Typisch metallische Eigenschaften:
|
|
|
- Oskar Holst
- vor 9 Jahren
- Abrufe
Transkript
1 Typisch metallische Eigenschaften: hohe elektrische Leitfähigkeit hohe thermische Leitfähigkeit bei Energiezufuhr (Wärme, elektromagnetische Strahlung) können Elektronen emittiert werden metallischer Glanz undurchsichtig leicht mechanisch verformbar dichtest gepackte Gitter Ersatz von H in Säuren basische Oxide
2 Energie Band Atomorbital σ*(2s) σ*(2s) σ*(2s) σ (2s) σ (2s) σ (2s) Li2 Li 3 Li 4 Li N N Zahl der Atome Entstehung eines Bands durch Wechselwirkung der 2s-Orbitale von Li-Atomen
3 Überschneidung von 2s- und 2p-Band in metallischem Lithium Atomorbitale Bänder 2p Energie 2s 1s Verbotene Energiezone
4 Bändermodell
5 Festkörper (kristalline Festkörper) kristallin amorph (Glas, Teer) einkristallin (Bergkristall=SiO 2, Si für Halbleiter) polykristallin Kristalle - aus Atomen, Ionen oder Molekülen aufgebaut Kristallgitter dreidimensionale Anordnung von Punkten ( Punktgitter ) mit identischer Umgebung kleinste Einheit eines Kristallgitters ist die Elementarzelle höchste Symmetrie bei größter Einfachheit aus der Elementarzelle durch Translation gesamtes Gitter aufgebaut
6 Kristallgitter (Punktgitter)
7 Kristallgitter (Auswahl einer Elementarzelle)
8 Elementarzelle Elementarzelle wird über drei Vektoren beschrieben: die kristallographischen Achsen definiert über die Längen a, b, c, und die Winkel α, β, γ r r r a, b, c, c r α b r β a γ a r Es gibt sieben (sechs) Arten von Elementarzellen entsprechend den sieben (sechs) Kristallsystemen
9 Sieben Kristallsysteme (1) (sieben Typen von Elementarzellen) kubisch: a = b = c; α = β = γ = 90 Beispiel: Steinsalz (NaCl) tetragonal: a = b c; α = β = γ = 90 Beispiel: weißes Zinn (Sn) (ortho)rhombisch: a b c; α = β = γ = 90 Beispiel: α-schwefel (S)
10 Sieben Kristallsysteme (2) (sieben Typen von Elementarzellen) monoklin: a b c; α = γ = 90 ; β 90 Beispiel: Kaliumchlorat (KClO 3 ) triklin: a b c; α β γ 90 Beispiel: Kaliumdichromat (K 2 Cr 2 O 7 )
11 Sieben Kristallsysteme (3) (sieben Typen von Elementarzellen) hexagonal: a = b c; α = β = 90 γ = 120 Beispiel: Quarz (SiO 2 ) rhomboedrisch (trigonal): a = b = c; α = β = γ 90 (wird manchmal zum hexagonalen Kristallsystem gezählt) Beispiel: Calcit (CaCO 3 )
12 Bravais-Gitter Wichtigste Eigenschaft eines Punktgitters: Jeder Punkt besitzt identische Umgebung! 1848: Auguste Bravais Durch Ineinanderstellen von Gittern gleicher Symmetrie entstehen aus den 7 Kristallsystemen 14 Bravaisgitter (und nicht mehr), in denen jeder Punkt identische Umgebung besitzt. z.b. für das kubische Kristallsystem drei Bravaisgitter: kubisch einfach (kubisch primitiv) kubisch raumzentriert kubisch flächenzentriert
13 Symmetrie Kristalle zeigen verschiedene Arten von Symmetrie... ein Gegenstand zeigt Symmetrie, wenn man an ihm eine geometrische Operation (Drehung, Spiegelung,...) durchführen kann und ihn danach in einem Zustand erhält, der vom Ausgangszustand nicht unterscheidbar ist.
14 4 makroskopische Symmetrie -operationen (Symmetrieelemente) 1. Symmetriezentrum Spiegelung um einen Punkt 2. Symmetrieebene 3. Drehachsen (2-, 3-, 4-, 6-zählig) Drehung um α = 360 /n n = 2, 3, 4, 6 4. Drehspiegelachsen (4-, 6-zählig) Drehung und Spiegelung an einer zur Achse Drehung um senkrechten Ebene Spiegelung 4-zählige Drehspiegelachse 2 4
15 Millersche Indices:... die reziproken Werte der in Brüchen ausgedrückten Abschnitte, in denen eine bestimmte Ebene die kristallographischen Achsen in einer Elementarzelle schneidet. z.b. (010), (110), (111), (112),...
