Elektrosmog. Was wirklich dahinter steckt. Teil 1

Größe: px
Ab Seite anzeigen:

Download "Elektrosmog. Was wirklich dahinter steckt. Teil 1"

Transkript

1 Elektrosmog Was wirklich dahinter steckt Teil 1 Vortrag vor dem Verein Deutscher Revisionsingenieure e.v. am in Hannover Dipl.-Ing. Reiner Gebbensleben, Dresden Stand: April 2015

2 An dem Tag, an dem die Wissenschaft beginnen wird, nicht-physikalische Erscheinungen zu untersuchen, wird sie in einem Jahrzehnt größere Fortschritte machen, als in all den vergangenen Jahrhunderten. Nikola Tesla 2 R.Gebbensleben

3 Gegenwärtige Definition Wikipedia: Elektrosmog oder E-Smog (aus Elektro- und Smog) ist ein umgangssprachlicher Ausdruck für die Gesamtheit an : elektrischen, magnetischen und elektromagnetischen Feldern, von denen teilweise angenommen wird, dass sie (unerwünschte) biologische Wirkungen haben könnten. 3 R.Gebbensleben

4 Gegenwärtige Definition Elektrosmog oder E-Smog (aus Elektro- und Smog) ist ein umgangssprachlicher Ausdruck für die Gesamtheit an : elektrischen, Diese Definition ist falsch! magnetischen und elektromagnetischen Feldern, von denen teilweise angenommen wird, dass sie (unerwünschte) biologische Wirkungen haben könnten. 4 R.Gebbensleben

5 Physikalisch exakte Definition Elektrosmog sind infolge von elektrischem Stromfluss zwangsläufig erzeugte und von elektrischen Geräten und Leitungen abgestrahlte technische Hyperschallfelder mit grundsätzlich gesundheitsschädigenden Wirkungen 5 R.Gebbensleben

6 Entstehung und Eigenschaften von Hyperschall 6

7 Am Anfang war der Urknall. Bereits hier entstanden nicht nur elektrische, magnetische und elektromagnetische Felder, sondern auch breitbandige mechanische Schwingungen bis hin zu den Eigenschwingungen der Elementarteilchen. 7 Bild: NASA

8 Allgemeine mechanische Wellengleichung die partielle, homogene Differentialgleichung 2. Ordnung hat 2 Lösungen akustischer Zweig optischer Zweig Infraschall 16 Hz Hörschall 16Hz 20 khz Ultraschall 20 khz 1 GHz = gedämpfte Schwingungen Hyperschall 1 GHz???THz = Eigenschwingungen von Molekülen, Atomen, Elementarteilchen = ungedämpfte Schwingungen 8 R.Gebbensleben

9 Was ist Schall? Infraschall: Frequenzen < 16 Hz, fühlbar Hörschall (Mensch): f = 16 Hz 20 khz, hörbar Ultraschall: f = 20 khz 1 GHz, unhörbar = schwingende Materiepakete Atome Ausbreitungsrichtung Verdichtung Verdünnung l 9 R.Gebbensleben

10 Was ist Hyperschall? Hyperschall = atomare Eigenschwingungen oberhalb 1 GHz unbewusst wahrnehmbar Atomgitter in Ruhe Beschuss z.b. mit freien Elektronen Ausbreitungsrichtung Verdichtung Verdünnung l 10 R.Gebbensleben

11 wie entstehen Hyperschallschwingungen? Elastischer Stoß: wenn freie Elektronen auf Materie treffen, setzen sie ihre gesamte kinetische Energie in einen mechanischen Impuls um. Dabei werden Atome und Moleküle zu atomaren Eigenschwingungen angeregt. Sie pflanzen sich in Stoßrichtung als longitudinale Materiewelle fort. Geltende physikalische Gesetze: Energie-Erhaltungssatz Impuls-Erhaltungssatz Flugbahn Elektron im Plasma Energiebilanz für 1 Elektron: kinetische Energie E kin = e U = ½ mv² = longitudinale Gitterschwingungen = Hyperschall 11 R.Gebbensleben

12 Hyperschall ein Phänomen der Quantenmechanik? Hyperschallakustik arbeitet immer mit großen Quantenmengen, deshalb gelten die bekannten Gesetze der klassischen Mechanik Gesetze der Quantenmechanik Quant des Schallfeldes: Phonon 12 R.Gebbensleben

13 Wo kommt der Hyperschall her? aktive Strahler: natürliche Quellen technische Quellen Freie Energie passive Strahler: durchstrahlte Objekte emittierte Information: 13 R.Gebbensleben

14 Natürlicher Hyperschall 14

15 Kosmische Strahlung ca Kollisionen pro cm²s mit der Atmosphäre einfallendes Proton der kosmischen Strahlung Kollision mit: Proton Neutron Pion ( + Pion ( - Myon ( + Myon ( - 2, s 10 km Höhe Myonneutrino + ( Myonneutrino ( 2, s s > 600 m Positron + (e ) Elektron (e - ) ca Teilchen pro cm 2 s am Erdboden Elektronneutrinneutrino Myon- ( ( Elektronneutrinneutrino Myon- ( ( e e 15

16 Kosmische Strahlung Wenn man das von der sekundären kosmischen Strahlung erzeugte Hyperschallfeld sehen könnte wäre nicht nur der Himmel Tag und Nacht hell, sondern auch die Tiefe der Weltmeere und das Innere der Erde. 16

17 Auf der sonnenbeschienenen Seite der Erde wirkt zusätzlich ein zeitlich veränderlicher Teilchenstrom von der Sonne ein (Sonnenwind). 17 NASA

18 Die Erde und ihre 3 Hyperschallquellen 1. passive Durchstrahlung mit Hyperschall aus sekundärer kosmischer Strahlung von der gegenüberliegenden Seite des Globus 2. aktive Hyperschall-Strahlung durch Zerfall radioaktiver Elemente und 3. thermische Elektronenemission kosmische Strahlung Sonne kosmische Strahlung 18 R.Gebbensleben

19 Erdstrahlen Illustration aus Speculum metallurgiae von B. Roessler (1700). Dargestellt sind Gitterlinien eines Gitternetzes. An den Kreuzungspunkten der Gitterlinien sind die dort vertikal austretenden Erdstrahlen eingezeichnet. Jede im Erdinnern passiv durchstrahlte oder aktiv strahlende Schale bildet Strahlen aus, die aus dem ungestörten Erdreich in Form eines globalen quadratischen Rasters austreten. Im Durchschnitt emittiert eine Fläche von 1 m² 20 verschiedene Strahlen. 19

