulverprobe wird somit eine große Anzahl konzentrischer Beugungskegel unterschiedlicher Winkel erzeugt, die auf einem großflächigen Film ein Bild zahlreicher konzentrischer Kreise mit dem Primärstrahl im Zentrum ergeben würde. In der Debye- Scherrer-Kamera wird ein ringförmig um die Probe herum angeordneter Filmstreifen verwendet, dessen Schwärzung photometriert wird, um die Höhe der Intensitätsmaxima und ihre Winkellage zu bestimmen. Abb. 4: Schematischer Aufbau Debye Scherrer Kamera (oben) und korrespondierende Aufnahme (unten) (modifiziert nach [2]) Häufig wird an Stelle eines Films zur Detektion der Intensitätsmaxima ein Zählrohr eingesetzt, das eine Kreisbahn um die Probe herum abfahren kann (Goniometer-Verfahren). Bei der Röntgendiffraktometrie werden Weit- und Kleinwinkelbeugung unterschieden: Röntgen-Weitwinkelbeugung (= Wide angle X-ray diffractometry, WAXD) Röntgen-Kleinwinkelbeugung (= Small angle X-ray diffractometry, SAXD) Netzebenenabstände Beugungswinkel 0,1-2 nm nm < 2 Moderne Pharmazeutische Technologie
5 4. Anwendungszwecke der Röntgendiffraktometrie Strukturaufklärung (Verteilung von Elektronendichten, Lage von Atomen bzw. Molekülen; hierzu sind Einkristall-Untersuchungen erforderlich) Identifizierung von Substanzen (das Röntgendiffraktogramm als Fingerabdruck einer Substanz) Identifizierung unterschiedliche polymorpher Formen einer Substanz Unterscheidung zwischen der amorphen und kristallinen Form eines Feststoffs Während kristalline Feststoffe charakteristische Beugungs-Intensitätsmaxima zeigen (in den Röntgendiffraktogrammen - Intensität gegen den Winkel 2θ - als Peaks erkennbar), zeigen amorphe Stoffe nur eine diffuse Streuung ( Halo ), was im Röntgendiffraktogramm als flacher, breiter Berg erkennbar ist. 4.1 Anwendungsbeispiele aus der pharmazeutischen Technologie: Die vierteilige Abbildung zeigt unter A ein Diffraktogramm reiner sprühgetrockneter Methylcellulose ohne, unter D das der reinen Acetylsalicylsäure (ASS) mit deutlichen Kristallinitätspeaks. Eine Sprüheinbettung mit 16 % ASS in Methylcellulose weist keine Peaks auf, während eine mit 40 % ASS deutliche Peaks des Wirkstoffs zeigt. Der 16-%ige ASS-Anteil liegt demnach amorph, in Form einzelner ASS-Moleküle im Hilfsstoff dispergiert vor, ein 40-%iger ASS- Anteil ist dafür jedoch zu hoch, er ist in Form von Kristallen in der Methylcellulose dispergiert. Die nebenstehende Abbildung zeigt im Vergleich die Röntgendiffraktogramme von Phenobarbital-Handelsware und einem Sprühprodukt des Phenobarbitals. Da Phenobarbital Polymorphie zeigt, also in unterschiedlichen Kristallmodifikationen auftreten kann, ist aus den deutlich differierenden Röntgendiffraktogrammen zu schließen, dass es sich bei den beiden Produkten um zwei unterschiedliche Modifikationen handelt. Abb. 5: Röntgendiffraktometrie dient zur Bestimmung ob eine Substanz amorph oder kristallin vorliegt (modifiziert nach [3]). Abb. 6: Röntgendiffraktometrie dient zur Bestimmung ob eine Substanz in verschiedenen polymorphen Modifikationen auftritt (modifiziert nach [4]). Moderne Pharmazeutische Technologie
6 5. Literatur 1. L. Spieß et al., Moderne Röntgenbeugung, 2005, B. G. Teubner Verlag. Wiesbaden. 2. H. Kirschner, Einführung in die Röntgenfeinstrukturanalyse, 1980, Vieweg-Verlag. Wiesbaden. 3. H.E. Junginger, Acta Pharmaceutica Technologica 23 (1977). pp D. Schenk, Acta Pharmacia Technologica 25 (1979). pp. 241 Moderne Pharmazeutische Technologie
Aufgabe 1: Kristallstrukturuntersuchungen