16 Millersche Indices
17 kubisch einfach (kubisch primitiv) Ursprung: 000 Zahl der Punktlagen pro Elementarzelle: 1 Koordinaten der Punktlagen: 000 Koordinationszahl: 6
18 kubisch raumzentriert (kubisch innenzentriert) ½ ½ ½ Ursprung: 000 r A = ar 3 / 4 Zahl der Punktlagen pro Elementarzelle: 2 Koordinaten der Punktlagen: 000, ½½½ Koordinationszahl: 8 r A = a 3 / 4 Beispiele: Alkalimetalle; Cr, Mo, W; V, Nb, Ta; α-fe
19 Atomium in Brüssel eine auf eine Ecke gestellte kubisch raumzentrierte Elementarzelle (als Symbol für Eisen)
20 kubisch flächentriert 0 ½ ½ ½ 0 ½ Ursprung: 000 ½ ½ 0 Zahl der Punktlagen pro Elementarzelle: 4 Koordinaten der Punktlagen: 000, ½½0, ½0½, 0½½ Koordinationszahl: 12 Beispiele: r = a A 2 / 4 Cu, Ag, Au; Pb; Al; γ-fe
21 hexagonal dichtestgepackt (dichteste Kugelpackung) Zahl der Punktlagen pro Elementarzelle: 2 Koordinaten der Punktlagen: 000, 1/3 2/3, 1/2 Koordinationszahl: 12 Beispiele: Be, Mg; Zn, Cd; Ti, Zr, Hf
22 Dichteste Packung hexagonal kubisch (= kub. flächenzentriert!) Elementarzelle Schichtfolge: ABAB... Schichtfolge: ABCABC...
23 CsCl-Struktur ½ ½ ½ Ursprung: 000 Zahl der Punktlagen pro Elementarzelle: 1+1 (1 Formeleinheit) Koordinaten der Punktlagen: Cl - : 000; Cs + : ½½½ Koordinationszahl: 8 Beispiele: CsCl, CsBr, CsI; NH 4 Cl; CuZn, NiAl, CoAl,...
24 NaCl-Struktur Ursprung: 000 Zahl der Punktlagen pro Elementarzelle: 4+4 (4 Formeleinheiten) Koordinaten der Punktlagen: Cl - - (kfz) 000, ½½0, ½0½, 0½½ Na + - ½½½, 00½, 0½0, ½00 Koordinationszahl: 6 Beispiele: Alkalihalogenide (außer CsCl, CsBr, CsI); KCN; KOH; Oxide und Sulfide von Pb; von Mg, Ca, Sr, Ba; von vielen Übergangsmetallen,...
25 Diamant-Struktur Ursprung: 000 Zahl der Punktlagen pro Elementarzelle: 8 Koordinaten der Punktlagen: kfz (000, ½½0, usw.) + ¾¼¼, ¾¾¾, ¼¾¼, ¼¼¾ Koordinationszahl: 4 Beispiele: C diamant,si, Ge, α-sn
26 ZnS-(Zinkblende-)Struktur Ursprung: 000 Zahl der Punktlagen pro Elementarzelle: 4+4 Koordinaten der Punktlagen: Zn - kfz (000, ½½0, usw.) S - ¼¼¼, ¾¾¼, ¾¼¾, ¼¾¾ Koordinationszahl: 4 Beispiele: ZnS; GaAs; CuCl;...