20 Wasseradern räumliche Felder am Erdboden wahrnehmbare "Wasserader" sind keine aktiven Quellen, sondern durch besondere geometrische Verhältnisse verstärkte natürliche Felder. Klüfte und Verwerfungen führen zu einer Brennpunkt -Bildung. Durch vektorielle Addition der Schwingungsamplituden im Brennpunkt und Transport der Vektorsumme über jeden einzelnen Strahl ergeben sich über dem Erdboden u.u. sehr hohe Schwingungsamplituden Strahlen Amplitudenverlauf wassergefüllte Kluft Grundwasser Bodenschichten aus verwitterten Minerialien anstehendes verwittertes Gestein 20 R.Gebbensleben

21 Atmosphärische Quellen Blitze (elektrische Entladung) Flammen (thermische Ionisation und Rekombination) 21

22 Meteoriten 2 Quellen: thermische Elektronen-Emission, Reibungselektrizität Perseiden- Meteorschauer 22 NASA

23 Luftbewegung erzeugt Reibungselektrizität 23 EPA (Orlando Barria)

24 Luftbewegung erzeugt Reibungselektrizität und diese wiederum Hyperschall Föhn über dem Alpenkamm 24

25 Feuern der Synapsen in biologischen Systemen 25

26 Das Gehirn als Hyperschallquelle Diese junge Frau erzeugt durch hohe geistige Konzentration ein extrem hohes Hyperschallfeld, das sie über ihre Hand auf eine Gabel leitet, deren Gefüge kurzzeitig erweicht und die dadurch mehrfach verbogen werden kann. Kurzzeitig erzeugter HS-Pegel: Video: Jochen Lang L = db 26

27 Die wichtigsten Hyperschall-Gesetze (= Naturgesetze!)

28 wie sehen Hyperschallfelder aus? optische Analogie: (HS-Amplitude: maximal weiß, 0 schwarz) homogenes Hyperschallfeld in Luft, erzeugt durch sekundäre kosmische Strahlung (globales Feld) räumliches Strahlenmuster einer homogenen Kugel (theoretischer Zwischenschritt) vollständiges Hyperschallfeld einer Kugel im globalen Feld (horizontaler Schnitt) 28 R.Gebbensleben

29 Die Struktur der Hyperschallstrahlen Struktur eines Hyperschallstrahls nach Durchlaufen von zwei verschiedenen Stoffen: Hyperschallstrahl Die Spektren ordnen sich mit wachsender Amplitude von außen nach innen an (Analogie zur Schwerkraft). Der Strahl wird durch Radialkräfte zusammengehalten. Die Felder der HS-Strahlen sind in ihrer Wahrnehmung nicht von den Feldern realer Objekte unterscheidbar. Damit erklärt sich, wie die Bezeichnung Feinstofflichkeit entstanden ist. Spektrum 3 (weißes Rauschen) Spektrum 2 Spektrum 1 Hyperschallstrahlen breiten sich in jedem Medium, jedoch nicht im Vakuum aus. 29 R.Gebbensleben

30 Die Speicherung von Hyperschallfeldern Hyperschallfelder beliebiger Frequenz werden in resonanzfähigen Strukturen gespeichert. 3 Voraussetzungen: die Hohlkörper werden durch planparallele Flächenelemente begrenzt, sie enthalten Gase oder Flüssigkeiten (Clusterbildung) und werden ständig durch Hyperschall von innen oder außen angeregt. 30 R.Gebbensleben

31 Pyramidenzellen als Hyperschall-Speicher Das Gehirn benutzt jedoch einen Trick! Pyramiden und auch Pyramidenzellen können wegen Fehlens von parallelen Flächen keine Resonanzen bilden und deshalb auch keine HS- Felder speichern. Durch das exzitatorische postsynaptische Potential zwischen Basis und Spitze einer Pyramidenzelle (kein Aktionspotential!) bilden sich in der Zelle parallele Schichten von ausgerichteten Wasserdipolen. In diesem Zustand kann die Pyramidenzelle Hyperschallfelder speichern. Sie bleiben gespeichert, solange das Potential existiert. HS-Feld U 31 R.Gebbensleben

32 R.Gebbensleben Die Speicherung von Hyperschallfeldern Amplitudenverlauf innerhalb des Resonanzkörpers zeigt, dass nicht der Schalldruck, sondern die Schwinggeschwindigkeit wahrgenommen wird! Schwingungsamplitude in den Grenzflächen ist gleich null. weißes Rauschen des globalen HS-Feldes resonanzfähiger Hohlkörper 32

33 Hyperschallspeicher Mensch (und Tier) 1. HS-Speicher im Gehirn: Pyramidenzellen der Großhirnrinde. Informationsfluss nur über Sensoren und Nervenbahnen möglich. 2. HS-Speicher im Körper: alle flüssigkeits- und gasgefüllten Hohlräume mit mindestens teilweise planparallelen Begrenzungen: Liquorräume in Gehirn und Wirbelsäule Mundhöhle und Rachen Lunge Herz Gallenblase Magen Darm Gebärmutter Prostata Lymphdrüsen Brüste Bauchspeicheldrüse Leber Milz Nieren Harnblase Hoden 33 R.Gebbensleben

34 Hyperschallfelder Hyperschallfelder steuern Informationsflüsse durch die Nerven steuerndes HS-Querfeld A q Input Output A in A out Axon Schwannsche Zelle Durchlassverhalten: wenn Spektren von Inputfeld und steuerndem Querfeld zumindest in Teilen übereinstimmen, vektorielle Addition von A in und A q. Wenn A q A in : und A in >> A q A out = A in Sperrverhalten: wenn Spektren von Input und steuerndem Querfeld auch in Teilen nicht übereinstimmen: A out = 0 34 R.Gebbensleben

35 Wichtige Hyperschall-Gesetze: Brechung Hyperschall = optischer Zweig der Lösung der allgemeinen Wellengleichung für mechanische Schwingungen es gelten die optischen Brechungsgesetze HS-Strahlen werden an Grenzflächen zwischen zwei Stoffen reflektiert und gebrochen und gehorchen dem Snelliussches Brechungsgesetz: sin θ e n 2 c 1 = = sin θ b n 1 c 2 n = ε r Die Permittivitätszahl ε r wird den Tabellen der Elektrotechnik entnommen. Beim Strahldurchtritt durch eine Grenzfläche erfahren der gebrochene und der reflektierte Strahl immer eine Energiehalbierung. Der Brechungsindex eines Materials gibt gleichzeitig an, um welchen Faktor die Schwingungsamplitude im Material verstärkt wird. einfallender Strahl (W0) Beispiel: HS-Durchstrahlung eines dielektrischen Objekts. Beachte: n 2 = -1 für alle Metalle! e r reflektierter Strahl (1/2 W0) P n 1 n 2 > n 1 gebrochener Strahl (1/2 W0) b 35 R.Gebbensleben