Aufgabe 1: Kristallstrukturuntersuchungen Röntgenstrahlung entsteht in unserem Gerät durch das Auftreffen hochenergetischer Elektronen auf eine Molybdän-Anode (Abbildung 1). Im Spektrum der Strahlung (Abbildung
Versuch A05: Bestimmung des Planck'schen Wirkungsquantums
Versuch A05: Bestimmung des Planck'schen Wirkungsquantums 25. April 2016 I Lernziele Entstehung des Röntgen-Bremskontinuums und der charakteristischen Röntgenstrahlung Zusammenhang zwischen Energie, Frequenz
31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser
31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:
Röntgenstrahlung (RÖN)
Röntgenstrahlung (RÖN) Manuel Staebel 2236632 / Michael Wack 2234088 1 Einleitung In diesem Versuch wird das Röntgenspektrum einer Molybdänanode auf einem x y Schreiber aufgezeichnet. Dies gelingt durch
1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter Verwendung
1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 a Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter
Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt
Röntgenstrahlung ist eine elektromagnetische Strahlung, wie z.b. Licht sie ist für Menschen nicht sichtbar Röntgenstrahlung besitzt Welleneigenschaften, ionisiert Gase, regt manche Stoffe zum Leuchten
Übungen zur Physik des Lichts
) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich
10.6. Röntgenstrahlung
10.6. Röntgenstrahlung Am 8. November 1895 entdeckte Wilhelm Conrad Röntgen in Würzburg die Röntgenstrahlung. Seine Entdeckung zählt zu den wohl bedeutendsten Entdeckungen in der Menschheitsgeschichte.
Versuch B 10: Versuch mit Röntgenstrahlen
- B10.1 - Versuch B 10: Versuch mit Röntgenstrahlen 1. Literatur: Harbeck, Physik Oberstufe Gerthsen, Kneser, Vogel, Physik Pohl III, Optik u. Atomphysik Finkelnburg, Atomphysik Glocker, Materialprüfung
Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung
1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4
Röntgenstrahlung Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Jakob Krämer Aktualisiert: am 12. 04. 2013 Röntgenstrahlung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen
Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II
David Enseling und Thomas Jüstel Seminar zur Vorlesung Anorganische Chemie I und II Folie 1 Entdeckung + erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's
Experimentalphysikalisches Seminar II. Präsentationsversuch: Elektronenbeugungsröhre
Experimentalphysikalisches Seminar II Präsentationsversuch: Elektronenbeugungsröhre Beugungsmuster in der EBR Einleitung Nachdem Einstein 1905 mit der Einführung des Photons erstmals eine Dualität von
Physik ea Klausur Nr Oktober 2013
Name: BE: / 77 = % Note: P. 1. Aufgabe: Röntgenstrahlung a. Skizziere den Aufbau einer Vorrichtung zur Herstellung eines gebündelten Röntgenstrahls, beschrifte ihre Bauteile und erläutere die Prozesse,
XDR - Röngendiffraktometrie
Praktikum Werkstoffmechanik Studiengang: Chemie-Ingenieurwesen Technische Universität München SS 2004 XDR - Röngendiffraktometrie Oliver Gobin 24 Juli 2004 Betreuer: Dr. W. Loos 1 Aufgabenstellung Folgende
Röntgenstrahlen (RÖN)
TUM Anfängerpraktikum für Physiker II Wintersemester 2006/2007 Röntgenstrahlen (RÖN) Inhaltsverzeichnis 07.11.2006 1.Einleitung...2 2.Photonenemission...2 2.1.Bremsstrahlung...2 2.2.Charakteristische Röntgenstrahlung...2
Versuch O
1 Grundlagen Plancksches Wirkungsquantum Das Plancksche Wirkungsquantum gibt den Zusammenhang zwischen Energie und Frequenz wieder und verknüpft damit die Welleneigenschaft mit der Teilcheneigenschaft.
