Beschreibungskomplexität von Grammatiken Definitionen

Größe: px
Ab Seite anzeigen:

Download "Beschreibungskomplexität von Grammatiken Definitionen"

Transkript

1 Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β P Sei nun X eine Menge von Grammatiken. Wir erweitern nun die obigen Komplexitätsmaße auf Sprachen L L (X) mittels Var X (L) = min{var(g) L = L(G), G X}, Prod X (L) = min{prod(g) L = L(G), G X}, Symb X (L) = min{symb(g) L = L(G), G X}. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.1

2 Beispiel 5.1 Wir betrachten die Grammatik mit G 1 = ({S, U, X, X, Y, Z}, {a, b}, P 1, S) P 1 = {S Y X az, Y X Y X, Y X b 2 U, Ua au, UZ b 2, Xa aax, XZ X Z, ax X a}. Es ist leicht zu sehen, dass die Satzformen von G 1 eine der folgenden Formen S, Y a 2n Xa m Z, Y a k X a l Z, b 2 a k Ua l Z, b 2 a 2r b 2 mit n 0, m 0, 2n + 2m = 2 r, k 0, l 0, k + l = 2 r, r 0 haben, und dass umgekehrt jedes Wort dieser Form auch Satzform ist. Damit gilt L 1 = L(G 1 ) = {b 2 a 2r b 2 r 0}. Als Komplexitätsmaße von G 1 erhält man durch einfaches Auszählen Damit ergibt sich auch Var(G 1 ) = 6, Prod(G 1 ) = 8 und Symb(G 1 ) = 43. Var MON (L 1 ) 6, Prod MON (L 1 ) 8 und Symb MON (L 1 ) 43. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.2

3 Fortsetzung Beispiel 5.1 Die monotone Grammatik G 1 = ({S, U, X, X }, {a, b, Y, Z}, P 1, S) erzeugt offensichtlich auch L 1, denn wir erhalten die gleichen Ableitungen wie in G 1. Der Unterschied zwischen G 1 und G 1 liegt darin, dass wir bei G 1 die Symbole Y und Z als Terminale auffassen (obwohl sie in keinem Wort der Sprache vorkommen). Für G 1 erhalten wir Var(G 1 ) = 4, Prod(G 1) = 8 und Symb(G 1 ) = 43. Folglich ergibt sich für die Anzahl der Variablen die Verschärfung Var MON (L 1 ) 4. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.3

4 Beispiel 5.2 Sei r eine beliebige positive natürliche Zahl. Für die kontextfreie Grammatik ergeben sich offenbar und G 2 = ({S, A}, {a, b}, {S A r, A aa, A Ab, A ab}, S) L 2,r = L(G 2 ) = {a n b m n 1, m 1} r Var(G 2 ) = 2, Prod(G 2 ) = 4 und Symb(G 2 ) = 14 + r. L 2,r ist für jedes r 1 eine reguläre Sprache, da z. B. die reguläre Grammatik mit G 2 = ({A i 1 i r} {B i 1 i r}, {a, b}, P 2, A 1 ) P 2 = {A i aa i 1 i r} {A i ab i 1 i r} {B i bb i 1 i r} {B i ba i+1 1 i r 1} {B r b} ebenfalls L 2,r erzeugt. Wegen Var(G 2 ) = 2r gilt Var REG (L 2,r ) 2r. Wir wollen nun zeigen, dass hinsichtlich der Anzahl der Nichtterminale G 2 sogar optimal ist. Das würde bedeuten: Var REG (L 2,r ) = 2r Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.4