36 Wichtige Hyperschall-Gesetze: Totalreflexion (Felder steuern Felder) Sonderfall: Totalreflexion an Feldern An Ringen (auch an zwei gleichen Objekten) konfiguriert sich das HS-Feld um. Dadurch entstehen im globalen Feld kegelförmige virtuelle Flächen mit dem Spektrum des Ringmaterials. Sie bewirken gegen HS-Felder, die in einem Winkelbereich von 45 bis +45 zur Ringachse einfallen, Totalreflexion. Optisches Analogon: Tripelspiegel einfallendes Feld totalreflektiertes Feld Anm.: nur eine von vielen möglichen Flächen und nicht alle Strahlen dargestellt. 36 R.Gebbensleben

37 Die Bewertung von Hyperschall-Amplituden Warum ist das so wichtig? Wirkung auf Materie: Informationsfunktion energetische Funktion Wirkung auf den Menschen: erlaubt verboten Wahrnehmungsschwelle 0 db natürlicher Bereich globales Feld ab 100 db technischer HS: Störungen des Wohlbefindens ab 290 db Dauereinwirkung: Krebserkrankungen ab 465 db Zerreißen atomarer Bindungen ab 526 db Spaltung von Atomen in Elektronen, Protonen und Neutronen kalte Kernfusion, Transmutationen gesundheitl. Beeinträchtigungen Hyperschallpegel / db 37 R.Gebbensleben

38 Der für biologische Systeme ideale Hyperschallpegel 38

39 Das menschliche Wahrnehmungssystem für Hyperschall

40 Das sensorische System für die Perzeption von Hyperschall 82 Sensoren im Periost der Röhrenknochen des Bewegungsapparates Rezeptoren vermutlich = Nozizeptoren Keine Signalwandlung! Sensorische Nerven verlaufen in den Bahnen der taktilen Nerven des Bewegungsapparates und enden im somatosensorischen Cortex 40 R.Gebbensleben

41 wo kommen die Hyperschallsignale im Gehirn an? Somatosensorischer Cortex Thalamus Thalamus Sensorische Nerven Die Enden im somatosensorischen Cortex fügen sich exakt in das Projektionsfeld der Sensibilität des gesamten menschlichen Körpers auf Tast-, Schmerz- und Temperaturempfinden ein. 41 R.Gebbensleben

42 Signalflüsse über die Reflexbögen Über Hyperschall- Reflexbögen angesteuerte Muskelgruppen des Bewegungsapparates sind rot hervorgehoben. Dies sind sämtliche Streckmuskeln des Bewegungsapparates. Einzig denkbarer Zweck: Fluchtreflex! 42

43 Wie wird HS durch Nervenzellen transportiert? afferentes Axon HS Schwann - Zelle Auch Hyperschall löst Nervenimpulse aus! Rezeptor (Nozizeptor?) Schnürring zur Nervenzelle Repolarisation Aktionspotential Impuls + HS-Feld Schwellenspannung Depolarisation Bewegungsrichtung des Nervenimpulses Ruhepotential Ein durch das Axon laufendes Hyperschallfeld erzeugt an den Membranwänden ein durch das Axon radial laufender nach Hyperschallstrahl innen gerichtete Kräfte, erzeugt öffnet an den die Membranwänden Ionenkanäle und radial erzeugt nach Nervenimpulse. innen gerichtete Kräfte. Längsschnitt in Axonmitte Na + - Ionen Ionenkanal 43 R.Gebbensleben

44 2 verschiedene Signalnetze im Gehirn Gliazellen hören mit und funken mit Hyperschall quer durch das Gehirn 44 Quelle: Jeff Johnson, Hybrid Mecical Animation

45 2 Arten der Perzeption von Signalen aus der Umwelt Tiefschlaf Rezeptoren bewusst Auge Ohre Zunge Nase Haut (Codierung) Nervenzelle im Cortex, nicht aktiviert unbewusst Rezeptoren im Periost der Röhrenknochen des Bewegungsapparates (keine Codierung der Information!) Streckmuskeln des Bewegungsapparates (Fluchtreflex!) gespeicherte HS-Felder 45 R.Gebbensleben

46 2 Arten der Perzeption von Signalen aus der Umwelt Wachzustand Rezeptoren bewusst Auge Ohre Zunge Nase Haut (Codierung) Nervenimpulse Nervenzelle im Cortex, aktiviert unbewusst im Periost der Röhrenknochen des Bewegungsapparates (keine Codierung der Information!) in Nervenimpulsen verpackte HS-Pakete gespeicherte HS-Felder 46 R.Gebbensleben

47 Die Verknüpfung aller Wahrnehmungen Der Thalamus projiziert In alle Wahrnehmungszentren Sehen Hyperschallfeld Fühlen Hyperschallfeld Thalamus Hyperschallfeld Hören Schmecken Hyperschallfeld Hyperschallfeld Riechen Gedanken sind komplexe Hyperschallfelder 47 R.Gebbensleben

48 Technischer Hyperschall Ursachen, Quellen,

49 Halbleiter sind extrem starke Hyperschallquellen Si-Leistungsdiode im Schnitt p-leitendes Silizium n-leitendes Silizium Minuspol Pluspol kohärenter Hyperschallstrahl Strompfade pn-übergang Kupfer-Kühlkörper Kühlfläche R.Gebbensleben

50 L / db Hyperschallquelle pn-übergang Halbleiterdiode HS-Schwingungspegel L[dB] = 40 log Id[µA] Silizium-Leistungsdiode Theorie Ein Diodenstrom von nur 1 ma erzeugt einen HS-Pegel von 150 db Messung Diodendurchlassstrom Id / µa D R.Gebbensleben

51 Beleuchtungstechnik Glühlampen 0,5 m Abstand 100 W: 70 db Leuchtstofflampen 23 W: db LED-Leuchten 140 db Leuchtstoffröhren 36 W mit Gitter 0 db 160 db (ohne Gitter 140 db) Elektronische Transformatoren für Halogenlampen 140 db 51 R.Gebbensleben