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 38,
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 38, 23.07.2009 Vladimir Dyakonov Experimentelle Physik VI [email protected] Professor Dr. Vladimir
27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE
27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)
Röntgenbeugung. 1. Grundlagen, Messmethode
Röntgenbeugung 1. Grundlagen, Messmethode Beim Aufprall schneller Elektronen auf ein metallisches Anodenmaterial (hier: Kupfer) entsteht Röntgenstrahlung. Diese wird nach der Drehkristallmethode spektral
Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum:
Aufgaben zu Röntgenstrahlen LK Physik 13/1 Sporenberg Roentgen_September_2011 Datum: 08.09.2011 1.Aufgabe: In einem Röntgengerät fällt monochromatische Strahlung ( λ = 71 pm) auf die Oberfläche eines LiF-Kristalls.
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #26 04/12/2008 Vladimir Dyakonov [email protected] Spektrum des H-Atoms Energieniveaus der erlaubten Quantenbahnen E n = " m # e4 8 # h 2 # $ 0 2
Charakteristische Röntgenstrahlung von Wolfram
Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,
2. Wellenoptik Interferenz
. Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher
A10 - AVOGADRO - Konstante
A10 - AVOGADRO - Konstante Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung,
Radiologie Modul I. Teil 1 Grundlagen Röntgen
Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE
Die Abbildung zeigt eine handelsübliche Röntgenröhre
Die Röntgenstrahlung Historische Fakten: 1895 entdeckte Röntgen beim Experimentieren mit einer Gasentladungsröhre, dass fluoreszierende Kristalle außerhalb der Röhre zum Leuchten angeregt wurden, obwohl
Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min
Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung
Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch.
Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung, Röntgenröhre,
Welleneigenschaften von Elektronen
Seite 1 von 7 Welleneigenschaften von Elektronen Nachdem Robert Millikan 1911 die Ladung des Elektrons bestimmte, konnte bald auch seine Ruhemasse gemessen werden. Zahlreiche Experimente mit Elektronenstrahlen
TEP Monochromatisierung von charakteristischer Molybdän-Röntgenstrahlung
Monochromatisierung von charakteristischer TEP Verwandte Begriffe Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Absorption von Röntgenstrahlung, Absorptionskanten, Interferenz, Bragg-Streuung.
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #46 am 19.07.2007 Vladimir Dyakonov Atome und Strahlung 1 Atomvorstellungen J.J. Thomson 1856-1940
Protokoll in Physik. Datum:
Protokoll in Physik Datum: 04.11.2010 Protokollantin: Alrun-M. Seuwen Fachlehrer: Herr Heidinger Inhalt: h) Die Bragg-Reflexion 1) Die Wellenlänge des Röntgenlichts 2) Das Bragg-Kristall 3) Inteferenz
Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick
Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick [email protected] Röntgenbeugung an Pulvern
Röntgendiffraktometrie
Röntgendiffraktometrie Name: Matthias Jasch Matrikelnummer: 077 Mitarbeiter: Mirjam und Rahel Eisele Gruppennummer: 7 Versuchsdatum: 9. Mai 009 Betreuer: Verena Schendel 1 Einleitung Bei der Röntgendiffraktometrie
2.2.9 Elektromagnetisches Spektrum; Erzeugung, Nachweis und technische Anwendung elektromagnetischer Strahlung; Bragg-Beziehung
2.2.9 Elektromagnetisches Spektrum; Erzeugung, Nachweis un technische Anwenung elektromagnetischer Strahlung; Bragg-Beziehung Überblick über as elektromagnetische Spektrum Die Lichtwellen sin nur ein kleiner
Klausurinformation. Sie dürfen nicht verwenden: Handy, Palm, Laptop u.ae. Weisses Papier, Stifte etc. Proviant, aber keine heiße Suppe u.dgl.
Klausurinformation Zeit: Mittwoch, 3.Februar, 12:00, Dauer :90 Minuten Ort: Veterinärmediziner: Großer Phys. Hörsaal ( = Hörsaal der Vorlesung) Geowissenschaftler u.a.: Raum A140, Hauptgebäude 1. Stock,
Protokoll zum Versuch Debye - Scherrer - Verfahren. Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann
Protokoll zum Versuch Debye - Scherrer - Verfahren Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann 6. März 2005 3 Inhaltsverzeichnis 1 Aufgabenstellung 4 2 Theoretische Grundlagen 4 2.1 Röntgenstrahlung.................................