5 Vergleich von Komplexitätsmaßen Beispiel 5.2 belegt, dass kontextfreie Grammatik erheblich effizienter als reguläre Grammatiken bei der Beschreibung von Sprachen sein können. Wir definieren daher einige mögliche Relationen zwischen den Komplexitätsmaßen. Sei K {Var, Prod, Symb} ein Komplexitätsmaß, und seien X und Y zwei Mengen von Grammatiken, für die L (X) L (Y ) gilt. Wir schreiben X K Y, falls es eine Konstante k derart gibt, dass K X (L) K Y (L) k für alle L L (X) gilt, Y 1 K X, falls es eine Folge L n, n 1, von Sprachen mit L n L (X) derart gibt, dass lim n (K X (L n ) K Y (L n )) = gilt, Y 2 K X, falls es eine Folge L n, n 1, von Sprachen L n L (X) derart gibt, dass K lim X (Ln) n K Y (Ln) = gilt, Y 3 K X, falls es eine Konstante k und eine Folge L n, n 1, von Sprachen L n L (X) derart gibt, dass K X (L n ) n und K Y (L n ) k gilt. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.5

6 Beziehung der Komplexitätsmaße Var REG und Var CF und Vollständigkeit Wegen der in Beispiel 5.2 gezeigten Beziehungen Var CF (L 2,r ) = 2 und Var REG (L 2,r ) = 2r r für r 1 gilt in dieser Terminologie CF 3 Var REG. Für den Nachweis einer Relation vom Typ X i K Y, i {1, 2, 3} benötigt man Sprachen aus L (Y ) beliebig großer Komplexität. Eine Verschärfung dieser Forderung besteht darin, dass jede beliebige positive natürliche Zahl im Wertevorrat von K Y auftaucht. Definition: Wir sagen, dass ein Komplexitätsmaß K {Var, Prod, Symb} bezüglich der Menge Y von Grammatiken vollständig ist, wenn es für jede natürliche Zahl n eine Sprache L n L (Y ) derart gibt, dass K Y (L n ) = n gilt. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.6

7 Grammatikklassen RE die Menge aller Regelgrammatiken, MON die Menge aller monotonen Grammatiken, CF die Menge aller kontextfreien Grammatiken, CF-ε die Menge aller kontextfreien ε-freien Grammatiken, redcf die Menge aller reduzierten kontextfreien Grammatiken, ChCF die Menge aller kontextfreien Grammatiken in Chomsky-Normalform, REG die Menge aller regulären Grammatiken, nfreg die Menge aller Grammatiken in regulärer Normalform. Für eine Menge X von Grammatiken (im Folgenden wird stets X {RE, MON, CF, CF-ε, redcf, ChCF, REG, nfreg} gelten) Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.7

8 Anzahl der Nichtterminale für verschiedene Grammatikklassen Wir behandeln zuerst die Beziehungen zwischen den Maßen Var X und Var Y für verschiedene Klassen X und Y von Grammatiken. Lemma: Für zwei Mengen X und Y von Grammatiken mit X Y gilt Var Y (L) Var X (L) für jede Sprache L L (X) Beweis: Sei G X eine Grammatik mit L(G) = L und Var(G) = Var X (L). Da auch G Y nach Voraussetzung gilt, erhalten wir Var Y (L) Var(G) = Var X (L). Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.8

9 Lemma: Einfache Lemmata i) Für jede kontextfreie Sprache L gilt Var CF (L) = Var redcf (L). ii) Für jede kontextfreie ε-freie Sprache L gilt Var CF (L) = Var CF-ε (L). Beweis: i) Da jede reduzierte kontextfreie Grammatik auch eine kontextfreie Grammatik ist, gilt Var CF (L) Var redcf (L). (1) Ist umgekehrt L L (CF) und G = (N, T, P, S) eine kontextfreie Grammatik mit L = L(G) und Var(G) = Var CF (L), so konstruieren wir die zugehörige reduzierte Grammatik G durch Streichen aller Nichtterminale A von N, für die keine Ableitung der Form S = uav oder A = w T existiert, und aller Regeln, in denen A vorkommt. Folglich gilt Var(G ) Var(G). Dies impliziert woraus mit (1) sofort die Behauptung folgt. Var redcf (L) Var(G ) Var(G) = Var CF (L), ii) Der Beweis verläuft völlig analog. Wir haben nur zu beachten, dass die Standardkonstruktion einer ε-freien Grammatik aus einer Grammatik, die eine ε-freie Sprache erzeugt, die Anzahl der Nichtterminale nicht erhöht. Folgerung: Für X {CF, redcf, CF-ε, MON, RE} gilt X 3 Var REG. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.9