27 Kristallstrukturbestimmung Röntgenbeugung (X-ray Diffraction) Physikalisches Prinzip: Beugung von Röntgenstrahlen am Kristallgitter Röntgenbeugung = Streuung der Röntgenstrahlen an Elektronen und Interferenz Beugung findet statt, wenn die Wellenlänge λ im Bereich der atomaren Abstände ist (ca. 1 Å = m)
28 Entstehung von Röntgenstrahlung Primärelektron herausgelöstes Elektron Röntgenstrahlung
29 Prinzip einer Röntgenröhre
30 Röntgenspektrum 1. Kontinuierliches Röntgenspektrum (Bremsstrahlung, weißes Röntgenlicht ) 2. Charakteristische Strahlung charakteristische Strahlung kontinuierliche Strahlung (Bremsstrahlung)
31 Interferenz Verstärkung Auslöschung
32 Beugung von Röntgenstrahlen (nach Bragg) zusätzliche Strecke für Strahl b θ EF = FG = d sin θ EF + FG = 2 d sin θ E F d G Verstärkung nur wenn: 2 d sin θ = n λ (Braggsche Gleichung)
33 Aufnahmeverfahren Laue-Verfahren (Film) Einkristall fix montiert, weißes Röntgenlicht ; für jede Netzebene ist die passende Wellenlänge vorhanden, die die Braggsche Bedingung erfüllt Drehkristallverfahren (Film) Einkristall wird gedreht, monochromatische Röntgenstrahlung; jede Netzebene ergibt einen Beugungspunkt Debye-Scherrer-Verfahren (Film) Kristallpulver, monochromatische Röntgenstrahlung; viele winzige Kriställchen in allen möglichen Lagen, damit hat jede Netzebene die Chance, richtig zu liegen, um die Braggsche Bedingung zu erfüllen Diffraktometer-Verfahren Kristallpulver oder Einkristall; Messung mit Zählrohr, dadurch genaue Intensitätsmessung möglich
Wiederholung der letzten Vorlesungsstunde
Wiederholung der letzten Vorlesungsstunde Festkörper, ausgewählte Beispiele spezieller Eigenschaften von Feststoffen, Kohlenstoffmodifikationen, Nichtstöchiometrie, Unterscheidung kristalliner und amorpher
Thema heute: Chemische Bindungen - Ionenbindung
Wiederholung der letzten Vorlesungsstunde: Chemische Bindungen, Doppelbindungsregel, VSEPR-Theorie Thema heute: Chemische Bindungen - Ionenbindung Vorlesung Allgemeine Chemie, Prof. Dr. Martin Köckerling
Physik 4: Skalen und Strukturen
Physik 4: Skalen und Strukturen Kapitel : Festkörperphysik.1 Aggregatszustände. Kristallstrukturen.3 Chemische Bindung.4 Gitterschwingungen.5 Elektronen im Festkörper Phasendiagramm von CO Klassisches
ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 /
ISP-Methodenkurs Pulverdiffraktometrie Prof. Dr. Michael Fröba, AC Raum 4, Tel: 4 / 4838-337 www.chemie.uni-hamburg.de/ac/froeba/ Röntgenstrahlung (I) Wilhelm Conrad Röntgen (845-93) 879-888 Professor
Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt)
Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0) Es sollen aus folgenden Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte Festkörper
Struktur von Festkörpern
Struktur von Festkörpern Wir wollen uns zunächst mit der Struktur von Festkörpern, daß heißt mit der Geometrie in der sie vorliegen beschäftigen Kovalent gebundene Festkörper haben wir bereits in Form
Festk0203_ /11/2002. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:
Festk234 37 11/11/22 2.9. Drehungen und Drehinversionen Bereits kennen gelernt: Translationssymmetrie. Neben Translationen gibt es noch weitere Deckoperationen die eine Struktur in sich überführen können:
Allgemeine Mineralogie - Kristallographie. Diamant
Allgemeine Mineralogie - Kristallographie Diamant Bravaisgitter Aus den fünf 2-D Gittern können durch Translation in die dritte Dimension insgesamt 14 Bravaisgitter erzeugt werden Einteilung der Bravais
Struktur von Einkristallen
Struktur von Einkristallen Beschreibung des einkristallinen Festkörpers Am einfachsten zu beschreiben sind atomare Kristalle bei denen an jedem Punkt des Raumgitters sich genau ein Atom befindet. Man wählt
2. Struktur von Festkörpern
. Struktur von Festkörpern Energie-Minimum wird erreicht, wenn jedes Atom möglichst dieselbe Umgebung hat Periodische Anordnung von Atomen. Periodische Anordnung erleichtert theoretische Beschreibung erheblich.