Röntgenstrahlung für Nichtmediziner
1 Röntgenstrahlung für Nichtmediziner Vorbereitung: Erzeugung von Röntgenstrahlen, Funktionsweise einer Röntgenröhre, spektrale Zusammensetzung von Röntgenstrahlung, Eigenschaften von Röntgenstrahlung,
Materialanalytik. Praktikum
Materialanalytik Praktikum Röntgenbeugung B503 Stand: 15.04.2015 Ziel: Anhand von Röntgenbeugungsuntersuchungen sollen folgende Bestimmungen durchgeführt werden: Identifikation zweier unbekannter Reinelemente
Materialkundliches Praktikum Phasenanalytik und Röntgendiffraktometrie Verantwortlicher Mitarbeiter: Dr. Matthias Müller
Materialkundliches Praktikum Phasenanalytik und Röntgendiffraktometrie Verantwortlicher Mitarbeiter: Dr. Matthias Müller Inhalt: 1. Physikalische Grundlagen der Röntgenbeugung. Struktur von Festkörpern,
ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 /
ISP-Methodenkurs Pulverdiffraktometrie Prof. Dr. Michael Fröba, AC Raum 4, Tel: 4 / 4838-337 www.chemie.uni-hamburg.de/ac/froeba/ Röntgenstrahlung (I) Wilhelm Conrad Röntgen (845-93) 879-888 Professor
Verfahren Grundlagen 1.2 Röntgen. 1.2 Grundlagen. Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801
Verfahren 1.2 Röntgen 1.2 Reichow-Heymann-Menke Handbuch Röntgen mit Strahlenschutz Grundwerk 11/801 Verfahren 1.2 Röntgen Inhaltsvrzeichnis 1.2 Prof. Dr. Christian Blendl 1.2.1 Erzeugung ionisierender
Praktikumsprotokoll Diffraktometrie
Versuchstag: 30.04.2009 Name: Christian Niedermeier Gruppe: 12 Betreuer: Verena Schendel Praktikumsprotokoll Diffraktometrie 1. Einleitung Durch Bestrahlung eines Einkristalls aus Silicium bzw. LiF mit
Beugung am Gitter mit Laser ******
5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild
Abbildungsgleichung der Konvexlinse. B/G = b/g
Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des
I. Geschichte der Röntgenstrahlen
I. Geschichte der Röntgenstrahlen Entdeckung durch Wilhelm Conrad Röntgen 1895 (erhält dafür 1. Nobelpreis 1901): Auslöser der (zufälligen) Entdeckung waren die zu dieser Zeit besonders intensiven Untersuchungen
Anfängerpraktikum D11 - Röntgenstrahlung
Anfängerpraktikum D11 - Röntgenstrahlung Vitali Müller, Kais Abdelkhalek Sommersemester 2009 1 Messung des ersten Spektrums 1.1 Versuchsaufbau und Hintergrund Es sollte das Spektrum eines Röntgenapparates
Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden
Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut Versuch Nr. 24: Röntgenographische Methoden Betreuer: M. Cwik, Tel.: 470 3574, E-mail: [email protected] November 2004 Im
Charakteristische Röntgenstrahlung von Molybdän
Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,
Versuch 501. Röntgenspektren und Compton - Effekt. Den schematischen Aufbau einer Röntgenröhre zeigt Bild 1.