52 Digitaltechnik 1 (Heimelektronik) Computer 70 db Fernsehgeräte db Dimmer 160 db 230-V-Geräte mit Schaltnetzteil 160 db 52 R.Gebbensleben

53 Mobilfunknetze Digitaltechnik 2 (Antennen) Rundfunk und Fernsehen Radaranlagen Leistung je Antennenelement: 25 W 100 kw mehrere MW 230 db 530 db ca db 53

54 Foto W. Heidrich Digitaltechnik 3 (Antennengruppen) Die Felder mehrerer Antennen überlagern sich. Hier ist L = db! 54

55 Atomkraftwerke Neben der Freisetzung von Energie infolge radioaktiven Zerfalls werden durch Elektronen- und Neutronenbeschuss Gitterschwingungen ausgelöst. 4 GW thermische Leistung L = 320 db 55

56 Foto: Eclipse.sx Photovoltaik-Anlagen PVA bei Freiberg db 56

57 Foto: Sir James Photovoltaik-Anlagen Kennedybrücke in Bonn db 57

58 Foto: Christian Lösch, Karlstadt Photovoltaik-Anlagen PVA nördlich von Thüringen db Die gewölbte Anordnung der PVA-Module führt zu einer Brennpunktbildung mit extrem hohen Hyperschallpegeln

59 Windkraftanlagen 2 Hyperschallquellen 1. Elektrische Anlage: Pegel sind leistungsabhängig. 2. Wirbel an den Spitzen der Rotorblätter: Pegel sind von der Windgeschwindigkeit abhängig. 59 Barrow Offshore Wind Turbines. Bearbeitetes Foto von Andy Dingley.

60 L in db Photovoltaik- und Windkraft-Anlagen Elektrisch erzeugte HS-Pegel von Windkraft- und Photovoltaikanlagen Windkraft Photovoltaik , Leistung in kw 60 R.Gebbensleben

61 Windkraftanlagen Die chemische Zusammensetzung der Atmosphäre wird verändert! 61 Horns Reef 1 Dänemark, 80 Turbinen, 160 MW Foto: Christian Steiness

62 Windkraftanlagen L max = db L = db L = 61 db 62 Horns Reef 1 Dänemark, 80 Turbinen, 160 MW Foto: Christian Steiness, bearbeitet

63 db Diagramm 1: Zerlegung der Luft in Abhängigkeit vom Hyperschallpegel N 2 O 2 Rn (lokale Besonderheit) CO 2 H 2 O He Anm.: Ordinatenwerte sind annähernd der Dichte proportional. 200 db Diagramm 2: Entstehung neuer Verbindungen in Abhängigkeit vom HS-Pegel H 150 C O 3 H 2 C O N N R.Gebbensleben CO

64 Windkraftanlagen Die hohen Hyperschallpegel haben die Zusammensetzung der Atmosphäre verändert! L = db 66 db H 2 O 33 db N 2 L = db L = 61 db 61 db 64 N 2 39 db H 2 O Horns Reef 1 Dänemark, 80 Turbinen, 160 MW Foto: Christian Steiness, bearbeitet

65 65

66 H 2 H db 940 db Die Flügel der Hummel haben viele Wölbungen, die das globale HS-Feld so fokussieren, dass oberhalb der Flügel ein HS-Pegel von 940 db entsteht. Damit wird dort die Luft teilweise zu Wasserstoff zerlegt, und es entsteht ein Auftrieb. 66

67 Starke Magnetfelder erzeugen extrem starke HS-Pegel, hier: db 67 Foto: C. Scheutzow

68 Ende Teil 1 68

Hyperschall. universaler Informations- und Energieträger

Hyperschall. universaler Informations- und Energieträger Hyperschall universaler Informations- und Energieträger Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik Oktober 2015 in Much, Teil 1 Seit dem Urknall existieren Schallschwingungen

Mehr

Hyperschall. universaler Informations- und Energieträger

Hyperschall. universaler Informations- und Energieträger Hyperschall universaler Informations- und Energieträger Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik Januar 2015 in Much, Teil 1 Hyperschallschwingungen existieren

Mehr

Hyperschall. Unerkannter universaler Informations- und Energieträger

Hyperschall. Unerkannter universaler Informations- und Energieträger Hyperschall Unerkannter universaler Informations- und Energieträger Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Natürliche und technische Hyperschallfelder und ihre Wirkungen Januar 2016 in Zürich,

Mehr

Die wichtigsten Hyperschall-Gesetze

Die wichtigsten Hyperschall-Gesetze Die wichtigsten Hyperschall-Gesetze und die Lösung einiger Rätsel Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Natürliche und technische Hyperschallfelder und ihre Wirkungen Januar 2016 in Zürich, Schweiz,

Mehr

Hyperschall - Chancen und Gefahren für die Menschheit

Hyperschall - Chancen und Gefahren für die Menschheit Hyperschall - Chancen und Gefahren für die Menschheit Dipl.-Ing. Reiner Gebbensleben, Dresden Vortrag vor dem Wirtschaftsclub ASBA Leipzig e.v. am 14. April 2016 Inhalt 1. Was ist Hyperschall 2. Natürliche

Mehr

Die interne Hyperschall- Kommunikation

Die interne Hyperschall- Kommunikation Die interne Hyperschall- Kommunikation des Menschen Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik Oktober 2015 in Much, Teil 4 82 Sensoren im Periost der Röhrenknochen

Mehr

universaler Informations- und Energieträger

universaler Informations- und Energieträger Hyperschall - universaler Informations- und Energieträger Teil 1: Entstehung und Eigenschaften Ein Jahrzehnt intensiver Grundlagenforschung mit einer neuartigen Messmethode hat den experimentellen Nachweis

Mehr

Natürliche und technische Hyperschallfelder

Natürliche und technische Hyperschallfelder Natürliche und technische Hyperschallfelder und ihre Wirkung auf biologische Systeme Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Natürliche und technische Hyperschallfelder und ihre Wirkungen Januar

Mehr

Hyperschall. und. Gehirn

Hyperschall. und. Gehirn Hyperschall und Gehirn Reiner Gebbensleben, Dresden Stand: Juli 2013 Reflektorische und mentale Hyperschall-Perzeption Reflektorische Hyperschallwahrnehmung Hyperschall-Informationsfluss ohne mentale Beteiligung

Mehr

Kinesiologie im Licht moderner Hyperschallforschung

Kinesiologie im Licht moderner Hyperschallforschung Kinesiologie im Licht moderner Hyperschallforschung Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik November 2015 in Much, Teil 10 Was ist Kinesiologie? Die Kinesiologie