10 Satz Satz: Var ist bezüglich REG ein vollständiges Maß. Beweis: Sei n 1 eine gerade Zahl. Dann setzen wir und erhalten aus Beispiel 5.2 Var REG (L n ) = n. L n = L 2, n 2 = ({a} + {b} + ) n 2 Für ungerades n 1 setzen wir L n = ({a} + {b} + ) n 1 2 {a} + und können dafür wie in Beispiel 5.2 Var REG (L n ) = n nachweisen. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.10

11 Nützliche Lemmata I Lemma: Für eine kontextfreie Grammatik G = (N, T, P, S), die die Bedingung Var(G) = Var CF (L(G)) erfüllt, gibt es für jedes A N mit A S eine Regel A uav mit uv ε in P. Beweis: Wir nehmen an, dass es ein A N, A S, so gibt, dass die rechten Seiten aller Regeln mit linker Seite A den Buchstaben A nicht enthalten. Wir setzen P A = {w A w P }. Wir zerlegen die rechten Seiten einer jeden Regel p = B u 1 Au 2 A... u r Au r+1 P mit B A so, dass u i (V \ {A}) für 1 i r + 1 ist, und setzen P p = {B u 1 w 1 u 2 w 2... u r w r u r+1 r 0, w i P A, 1 i r}. (Falls die rechte Seite von p kein A enthält, ist P p = {p}.) Sei nun G = (N \ {A}, T, p=b z P B A P p, S). Es ist leicht zu sehen, dass L(G ) = L(G) gilt, denn die in G bzw. G möglichen Ableitungen S S = v 1 Bv 2 = v 1 u 1 Au 2 A... u r Au r+1 v 2 = v 1 u 1 w 1 u 2 A... u r Au r+1 v 2 = v 1 u 1 w 1 u 2 w 2 u 3 A... u r Au r+1 v 2 = v 1 u 1 w 1 u 2 w 2... u r w r u r+1 v 2 sowie = v 1 Bv 2 = v 1 u 1 w 1 u 2 w 2... u r w r u r+1 v 2 sind gleichwertig. Da offenbar Var(G ) = Var(G) 1 = Var CF (L) 1 gilt, erhalten wir einen Widerspruch. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.11

12 Nützliche Lemmata II Lemma: Für eine kontextfreie Grammatik G = (N, T, P, S) mit Var(G) = Var CF (L(G)) ist für jedes A N mit A S die Sprache L(G, A) unendlich. Beweis: Der Beweis wird völlig analog zu dem für den Teil I geführt, wobei wir nur P A durch (die nach Annahme endliche Menge) L(G, A) ersetzen. Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.12

13 Satz Satz: Var ist bezüglich CF ein vollständiges Maß. Beweis: Wir betrachten die Sprachen L 1 = {a}, L 2 = {a} + {b} + {a} +, L n = Da die kontextfreien Grammatiken G 1 = ({S}, {a}, {S a}, S), {a i b} + für n 3. G 2 = ({S, A}, {a, b}, {S as, S Sa, S aaa, A ba, A b}, S), n 1 G n = ({S, A 1, A 2,..., A n 1 }, {a, b}, {S A i, A i a i ba i, A i a i b}, S), n 3, i=1 mit Var(G 1 ) = 1, Var(G 2 ) = 2 und Var(G n ) = n für n 3 die Sprachen L 1, L 2 und L n für n 3 erzeugen, ist Var CF (L 1 ) 1, Var CF (L 2 ) 2 und Var CF (G n ) n für n 3 (2) bereits gezeigt. n 1 i=1 Dr. Bernd Reichel Ausgewählte Kapitel der theoretischen Informatik, Folie 5.13