Versuch 501 Röntgenspektren und Compton - Effekt 1. Aufgaben 1.1 Messen Sie das Röntgenspektrum in der ersten Beugungsordnung eines NaCl- Kristalls. 1.2 Messen Sie die Transmissionskurven von Kupfer und
Physik für Mediziner und Zahnmediziner
Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen
Entstehung der Röntgenstrahlung. im Unterschied zur. Entstehung der Gammastrahlung
Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen
1 Versuchsbeschreibung Versuchsvorbereitung Versuch: Wellennatur des Elektrons... 3
Versuch: EB Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: M. Kreller i.a. Dr. Escher Bearbeitet: A. Otto Aktualisiert: am 24. 02. 2011 Elektronenbeugung Inhaltsverzeichnis 1 Versuchsbeschreibung
Charakteristische Röntgenstrahlung von Eisen
Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,
5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15
5. Oberflächen-und Dünnschichtanalytik 1 5.1 Übersicht Schichtanalytik - Schichtmorphologie: - Oberflächeneigenschaften - Lichtmikroskop - Rasterelektronenmikroskop - Transmissionselektronenmikroskop -(STM,
Atomphysik für Studierende des Lehramtes
Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen
Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung
Entstehung der Röntgenstrahlung im Unterschied zur Entstehung der Gammastrahlung 1. Entdeckungsgeschichte 1.1. Der Entdecker Wilhelm Conrad Röntgen 1.2. Wie entdeckte Röntgen die X-Strahlung 2. Erste Reaktionen
Charakteristische Röntgenstrahlung von Kupfer
Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,
Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt
5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen
Typisch metallische Eigenschaften:
Typisch metallische Eigenschaften: hohe elektrische Leitfähigkeit hohe thermische Leitfähigkeit bei Energiezufuhr (Wärme, elektromagnetische Strahlung) können Elektronen emittiert werden metallischer Glanz
Lösungen der Abituraufgaben Physik. Harald Hoiß 26. Januar 2019
Lösungen der Abituraufgaben Physik Harald Hoiß 26. Januar 2019 Inhaltsverzeichnis 1. Wasserstoffatom 1 1.1. Spektren.............................................. 1 2. Anwendungen zum quantenmechanischen
Hallwachs-Experiment. Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe
Hallwachs-Experiment Bestrahlung einer geladenen Zinkplatte mit dem Licht einer Quecksilberdampflampe 20.09.2012 Skizziere das Experiment Notiere und Interpretiere die Beobachtungen Photoeffekt Bestrahlt
FK Experimentalphysik 3, Lösung 3
1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl
Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung (1911)
Vorlesung 2: Roter Faden: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung (1911) Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Wim de Boer, Karlsruhe Atome
Klausur -Informationen
Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25
VL Physik für Mediziner 2009/10. Röntgenstrahlung
VL Physik für Mediziner 2009/10 Röntgenstrahlung Peter-Alexander Kovermann Institut für Neurophysiologie Medizinische Hochschule Hannover [email protected] Was ist Röntgenstrahlung und. wer
16 Beugung Beugung am Doppelspalt
16 Beugung Wir haben das Phänomen der Beugung bereits im letzten Kapitel angesprochen, wie bspw. bei der Ableitung der Beugung am Spalt aus unserem Ergebnis der Interferenz am Gitter. Allgemein meint Beugung
Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung
1 Abiturprüfung 2003 Vorschlag 2 Analyse von Röntgenspektren bei unterschiedlicher Anodenspannung 1. Skizziere und beschreibe den Aufbau einer Röntgenröhre. Beschreibe kurz, wie Röntgenstrahlung entsteht.
Physik IV (Atomphysik) Vorlesung SS Prof. Ch. Berger
Physik IV (Atomphysik) Vorlesung SS 2003 Prof. Ch. Berger Zusammenfassung Das Skript gibt eine gedrängte Zusammenfassung meiner Vorlesung an der RWTH Aachen im SS 2003. Verglichen mit vielen, auch neueren
Besprechung am
PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Übungsblatt 10 Übungsblatt 10 Besprechung am 27.6.2016 Aufgabe 1 Interferenz an dünnen Schichten. Weißes Licht fällt unter einem Winkel
Schriftliche Abiturprüfung nach neuem KLP Beispiel für eine abiturnahe Klausur Physik, Grundkurs
Seite 1 von 5 Schriftliche Abiturprüfung nach neuem KLP eispiel für eine abiturnahe Klausur Physik, Grundkurs Aufgabenstellung Teilchen- und Welleneigenschaft des Elektrons Teil A: Eine Elektronenablenkröhre
Gymnasium / Realschule. Atomphysik 2. Klasse / G8. Aufnahme und Abgabe von Energie (Licht)
Aufnahme und Abgabe von Energie (Licht) 1. Was versteht man unter einem Elektronenvolt (ev)? 2. Welche physikalische Größe wird in Elektronenvolt gemessen? Definiere diese Größe und gib weitere Einheiten
Grundlagen der Physik 3 Lösung zu Übungsblatt 2
Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Daniel Weiss 17. Oktober 2010 Inhaltsverzeichnis Aufgabe 1 - Zustandsfunktion eines Van-der-Waals-Gases 1 a) Zustandsfunktion.................................