Vorlesung Allgemeine Chemie (CH01)
Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut
Department Chemie. Röntgenbeugung. ISP-Methodenkurs. Dr. Frank Hoffmann
Department Chemie Röntgenbeugung ISP-Methodenkurs Dr. Frank Hoffmann 22.01.2008 Ergebnis einer RSA Ä Atomsorten und deren Koordinaten in der asymmetrischen Einheit Ä Bindungslängen und -winkel Ä Elementarzelle
Physik 4: Skalen und Strukturen
Physik 4: Skalen und Strukturen.5: Kleine Skalen Chemische Bindung Aggregatszustände Kristallstrukturen und Streuung Bildung des Lebens Kovalente Molekülbindungen Ladungsdichteverteilungen: CH 4 NH 3 H
2.4 Metallische Bindung und Metallkristalle. Unterteilung in Metalle, Halbmetalle, Nicht metalle. Li Be B C N O F. Na Mg Al Si P S Cl
2.4 Metallische Bindung und Metallkristalle Li Be B C N O F Na Mg Al Si P S Cl K Ca Ga Ge As Se Br Rb Sr In Sn Sb Te I Cs Ba Tl Pb Bi Po At Unterteilung in Metalle, Halbmetalle, Nicht metalle Metalle etwa
Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt)
Übungen Festkörper (WS 2017/2018) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0a) Es sollen aus folgenden kubischen Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte
Kurs Röntgenstrukturanalyse, Teil 1: Der kristalline Zustand
Kurs Röntgenstrukturanalyse, Teil 1: Der kristalline Zustand Beispiel 1: Difluoramin M. F. Klapdor, H. Willner, W. Poll, D. Mootz, Angew. Chem. 1996, 108, 336. Gitterpunkt, Gitter, Elementarzelle, Gitterkonstanten,
Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt)
Übungen Festkörper (WS 2018/2019) (wird im Laufe des Semesters vervollständigt) Aufgabe 0) (a0) Es sollen aus folgenden Einheitszellen in allen Raumrichtungen unendlich periodisch fortgesetzte Festkörper
Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II
David Enseling und Thomas Jüstel Seminar zur Vorlesung Anorganische Chemie I und II Folie 1 Entdeckung + erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's
Grundlagen der Chemie Ionenradien
Ionenradien Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Ionenradien In einem Ionenkristall halten benachbarte
Strukturchemie. Kristallstrukturen. Elementstrukturen. Kugelpackungen. Kubisch dichte Kugelpackung. Lehramt 1a Sommersemester
Kugelpackungen Kubisch dichte Kugelpackung Lehramt 1a Sommersemester 2010 1 Kugelpackungen: kubisch dichte Packung (kdp, ccp) C B A A C B A C B A C Lehramt 1a Sommersemester 2010 2 Kugelpackungen Atome
3. Struktur idealer Kristalle
3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,
2. METALLISCHE WERKSTOFFE
2. METALLISCHE WERKSTOFFE Metalle sind kristallin aufgebaut Bindung wischen den Atomen = Metallbindung Jedes Atom gibt ~ 1 Elektron aus äußerster Schale ab positiv geladene Metallionen negativ geladene
Hexagonal dichtest gepackte Struktur
Hexagonal dichtest gepackte Struktur Auch diese Struktur ist sehr wichtig, da sie von sehr vielen Systemen angenommen wird (kein Bravaisgitter). Das einfach hexagonale Bravais-Gitter (in 3-dim): zwei-dim:
HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII
Prof. Dr. F. Koch Dr. H. E. Porteanu [email protected] [email protected] SS 2005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT XII 19.05.05 Festkörperphysik - Kristalle Nach unserem kurzen Ausflug in die Molekülphysik
Wiederholung der letzten Vorlesungsstunde:
Wiederholung der letzten Vorlesungsstunde: Hybridisierung und Molekülstruktur, sp 3 -Hybridorbitale (Tetraeder), sp 2 - Hybridorbitale (trigonal planare Anordnung), sp-hybridorbitale (lineare Anordnung),
Vorlesung Anorganische Chemie
Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 4 Molekülstruktur Ausnahmen von der Oktettregel Hypervalente Verbindungen VSEPR Hybridisierung Molekülorbitale
3. Struktur idealer Kristalle
3. Struktur idealer Kristalle 3.1 Raumgitter - 3-D-periodische Anordnungen - Raumgitter und Basis - primitive Translationen - Elementarzelle - Dreh- und Spiegelsymmetrien - Einheitszelle - 7 Kristallsysteme,
Kristallstruktur und Mikrostruktur Teil I Vorlesung 3
Kristallstruktur und Mikrostruktur Teil I Vorlesung 3 1 Wiederholung Punktsymmetrie - Erkennung 1/ Eine Punktsymmetrie-Gruppe {G} mit Ordnung N hat N Punktsymmetrieoperationen G i, i = 1,2, N. aber nur
Festkörperchemie SYNTHESE. Shake and bake Methode: Sol-Gel-Methode. Am Beispiel :
Festkörperchemie SYNTHESE Shake and bake Methode: Am Beispiel : Man zerkleinert die Salze mechanisch, damit eine möglichst große Grenzfläche zwischen den beiden Komponenten entsteht und vermischt das ganze.