Mehr

Reiner Gebbensleben Hyperschall Das unsichtbare Licht Eine Einführung in die Hyperschallakustik

Reiner Gebbensleben Hyperschall Das unsichtbare Licht Eine Einführung in die Hyperschallakustik Reiner Gebbensleben Hyperschall Das unsichtbare Licht Eine Einführung in die Hyperschallakustik 1 Hyperschall Das unsichtbare Licht Inhalt 1. Vorwort 2. Die Entstehung von Hyperschallschwingungen 3. Weitere

Mehr

6.2.2 Mikrowellen. M.Brennscheidt

6.2.2 Mikrowellen. M.Brennscheidt 6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ

Mehr

Elektrosmog was wirklich dahinter steckt

Elektrosmog was wirklich dahinter steckt 1 Dipl.-Ing. Reiner Gebbensleben Elektrosmog was wirklich dahinter steckt 1. Einleitung Jüngste Forschungsergebnisse 1 haben das Rätsel um den sogenannten Elektrosmog und seine gesundheitsrelevanten Wirkungen

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? a. ) Kilogramm b. ) Sekunde c. ) Kelvin d. ) Volt e. ) Candela 2.) Die Schallgeschwindigkeit

Mehr

Elektrosmog was wirklich dahinter steckt

Elektrosmog was wirklich dahinter steckt 1 Dipl.-Ing. Reiner Gebbensleben, Dresden Elektrosmog was wirklich dahinter steckt (Der Originalbeitrag ist in der Zeitschrift raum&zeit Nr. 175, S. 78 83 abgedruckt.) Fortschreitende Elektrifizierung

Mehr

Das menschliche Wahrnehmungssystem

Das menschliche Wahrnehmungssystem Das menschliche Wahrnehmungssystem für Hyperschall Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Natürliche und technische Hyperschallfelder und ihre Wirkungen Januar 2016 in Zürich, Schweiz, Teil 3

Mehr

Optik Licht als elektromagnetische Welle

Optik Licht als elektromagnetische Welle Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor

Mehr

Schulcurriculum für das Fach Physik

Schulcurriculum für das Fach Physik Schulcurriculum für das Fach Physik 1 S Jahrgangsstufe 7 Akustik Schülerversuch; Schülervortrag; 20 Entstehung, Ausbreitung und Vernetzung mit Musik, Biologie Empfangen des Schalls; und Mathematik. Schwingungsphänomene;

Mehr

Licht als Teilchenstrahlung

Licht als Teilchenstrahlung Der Photoeffekt: die auf die Materie einfallende Strahlung löst ein Elektron aus. Es gibt eine Grenzfrequenz, welche die Strahlung haben muss, um das Atom gerade zu ionisieren. Licht als Teilchenstrahlung

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Der Schutz vor gesundheitsschädigenden Hyperschallfeldern

Der Schutz vor gesundheitsschädigenden Hyperschallfeldern Der Schutz vor gesundheitsschädigenden Hyperschallfeldern Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Natürliche und technische Hyperschallfelder und ihre Wirkungen Januar 2016 in Zürich, Schweiz,

Mehr

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen

1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen.1.006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen PN 1 Einführung in die Experimentalphysik für Chemiker und Biologen 22.12.2006 Karin Beer, Paul Koza, Nadja Regner, Thorben Cordes, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Schulcurriculum Fach Physik Kl Physik 1 S

Schulcurriculum Fach Physik Kl Physik 1 S SchulcurriculumfürdasFach Physik 1 S Jahrgangsstufe 7 Kompetenzen Zugeordnete Inhalte Methodencurriculum Zeit Akustik Schülerversuch; Schülervortrag; 20 Entstehung, Ausbreitung und Vernetzung mit Musik,

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Lauter Lärm. Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug

Lauter Lärm. Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug Lärm - eine Einführung! mil. Luftraumüberwachungsflugzeug Ing. LAMMER Christian Amt der Steiermärkischen Landesregierung, Fachabteilung 17C Leiter des Referates SEL schall-und erschütterungstechn. ASV

Mehr

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen

FOS: Radioaktivität und Strahlenschutz. Chemische Elemente und ihre kleinsten Teilchen R. Brinkmann http://brinkmann-du.de Seite 5..03 Chemische Elemente FOS: Radioaktivität und Strahlenschutz Chemische Elemente und ihre kleinsten Teilchen Der Planet Erde besteht aus 9 natürlich vorkommenden

Mehr

PROBLEME AUS DER PHYSIK

PROBLEME AUS DER PHYSIK Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Einführung in die Physik I. Schwingungen und Wellen 3

Einführung in die Physik I. Schwingungen und Wellen 3 Einführung in die Physik Schwingungen und Wellen 3 O. von der Lühe und U. Landgraf Elastische Wellen (Schall) Elastische Wellen entstehen in Flüssigkeiten und Gasen durch zeitliche und räumliche Veränderungen

Mehr

Themenkomplex: Nutzung sogenannter Freier Energie

Themenkomplex: Nutzung sogenannter Freier Energie Neues aus der Hyperschallforschung Themenkomplex: Nutzung sogenannter Freier Energie Additiv zur Verbrennungsoptimierung eines zündfähigen Gemisches aus Luft und Kraftstoff zwecks Schadstoffreduzierung

Mehr

Teilchen aus den Tiefen des Kosmos

Teilchen aus den Tiefen des Kosmos - Belina von Krosigk - 1 Bild: NASA Eine Frage, bevor wir in den Kosmos schauen... 2 Was sind eigentlich Teilchen? 3 Was sind Teilchen? 0,01m 10-9m 1/10.000.000 10-10m 1/10 10-14m 1/10.000 10-15m 1/10

Mehr

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall

Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum S 1 Dopplereffekt mit Ultraschall Versuchsziel Geschwindigkeitsmessung mit Hilfe

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Physik mit einer Prise Mathe

Physik mit einer Prise Mathe Rainer Dohlus Physik mit einer Prise Mathe Basiswissen für Studierende technischer Fachrichtungen 4 } Springer Vieweg egal aber 1 Mechanik 1 11 Wie es sich bewegt warum 1 111 Zwei unmittelbar im Alltag

Mehr

Das Interstellare Medium Der Stoff zwischen den Sternen

Das Interstellare Medium Der Stoff zwischen den Sternen Das Interstellare Medium Der Stoff zwischen den Sternen Lord of the Rings Sonne Roter Überriese Nördliche Hemisphäre Nördliche Hemisphäre Südliche Hemisphäre Die 150 nächsten Sterne 60 Lichtjahre