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 3 Beugung und Interferenz Aufgabe 1: Seifenblasen a) Erklären Sie, warum Seifenblasen in bunten Farben schillern.
Grundlagen der Röntgenpulverdiffraktometrie. Anorganische Chemie I und II. FH Münster, FB01
Seminar David zur Enseling Vorlesung und Thomas Jüstel Anorganische Chemie I und II Folie 1 Entdeckung & erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's
Hinweis: Optional kann der Versuch auch mit einer Wolfram-Röntgenröhre ( ) durchgeführt werden.
Die Intensität charakteristischer Röntgenstrahlung als Funktion von Anodenstrom und Anodenspannung TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Bragg-Gleichung, Intensität
Klausur 2 Kurs 13Ph3g Physik
2010-12-02 Klausur 2 Kurs 13Ph3g Physik Lösung 1 Verbrennt in einer an sich farblosen Gasflamme Salz (NaClNatriumchlorid), so wird die Flamme gelb gefärbt. Lässt man Natriumlicht auf diese Flamme fallen,
Eigenschaften und Anwendungen von Röntgenstrahlung
Eigenschaften und Anwendungen von Röntgenstrahlung Christoph Mahnke und Matthias Lütgens 23. November 2005 Inhaltsverzeichnis Datum : 19.11.2005 Betreuer : Dr. Nicula 1 Vorbetrachtung 2 1.1 Röntgenstrahlung...................................
Röntgenkristallstrukturanalyse : Debye-Scherrer
16.04.2009 Gliederung Bragg-Bedingung Bragg-Bedingung Bragg-Bedingung: 2d m m m h k l sin(ϑ) = nλ für kubisches Gitter: 2sin(ϑ) = λ h 2 + k 2 + l 2 a d m m m h k l...netzebenenabstand ϑ...braggwinkel n...
Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung
2. Praktikumsversuch aus Halbleiterphysik Röntgenbeugung, 0555150 (Autor), 0555342 Gruppe I/1 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Bragg-Bedingung.............................................
12.8 Eigenschaften von elektronischen Übergängen. Übergangsfrequenz
phys4.024 Page 1 12.8 Eigenschaften von elektronischen Übergängen Übergangsfrequenz betrachte die allgemeine Lösung ψ n der zeitabhängigen Schrödinger-Gleichung zum Energieeigenwert E n Erwartungswert
Röntgenstrahlung (RÖN)
Seite 1 Themengebiet: Atomphysik 1 Literatur 1 H. Krieger: Strahlungsmessung und Dosimetrie. 2. Auflage, Springer 2013 2 Grundlagen Mit dem Begriff Röntgenstrahlen bezeichnet man elektromagnetische Wellen,
Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2)
Blatt 1 (von 2) 1. Elektronenausbeute beim Photoeekt Eine als punktförmig aufzufassende Spektrallampe L strahlt eine Gesamt-Lichtleistung von P ges = 40 W der Wellenlänge λ = 490 nm aus. Im Abstand r =
Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik
Wellenoptik Beugung an Linsenöffnungen Wellenoptik Typische bmessungen D der abbildenden System (Blenden, Linsen) sind klein gegen die Wellenlänge des Lichts Wellencharakter des Lichts führt zu Erscheinungen
Intensitätsverteilung der Beugung am Spalt ******
5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau
Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.
Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.
Pulverdiffraktometrie
Pulverdiffraktometrie Polykristallines Material Fingerprintmethode Homogenität/ Phasenanalyse/Zusammensetzung - quantitativ! Kristallsystem + Gitterparameter + Laue-Symmetrie Raumgruppe?? Textur Partikelgröße