2. Kristallstrukturen 2.1 Bindungsarten
2. Kristallstrukturen 2.1 Bindungsarten Bindungskräfte zwischen den Atomen ermöglichen systematische und geordnete Anlagerung der Atome Entstehung von Kristallstrukturen Metall-Ion (+) Metallische Bindung
Vorlesung Allgemeine Chemie (CH01)
Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut
M. W. Tausch. 3.Teil Ionenbindung
Ionenbildung bei der NaCl-Synthese Energie als Funktion des Ionenabstands Gitterenergie Born-Haber Kreisprozess Gitterenergie und Gittergeometrie Koordinationszahlen Dichteste Kugelpackungen Elementarzellen
Kristallographie und Röntgenbeugung
16.04.2009 Gliederung 1 Grundlagen der Kristallographie 2 Röntgenstrahlung Laue-Bedingung Bragg-Bedingung Ewaldsche Konstruktion Röntgenverfahren zur Strukturanalyse von Kristallen 3 4 Festkörper kristalliner
2 Bindung, Struktur und Eigenschaften von Stoffen. 2.1 Ionenbindung und Ionenkristall s Modell der Ionenbindung
2 Bindung, Struktur und Eigenschaften von Stoffen 2.1 Ionenbindung und Ionenkristall s. 0.6 Modell der Ionenbindung 8 - Bindung zwischen typischen Metallen und Nichtmetallen, EN > 1,7 - stabile Edelgaskonfiguration
Röntgenstrukturanalyse von Einkristallen
Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2017 Christoph Wölper Institut für Anorganische Chemie der Universität Duisburg-Essen Wiederholung Was bisher geschah Symmetrie,
Gefüge und Eigenschaften metallischer Werkstoffe WS 17/18
Gefüge und Eigenschaften metallischer Werkstoffe WS 7/8 Übung 5 Musterlösung 0..07 Aufgabe Welche Bravais-Gittertypen gibt es? Welche Modifikationen besitzen Sie? Nennen Sie Materialbeispiele zu jedem
Anorganische Chemie III - Festkörperchemie
Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung
Anorganische Chemie III - Festkörperchemie
Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung
19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter
19.Juni 2005 Strukturbestimmung Gruppe 36 Simon Honc [email protected] Christian Hütter [email protected] 1 I. Theoretische Grundlagen 1. Struktur idealer Kristalle Generell kann man bei Kristallen vom
Materialkundliches Praktikum Phasenanalytik und Röntgendiffraktometrie Verantwortlicher Mitarbeiter: Dr. Matthias Müller
Materialkundliches Praktikum Phasenanalytik und Röntgendiffraktometrie Verantwortlicher Mitarbeiter: Dr. Matthias Müller Inhalt: 1. Physikalische Grundlagen der Röntgenbeugung. Struktur von Festkörpern,
Hier: Beschränkung auf die elektrische Eigenschaften
IV. Festkörperphysik Hier: Beschränkung auf die elektrische Eigenschaften 3 Aggregatzustände: fest, flüssig, gasförmig: Wechselspiel Anziehungskräfte der Teilchen gegen die thermische Energie kt. Zustand
Grundlagen-Vertiefung PW3. Kristalle und Kristallstrukturen Version von 15. Oktober 2013
Grundlagen-Vertiefung PW3 Kristalle und Kristallstrukturen Version von 15. Oktober 2013 Kristalle besitzen einen geordneten und periodischen Gitteraufbau. Die überwiegende Mehrzahl der anorganischen Festkörper
Physik IV Einführung in die Atomistik und die Struktur der Materie
Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 21 30.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 21 Prof. Thorsten Kröll 30.06.2011 1 H 2
Gliederung der Vorlesung im SS
Gliederung der Vorlesung im SS A. Struktureller Aufbau von Werkstoffen. Atomare Struktur.. Atomaufbau und Periodensystem der Elemente.2. Interatomare Bindungen.3. Aggregatzustände 2. Struktur des Festkörpers
Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden
Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut Versuch Nr. 24: Röntgenographische Methoden Betreuer: M. Cwik, Tel.: 470 3574, E-mail: [email protected] November 2004 Im
Typische Eigenschaften von Metallen
Typische Eigenschaften von Metallen hohe elektrische Leitfähigkeit (nimmt mit steigender Temperatur ab) hohe Wärmeleitfähigkeit leichte Verformbarkeit metallischer Glanz Elektronengas-Modell eines Metalls
Kristallstruktur und Mikrostruktur Teil I Vorlesung 5
Kristallstruktur und Mikrostruktur Teil I Vorlesung 5 Wiederholung # 2D Muster haben keine Spiegelebene in der Projektionebene # Der Verschiebungsvektor v einer Gleitspiegelebene, parallel zur Achse t
Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung
Wiederholung der letzten Vorlesungsstunde: Redoxreaktionen: Elektronentransfer, Oxidation, Reduktion, elektrochemische Redoxpotentiale, Normalwasserstoffelektrode, die Nernst sche Gleichung Thema heute:
Kristallographie I. Inhalt von Kapitel 3
62 Kristallographie I Inhalt von Kapitel 3 3 Der Kristall als Diskontinuum... 63 3.1 Zweidimensionale Raumgruppen... 63 3.1.1 Elementarmaschen... 63 3.1.2 Die zweidimensionalen Punkt- und Raumgruppen...