Mehr

Inhalt 1 Leben ist kernig Atome bestehen aus Elektronen, Kernen und viel leerem Raum Atomkerne bestimmen den Elementtyp

Inhalt 1 Leben ist kernig Atome bestehen aus Elektronen, Kernen und viel leerem Raum Atomkerne bestimmen den Elementtyp Inhalt 1 Leben ist kernig... 1 Atome bestehen aus Elektronen, Kernen und viel leerem Raum... 1 Atomkerne bestimmen den Elementtyp... 2 Protonen und Neutronen sind die Kernbausteine... 2 Isotope unterscheiden

Mehr

Prüfungsähnliche Klausur Leistungskurs Physik

Prüfungsähnliche Klausur Leistungskurs Physik Pestalozzi-Gymnasium Heidenau Hauptstr. 37 10. Februar 2011 Schuljahr 2010/2011 Prüfungsähnliche Klausur Leistungskurs Physik Allgemeine Arbeitshinweise Ihre Arbeitszeit (einschließlich Zeit für Lesen

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Stationärer Anteil ca % Direktschall.

Stationärer Anteil ca % Direktschall. Naturschall definiert die physikalischen Gesetze bei der Entstehung und Ausbreitung von Klängen, wie sie die Natur macht. Ein natürlicher Klang (technisch erzeugt) ist dann gegeben, wenn er die gleichen

Mehr

V. Optik in Halbleiterbauelementen

V. Optik in Halbleiterbauelementen V.1: Einführung V. Optik in Halbleiterbauelementen 1. Kontakt 1. 3.. 1. Kontakt Abb. VI.1: Spontane Emission an einem pn-übergang Rekombination in der LED: - statistisch auftretender Prozess - Energie

Mehr

u(z, t 0 ) u(z, t 0 + t) z = c t Harmonische Welle

u(z, t 0 ) u(z, t 0 + t) z = c t Harmonische Welle u(z, t) l u(z, t + t) z Welle: Form der Auslenkung (Wellenlänge l) läuft fort; Teilchen schwingen um Ruhelage (Frequenz f = 1/T) Einheit der Frequenz : Hertz (Hz) : 1 Hz = 1/s Geschwindigkeit Wellenlänge

Mehr

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de)

Das führt zu einer periodischen Hin- und Herbewegung (Schwingung) Applet Federpendel (http://www.walter-fendt.de) Elastische SCHWINGUNGEN (harmonische Bewegung) Eine Masse sei reibungsfrei durch elastische Kräfte in einer Ruhelage fixiert Wenn aus der Ruhelage entfernt wirkt eine rücktreibende Kraft Abb. 7.1 Biologische

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

Taschenbuch der Physik

Taschenbuch der Physik Taschenbuch der Physik von Anton Hammer t Hildegard Hammer Karl Hammer 8., überarbeitete Auflage mit 209 Abbildungen J. LINDAUER VERLAG (SCHAEFER) MÜNCHEN Inhaltsverzeichnis I Vorbemerkungen 1 Physikalische

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Atome wurden lange Zeit als die kleinsten Teilchen angesehen, aus denen die Körper bestehen. Sie geben den Körpern ihre chemischen und physikalischen Eigenschaften. Heute wissen

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atome und Atomhülle Quantenphysik in der Sek I, Folie 1 Inhalt Voraussetzungen 1. Der Aufbau der Atome 2. Größe und Dichte der Atomhülle 3. Die verschiedenen Zustände

Mehr

Rainer Dohlus. Physik. Basiswissen für Studierende technischer. Fachrichtungen. 2. Auflage. 4^1 Springer Vieweg

Rainer Dohlus. Physik. Basiswissen für Studierende technischer. Fachrichtungen. 2. Auflage. 4^1 Springer Vieweg Rainer Dohlus Physik Basiswissen für Studierende technischer Fachrichtungen 2 Auflage 4^1 Springer Vieweg egal Geht gibt 1 Mechanik 1 11 Wie es sich bewegt warum 2 111 Zwei unmittelbar im Alltag erlebbare

Mehr

Ein Vortrag über Nichts - Das Vakuum und der Casimir-Effekt

Ein Vortrag über Nichts - Das Vakuum und der Casimir-Effekt 1 / 23 Ein Vortrag über Nichts - Das Vakuum und der Casimir-Effekt aus der Vortragsreihe "Quanten, Felder, Schwarze Löcher" Markus Huber 18.Mai 2006 2 / 23 Inhaltsverzeichnis 1 Geschichte des Vakuums Zoom

Mehr

Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012

Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012 Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012 1. Kurzaufgaben (7 Punkte) a) Welche der folgenden Aussagen ist richtig? Kreuzen Sie diese an (es ist genau eine Aussage richtig). A: Der Brechungswinkel

Mehr

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt

Interferenz makroskopischer Objekte. Vortragender: Johannes Haupt Interferenz makroskopischer Objekte Vortragender: Johannes Haupt 508385 1 Inhalt 1. Motivation 2. Geschichtliche Einführung 3. Experiment 3.1. Aufbau 3.2. Resultate 4. Thermische Strahlung 4.1. Grundidee

Mehr

Die Hyperschall- Sensorik

Die Hyperschall- Sensorik Die Hyperschall- Sensorik des Menschen Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik Oktober 2015 in Much, Teil 2 Erstes Experiment zur Ermittlung der Lage eines sensorischen

Mehr

EINLEITUNG PHYSIKALISCHE CHARAKTERISTIKA

EINLEITUNG PHYSIKALISCHE CHARAKTERISTIKA EINLEITUNG Schall, Schwingungen oder Wellen, die bei Mensch oder Tier über den Gehörsinn Geräuschempfindungen auslösen können. Das menschliche Ohr ist in der Lage, Schall mit Frequenzen zwischen ungefähr

Mehr

ULTRASCHALL. 1. Einleitung. 1. Einleitung. Was ist der Schall für eine Erscheinung?

ULTRASCHALL. 1. Einleitung. 1. Einleitung. Was ist der Schall für eine Erscheinung? Notwendige Kenntnisse ULTRASCHALL Biophysik für Mediziner: II/.4., II/.4., II/.4., II/.4.3 VIII/4.. Ausschlieslich für den Unterrichtsgebrauch. Einleitung. Einleitung Was ist der Schall für eine Erscheinung?

Mehr

1) Teilchendetektion über Cherenkov-Strahlung

1) Teilchendetektion über Cherenkov-Strahlung 1) Teilchendetektion über Cherenkov-Strahlung Eine Methode, Teilchen zu identifizieren und energetisch zu vermessen, ist die Detektion der durch sie hervorgerufenen Cherenkov-Strahlung. Sie entsteht, wenn

Mehr

Dom-Gymnasium Freising Grundwissen Natur und Technik Jahrgangsstufe 7. 1 Grundwissen Optik

Dom-Gymnasium Freising Grundwissen Natur und Technik Jahrgangsstufe 7. 1 Grundwissen Optik 1.1 Geradlinige Ausbreitung des Lichts Licht breitet sich geradlinig aus. 1 Grundwissen Optik Sein Weg kann durch Lichtstrahlen veranschaulicht werden. Lichtstrahlen sind ein Modell für die Ausbreitung

Mehr

Wind/Strömung September Wind und Strömung... 2

Wind/Strömung September Wind und Strömung... 2 Wind/Strömung Inhalt Wind und Strömung... 2 Strömung... 2 Strömungsfeld, stationäre Strömung... 2 Reibungsfreie Strömung... 2 Laminare Strömung... 2 Beaufort... 2 Temperaturstrahlung... 3 Strahlungsgesetze...

Mehr

Physik für Mediziner Technische Universität Dresden

Physik für Mediziner Technische Universität Dresden Physik für Mediziner Technische Universität Dresden Inhalt Manuskript: Prof. Dr. rer. nat. habil. Birgit Dörschel Inst. für Strahlenschutzphysik WS 2005/06: PD Dr. rer. nat. habil. Michael Lehmann Inst.

Mehr

Quarks, Higgs und die Struktur des Vakuums. Univ. Prof. Dr. André Hoang

Quarks, Higgs und die Struktur des Vakuums. Univ. Prof. Dr. André Hoang Quarks, Higgs und die Struktur des Vakuums Univ. Prof. Dr. André Hoang Was bewegt 700 Physiker, in Wien zur größten Konferenz über Elementarteilchen des Jahres 2015 zusammenzukommen? Quarks, Higgs und

Mehr

Physik für Mediziner Technische Universität Dresden

Physik für Mediziner Technische Universität Dresden Technische Universität Dresden Inhalt Manuskript: Prof. Dr. rer. nat. habil. Birgit Dörschel Inst. für Strahlenschutzphysik WS 2005/06: PD Dr. rer. nat. habil. Michael Lehmann Inst. für Strukturphysik

Mehr

Terrestrische Wirkungen der Sonne. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1

Terrestrische Wirkungen der Sonne. Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Terrestrische Wirkungen der Sonne Christian-Weise-Gymnasium Zittau - FB Physik - Mirko Hans 1 Überblick Lesen Sie im LB S.101 f. das Kapitel Terrestrische Wirkungen der Sonne und machen Sie sich kurze

Mehr

- Fahrgast in der Straßenbahn - Gepäck auf dem Autodach - Sicherheitsgurt

- Fahrgast in der Straßenbahn - Gepäck auf dem Autodach - Sicherheitsgurt PRÜFUNGSVORBEREITUNG MECHANIK 1.) Nenne das Trägheitsgesetz! Erläutere möglichst genau an folgenden Beispielen aus dem Straßenverkehr, warum Trägheit eine große Rolle bei Fragen der Verkehrssicherheit

Mehr

Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern

Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern Elektromagnetische Welle (em-welle): Ausbreitung von periodischen elektrischen und magnetischen Feldern Beispiele: Radiowellen, sichtbares Licht, WLAN, Röntgenstrahlen Ausbreitungsgeschwindigkeit jeder

Mehr

Elektromagnetische Felder und Wellen: Klausur

Elektromagnetische Felder und Wellen: Klausur Elektromagnetische Felder und Wellen: Klausur 2008-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

Physik B2.

Physik B2. Physik B2 https://e3.physik.tudortmund.de/~suter/vorlesung/physik_a2_ws17/physik_a2_ws17.html 1 Wellen Welle = Ausbreitung einer Störung in einem kontinuierlichen Medium oder einer räumlich periodischen

Mehr

Wirkung ionisierender Strahlung auf den Menschen. (Buch S )

Wirkung ionisierender Strahlung auf den Menschen. (Buch S ) Wirkung ionisierender Strahlung auf den Menschen (Buch S. 125 126) I. Innere und äußere Bestrahlung Radioaktive Strahlung kann zu Veränderungen der Körperzellen führen. Auch Röntgenstrahlung zeigt diese

Mehr

Und es werde Licht. Die kosmische Hintergrundstrahlung

Und es werde Licht. Die kosmische Hintergrundstrahlung Und es werde Licht Die kosmische Hintergrundstrahlung Vermessung der Hintergrundstrahlung WMAP COBE Planck Planck Foto des Urknalls COBE Foto des Urknalls WMAP Foto des Urknalls Planck Was sehen wir? Zustand

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Konvektion. Prinzip: Bei Konvektion ist Wärmetransport an Materialtransport. Beispiel: See- und Landwind

Konvektion. Prinzip: Bei Konvektion ist Wärmetransport an Materialtransport. Beispiel: See- und Landwind Konvektion Fluides Medium dehnt sich durch Erwärmung lokal aus erwärmte Stoffmenge hat kleinere Dichte steigt auf und wird durch kälteren Stoff ersetzt Konvektionskreislauf Prinzip: Warme Flüssigkeit steigt

Mehr

Quantenphysik in der Sekundarstufe I

Quantenphysik in der Sekundarstufe I Quantenphysik in der Sekundarstufe I Atomphysik Dr. Holger Hauptmann Europa-Gymnasium Wörth holger.hauptmann@gmx.de Quantenphysik in der Sek I, Folie 1 Inhalt 1. Der Aufbau der Atome 2. Größe und Dichte

Mehr

Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H

Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H 104 KAPITEL H Wechselwirkung von Strahlung mit Materie 1. Einleitung In der Elektrodynamik wird der Einfluß der Materie auf die Strahlung mit Hilfe der Stoffkonstanten ε r und µ r berücksichtigt, wobei

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

Grundwissen Physik 9. Jahrgangsstufe

Grundwissen Physik 9. Jahrgangsstufe Grundwissen Physik 9. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. a) Geladene Teilchen, die sich in einem Magnetfeld senkrecht zu den Magnetfeldlinien bewegen, erfahren eine Kraft (= Lorentzkraft),

Mehr

Inhalt Band 2.