A. N. Danilewsky 1. Inhalt des 1. Kapitels
A. N. Danilewsky 1 Inhalt des 1. Kapitels 1 Vom Raumgitter zur Kristallstruktur... 2 1.1 Definition und Nomenklatur... 2 1.2 Gittergerade...4 1.3 Gitterebene...4 1.4 Raumgitter...5 1.5 Kristallsysteme...
Thema heute: Grundlegende Ionenstrukturen
Wiederholung der letzten Vorlesungsstunde Einfache Metallstrukturen, Dichtestpackung von "Atomkugeln", N Oktaeder-, 2N Tetraederlücken, Hexagonal-dichte Packung, Schichtfolge ABAB, hexagonale Elementarzelle,
k.com Vorlesung Geomaterialien 2. Doppelstunde Kristallographische Grundlagen Prof. Dr. F.E. Brenker
k.com Vorlesung Geomaterialien 2. Doppelstunde Kristallographische Grundlagen Prof. Dr. F.E. Brenker Institut für Geowissenschaften FE Mineralogie JWG-Universität Frankfurt Netzebene Translation: Verschiebung,
Thema heute: Aufbau fester Stoffe - Kristallographie
Wiederholung der letzten Vorlesungsstunde: Thema: Ionenbindung Ionenbindung, Kationen, Anionen, Coulomb-Kräfte Thema heute: Aufbau fester Stoffe - Kristallographie 244 Aufbau fester Materie Im Gegensatz
Anorganische Chemie III - Festkörperchemie
Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Chemie/Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie III - Festkörperchemie 1 Wiederholung
Wiederholung der letzten Vorlesungsstunde
Wiederholung der letzten Vorlesungsstunde Gitterpunkte, Gittergeraden, Gitterebenen, Weiß'sche Koeffizienten, Miller Indizes Symmetrie in Festkörpern, Symmetrieelemente, Symmetrieoperationen, Punktgruppenymmetrie,
Basisvokabular zur Strukturchemie (F. Kubel)
Basisvokabular zur Strukturchemie (F. Kubel) Ångström Längenmaßeinheit in der Kristallographie 1Å=10-8 cm=100pm Anisotropie Richtungsabhängigkeit einer (vektoriellen) Eigenschaft Apolar Kristallstruktur
Kristallstrukturen und (Kugel-) Packungen
Beschreibung von Kristallstrukturen durch: Elementarzellen: Vollständige Beschreibung der Kristallstruktur durch Größe, Form und Symmetrie der Elementarzelle (translationsinvarianter Teil der Kristallstruktur)
Grundlagen der Allgemeinen und Anorganischen Chemie. Atome. Chemische Reaktionen. Verbindungen
Grundlagen der Allgemeinen und Anorganischen Chemie Atome Elemente Chemische Reaktionen Energie Verbindungen 284 4. Chemische Reaktionen 4.1. Allgemeine Grundlagen (Wiederholung) 4.2. Energieumsätze chemischer
Anorganische Chemie VI Materialdesign. Heute: Röntgen-Einkristall-Strukturanalytik
Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie VI Materialdesign Heute: Röntgen-Einkristall-Strukturanalytik
2.1 Translationssymmetrie
2.1 Translationssymmetrie Die periodische Anordnung eines Kristalls entspricht mathematisch einer Translationssymmetrie. Diese wird mit Hilfe von drei fundamentalen Translationsvektoren beschrieben: T
Kristallstruktur und Mikrostruktur Teil I Vorlesung 5
Kristallstruktur und Mikrostruktur Teil I Vorlesung 5 Wiederholung 2/m 2/m 2/m {1 i 2 x 2 y 2 z m x m y m z } Ordnung 8! m 2 i 2 Wiederholung Spezielle Lagen # spezielle Lagen in zentrierten Raumgruppen
Kristallstruktur und Mikrostruktur Teil I Vorlesung 2
Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 1 Kristallstruktur und Teil I Scripte Mikrostruktur http://www.uni-stuttgart.de/mawi/aktuelles_lehrangebot/lehrangebot.html 2 Wiederholung Koordinatensysteme
Achim Kittel. Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A Tel.:
Festkörperphysik Achim Kittel Energie- und Halbleiterforschung Fakultät 5, Institut für Physik Büro: W1A 1-102 Tel.: 0441-798 3539 email: [email protected] Sommersemester 2005 Inhaltsverzeichnis
Freiwillige Übungsaufgaben zum Stoff vorangegangener Vorlesungen zur Selbstkontrolle für den 2. April 2008 (wird nicht bewertet)
AC II - 2. April 2008 Übungen Anke Zürn Zusammenfassung & Wiederholung Dichteste Kugelpackungen (KP) Freiwillige Übungsaufgaben zum Stoff vorangegangener Vorlesungen zur Selbstkontrolle für den 2. April
1 Kristallgitter und Kristallbaufehler 10 Punkte
1 Kristallgitter und Kristallbaufehler 10 Punkte 1.1 Es gibt 7 Kristallsysteme, aus denen sich 14 Bravais-Typen ableiten lassen. Charakterisieren Sie die kubische, tetragonale, hexagonale und orthorhombische
Methoden der Kristallcharakterisierung
Methoden der Kristallcharakterisierung Aus dem Alltag des Kristallzüchters: Es wurde eine feste Substanz synthetisiert. Ist es eine kristalline Substanz? Um welche kristalline Phase handelt es sich? Antworten
Pulverdiffraktometrie
Pulverdiffraktometrie Polykristallines Material Fingerprintmethode Homogenität/ Phasenanalyse Kristallsystem + Gitterparameter + Laue-Symmetrie Raumgruppe?? Zusammensetzung - quantitativ! Textur Partikelgröße
Symmetrie in Kristallen Anleitung für das F-Praktikum
Symmetrie in Kristallen Anleitung für das F-Praktikum Sommersemester 2015 Fachbereich Physik Physikalisches Institut Goethe-Universität Frankfurt Betreuer: Kristin Kliemt [email protected]
3. Struktur des Festkörpers
3. Struktur des Festkörpers 3.1 Kristalline und amorphe Strukturen Amorphe Struktur - Atombindung ist gerichtet - unregelmäßige Anordnung der Atome - keinen exakten Schmelzpunkt, sondern langsames Erweichen,
Grundlagen der Röntgenpulverdiffraktometrie. Anorganische Chemie I und II. FH Münster, FB01
Seminar David zur Enseling Vorlesung und Thomas Jüstel Anorganische Chemie I und II Folie 1 Entdeckung & erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's
Protokoll zum Versuch Debye - Scherrer - Verfahren. Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann
Protokoll zum Versuch Debye - Scherrer - Verfahren Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann 6. März 2005 3 Inhaltsverzeichnis 1 Aufgabenstellung 4 2 Theoretische Grundlagen 4 2.1 Röntgenstrahlung.................................
XDR - Röngendiffraktometrie
Praktikum Werkstoffmechanik Studiengang: Chemie-Ingenieurwesen Technische Universität München SS 2004 XDR - Röngendiffraktometrie Oliver Gobin 24 Juli 2004 Betreuer: Dr. W. Loos 1 Aufgabenstellung Folgende
Röntgenographische Charakterisierung der hergestellten Feststoffe mittels Pulverdiffraktion, sowie Auswertung der erhaltenen Pulverdiffraktogramme
Röntgenographische Charakterisierung der hergestellten Feststoffe mittels Pulverdiffraktion, sowie Auswertung der erhaltenen Pulverdiffraktogramme Vorbemerkung: Wegen der umfassenden Theorie von kristallographischen
6. Die Chemische Bindung
6. Die Chemische Bindung Hauptbindungsarten Kovalente Bindung I Kovalente Bindung II Ionenbindung Metallische Bindung Nebenbindungsarten Van der Waals Wechselwirkung Wasserstoffbrückenbindung Salzartige
Funktionsmaterialien Funktionsmaterialien SS2017
1 Auslöschungen im Röntgenpulverdiffraktogramm (110) alpha-eisen (110) Cäsiumchlorid Intensität Intensität (100) (211) (200) (211) (220) (310) (200) (210) (111) (220) (310) (321) (222) (221) (311) (320)
TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen
Strukturbestimmung von NaCl-Einkristallen TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Reziproke Gitter, Millersche- Indizes, Atomfaktor, Strukturfaktor,
Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik
Werkstoffe der Elektrotechnik im Studiengang Elektrotechnik - Festkörper - Prof. Dr. Ulrich Hahn WS 2008/2009 Grundtypen Gläser, amorphe Festkörper Nahordnung der Teilchen 5 10 Atom- unterkühlte Flüssigkeiten
Pulverdiffraktometrie
Pulverdiffraktometrie Polykristallines Material Fingerprintmethode Homogenität/ Phasenanalyse/Zusammensetzung - quantitativ! Kristallsystem + Gitterparameter + Laue-Symmetrie Raumgruppe?? Textur Partikelgröße
Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper
Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2012 Christoph Wölper Christoph Wölper [email protected] http://www.uni-due.de/~adb297b Vorlesungs-Script unter: http://www.uni-due.de/~adb297b/ss2012/strukturmethoden_vorlesung.pdf