Inhalt Band 2. Inhalt Band 2 5 Elektrizität und Magnetismus 481 5.1 Ladung und Ladungsstrom 482 5.1.1 Elektrische Leiter und Ladungsträger 483 5.1.2 Ladungserhaltung und Kontinuitätsgleichung 485 5.1.3 Elektrischer Strom

Mehr

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze

Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden

Mehr

Homöopathie - ein Hyperschallphänomen Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik Januar 2015 in Much, Teil 6

Homöopathie - ein Hyperschallphänomen Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik Januar 2015 in Much, Teil 6 Homöopathie - ein Hyperschallphänomen Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik Januar 2015 in Much, Teil 6 Samuel Hahnemann - Begründer der Homöopathie geboren

Mehr

NG Brechzahl von Glas

NG Brechzahl von Glas NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Basiskenntnistest - Physik

Basiskenntnistest - Physik Basiskenntnistest - Physik 1.) Welche der folgenden Einheiten ist keine Basiseinheit des Internationalen Einheitensystems? ) Kilogramm ) Sekunde ) Kelvin ) Volt ) Candela 2.) Wenn ein Elektron vom angeregten

Mehr

Elektromagnetische Schwingungen und Wellen

Elektromagnetische Schwingungen und Wellen Elektromagnetische Schwingungen und Wellen Größen des Wechselstromes u max U u t u Momentanwert u max Amplitude U Effektivwert T Periodendauer f Frequenz T Der Wechselstrom ist eine elektrische Schwingung.

Mehr

Gewöhnliche Differentialgleichungen: Einleitung

Gewöhnliche Differentialgleichungen: Einleitung Gewöhnliche Differentialgleichungen: Einleitung Die Sprache des Universums ist die Sprache der Differentialgleichungen. 1-E1 Faszinierender Anwendungsreichtum cc 1-E2 Wie verstanden die Alten das Naturgesetz?

Mehr

Hyperschalldiagnostik des Lebensumfeldes von Patienten

Hyperschalldiagnostik des Lebensumfeldes von Patienten Hyperschalldiagnostik des Lebensumfeldes von Patienten Dipl.-Ing. Reiner Gebbensleben, Dresden Seminar Medizinische Hyperschalldiagnostik November 2015 in Much, Teil 9 Die Umwelt formt den Menschen Die

Mehr

Einfluss einer Sonnenfinsternis auf die Funkausbreitung. Gerald Schuler DL3KGS

Einfluss einer Sonnenfinsternis auf die Funkausbreitung. Gerald Schuler DL3KGS Einfluss einer Sonnenfinsternis auf die Funkausbreitung Gerald Schuler DL3KGS Motivation Aus Anlass der Sonnenfinsternis am 20.03.2015 wollte ich den Einfluss einer Sonnenfinsternis auf die Radioausbreitung

Mehr

Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik

Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik Inhaltsverzeichnis Vorwort Wie benutze ich... dieses Buch? I Klassische Mechanik v xv l 1 Grundlagen 3 1.1 Einheiten, Größenordnungen, Zahlenwerte 4 1.2 Impuls 7 1.3 Kraft und die Newton'schen Gesetze

Mehr

VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele.

VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele. Die mechanischen 1. Entscheide, ob die Aussagen richtig oder falsch sind. Wenn du denkst, es handelt sich um eine falsche Aussage, dann berichtige diese. Aussage richtig falsch Die Aussage müsste richtig

Mehr

Physik für Ingenieure

Physik für Ingenieure Physik für Ingenieure von Prof. Dr. Ulrich Hahn OldenbourgVerlag München Wien 1 Einführung 1 1.1 Wie wird das Wissen gewonnen? 2 1.1.1 Gültigkeitsbereiche physikalischer Gesetze 4 1.1.2 Prinzipien der

Mehr

Physik für Einsteiger

Physik für Einsteiger Physik für Einsteiger Ein Lehr- und Übungsbuch für Studienanfäng von Friedrich Luhe Mit 320 Bildern und 161 Übungsaufgaben mit ausführlichen Lösungen \ Fachbuchverlag Leipzig im Carl Hanser Verlag 7 Inhaltsverzeichnis

Mehr

A. Mechanik (20. Punkte. Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: Diplomvorprüfung in Physik für Elektrotechniker am

A. Mechanik (20. Punkte. Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: Diplomvorprüfung in Physik für Elektrotechniker am Dr. S. Kröger Prof. Dr. G. von Oppen Prof. Dr. A. Hese Dipl.-Phys. G. Hoheisel Dipl.-Phys. H. Valipour Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden

Mehr

SPEKTRALANALYSE. entwickelt um 1860 von: GUSTAV ROBERT KIRCHHOFF ( ; dt. Physiker) + ROBERT WILHELM BUNSEN ( ; dt.

SPEKTRALANALYSE. entwickelt um 1860 von: GUSTAV ROBERT KIRCHHOFF ( ; dt. Physiker) + ROBERT WILHELM BUNSEN ( ; dt. SPEKTRALANALYSE = Gruppe von Untersuchungsmethoden, bei denen das Energiespektrum einer Probe untersucht wird. Man kann daraus schließen, welche Stoffe am Zustandekommen des Spektrums beteiligt waren.

Mehr

Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum. Jonathan Harrington

Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum. Jonathan Harrington Die akustische Analyse von Sprachlauten 1. Zeitsignal, Periodizität, Spektrum Jonathan Harrington Wie entsteht der Schall? 1. Ein Gegenstand bewegt sich und verursacht Luftdruckveränderungen. Luftmoleküle

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

14. Atomphysik Aufbau der Materie

14. Atomphysik Aufbau der Materie 14. Atomphysik 14.1 Aufbau der Materie 14.2 Der Atomaufbau 14.2.1 Die Hauptquantenzahl n 14.2.2 Die Nebenquantenzahl l 14.2.3 Die Magnetquantenzahl m l 14.2.4 Der Zeemann Effekt 14.2.5 Das Stern-Gerlach-Experiment

Mehr

Masse von Newton und Einstein zu Higgs und dunkler Materie

Masse von Newton und Einstein zu Higgs und dunkler Materie von Newton und Einstein zu Higgs und dunkler Materie Institut f. Kern- und Teilchenphysik Dresden, 13.11.2008 Inhalt 1 Einleitung 2 Newton träge und schwere 3 Einstein bewegte und Ruhemasse 4 Higgs Ruhemasse

Mehr

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre

3. N. I Einführung in die Mechanik. II Grundbegriffe der Elektrizitätslehre 3. N I Einführung in die Mechanik Kennen die Begriffe Kraft und Arbeit Erläutern von Vektoren und Skalaren Lösen von maßstäblichen Konstruktionsaufgaben mit dem Kräfteparallelogramm Können Kräfte messen

Mehr