sind Stoffe, die je nach Verwendungszweck aus Rohstoffen durch Bearbeitung und Veredelung gewonnen werden. Einteilung der Werkstoffe
Werkstoffe sind Arbeitsmittel rein stofflicher Natur, die in Produktionsprozessen weiter verarbeitet werden und entweder in die jeweiligen Endprodukte eingehen oder während deren Herstellung verbraucht
Modul: Allgemeine Chemie
Modul: Allgemeine Chemie 5. Grundlagen der chemischen Bindung Ionenbindung Eigenschaften, Ionengitter, Kugelpackung Strukturtypen, Kreisprozesse Kovalente Bindung Lewis Formeln, Oktettregel, Formalladungen
Kristallchemie. Atome Ionen Moleküle Chemische Bindungen
Kristallchemie Atome Ionen Moleküle Chemische Bindungen Metalle, Metalloide, Nichtmetalle Metalle: E-neg < 1.9 - e - Abgabe Kationen Nichtmetalle: E-neg > 2.1 - e - Aufnahme Anionen Metalloide: B, Si,
Übungsaufgaben zur Kristallographie Serie 9 LÖSUNG
Chemische Bindung - Struktur - Physikalische Eigenschaften Für diese Aufgabe benötigen Sie das Programm VESTA. Sie finden es im Internet unter http://jp-minerals.org/vesta. Laden Sie die Kristallstrukturen
Konzepte der anorganischen und analytischen Chemie II II
Konzepte der anorganischen und analytischen Chemie II II Marc H. Prosenc Inst. für Anorganische und Angewandte Chemie Tel: 42838-3102 [email protected] Outline Einführung in die Chemie fester
Grundlagen und Anwendung der Röntgen-Feinstruktur-Analyse
Grundlagen und Anwendung der Röntgen-Feinstruktur-Analyse Dr. rer. nat. Hans Neff Laboratoriumsvorstand im Wernerwerk für Meßtechnik der Siemens & Halske Aktiengesellschaft 2., verbesserte und erweiterte
1. Kristalliner Zustand der Materie
Vorwort Eine Vorlesung über Festkörperphysikgehörtzu den Pflichtveranstaltungen des Physikstudiums an Universitäten und Technischen Hochschulen. Sie wird im allgemeinen als Einführungsvorlesung innerhalb
Kristallstruktur und Mikrostruktur Teil I Vorlesung 2
Kristallstruktur und Mikrostruktur Teil I Vorlesung 2 1 Kristallstruktur und Teil I Scripte Mikrostruktur http://www.uni-stuttgart.de/mawi/aktuelles_lehrangebot/lehrangebot.html 2 Wiederholung Koordinatensysteme
1. Systematik der Werkstoffe 10 Punkte
1. Systematik der Werkstoffe 10 Punkte 1.1 Werkstoffe werden in verschiedene Klassen und die dazugehörigen Untergruppen eingeteilt. Ordnen Sie folgende Werkstoffe in ihre spezifischen Gruppen: Stahl Holz
Chemische Bindung. Wie halten Atome zusammen? Welche Atome können sich verbinden? Febr 02
Chemische Bindung locker bleiben Wie halten Atome zusammen? positiv Welche Atome können sich verbinden? power keep smiling Chemische Bindung Die chemischen Reaktionen spielen sich zwischen den Hüllen der
Einteilchenbeschreibung in entsprechender Umgebung (andere Atome als Hintergrund) nicht formbeständig und nicht. aber volumenbeständig
Literatur 1. N.W. Ashcroft und N.D. Mermin: Solid State Physics, (Sounders College, Philadelphia, 1988) N.W. Ashcroft und N.D. Mermin: Festkörperphysik, (R. Oldenbourg Verlag, München, 001). K. Kopitzky:
Ionenbindungen, Ionenradien, Gitterenergie, Born-Haber-Kreisprozess, Madelung-Konstante
Wiederholung der letzten Vorlesungsstunde: Ionenbindungen, Ionenradien, Gitterenergie, Born-Haber-Kreisprozess, Madelung-Konstante Thema heute: 1) Kovalente Gitter, 2) Metalle 280 Kovalente und molekulare
Kristallographie. Walter Borchardt-Ott. Eine Einführung für Naturwissenschaftler. Springer. Sechste, überarbeitete und erweiterte Auflage
Walter Borchardt-Ott Kristallographie Eine Einführung für Naturwissenschaftler Sechste, überarbeitete und erweiterte Auflage Mit 290 Abbildungen und 44 Tabellen Springer Inhaltsverzeichnis 1 Einleitung
Kristalle und deren Fehler Was sollen Sie mitnehmen? ...Weihnachten...!
Kristalle und deren Fehler Was sollen Sie mitnehmen? Definition und Aufbau eines Kristalls Elementarzellen Typische Gitter nach Verbindungsklassen Navigation im Kristall: Richtung, Ebenen Allotropie Fehlertypen