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17

Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im

Mehr

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14

Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14 Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 15.01.2015 INSTITUT FÜR THEORETISCHE 0 KIT 15.01.2015 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 8. Januar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 8. Januar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 08.01.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Letzte Vorlesung Eine

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Motivation natürliche Sprachen

Motivation natürliche Sprachen Motivation natürliche Sprachen (Satz) (Substantivphrase)(Verbphrase) (Satz) (Substantivphrase)(Verbphrase)(Objektphrase) (Substantivphrase) (Artikel)(Substantiv) (Verbphrase) (Verb)(Adverb) (Substantiv)

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Ogden s Lemma (T6.4.2)

Ogden s Lemma (T6.4.2) Weiteres Beispiel L={a r b s c t d u r=0 s=t=u} Nahe liegende Vermutung: L nicht kontextfrei. Kann man mit dem Pumping-Lemma nicht zeigen. r=0: Pumpen erzeugt Wort aus L. r>0: Pumpen der a s erzeugt Wort

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Prof. Meer, Dr. Gengler Aufgabenblatt 7 Besprechung in KW 48 / Abgabe in KW 49 Heften Sie unbedingt alle Blätter Ihrer Lösung zusammen und geben Sie oben auf dem ersten Blatt Ihren

Mehr

Formale Sprachen Jörg Roth Formale Sprachen

Formale Sprachen Jörg Roth Formale Sprachen Formale Sprachen Jörg Roth 196 3 Formale Sprachen Wir haben uns bisher nur mit einem Typ formaler Sprachen besonders intensiv beschäftigt den regulären Sprachen. Wir haben aber auch erkannt, dass reguläre

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Übung am 4.2.2011 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An

Definition 4 (Operationen auf Sprachen) Beispiel 5. Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A + = n 1 An Definition 4 (Operationen auf Sprachen) Seien A, B Σ zwei (formale) Sprachen. Konkatenation: AB = {uv ; u A, v B} A 0 = {ɛ}, A n+1 = AA n A = n 0 An A + = n 1 An Beispiel 5 {ab, b}{a, bb} = {aba, abbb,

Mehr

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER

Formale Sprachen. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marian KOGLER Formale Sprachen Grammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marian KOGLER Grammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind Grammatiken.

Mehr

Automatentheorie und formale Sprachen

Automatentheorie und formale Sprachen Automatentheorie und formale Sprachen VL 8 Chomsky-Grammatiken Kathrin Hoffmann 23. Mai 2012 Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 23.5. 2012 250 Wortproblem Wortproblem ist das

Mehr

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 7

Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt Lösungsskizze 7 Prof. J. Esparza Technische Universität München S. Sickert, J. Krämer KEINE ABGABE Einführung in die theoretische Informatik Sommersemester 2017 Übungsblatt 7 Übungsblatt Wir unterscheiden zwischen Übungs-

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (IV) 15.06.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 13.01.2011 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (I) 3.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Organisatorisches 1. Teilklausur: Mittwoch,

Mehr

Übungsblatt Nr. 3. Lösungsvorschlag

Übungsblatt Nr. 3. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 3 Aufgabe 1: Karlsruhe ist nicht genug

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.5 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibung des Aufbaus von Sprachen Mathematische Mengennotation Beschreibung durch Eigenschaften

Mehr

Definition der Greibach-Normalform

Definition der Greibach-Normalform Definition der Greibach-Normalform Ähnlich wie die CNF wollen wir noch eine zweite Normalform einführen, nämlich die Greibach-Normalform (GNF), benannt nach Sheila Greibach: Definition: Eine Typ-2 Grammatik

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 17. Januar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 17. Januar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 0 17.01.2019 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Evaluation Ergebnisse

Mehr

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer,

Reguläre Sprachen. R. Stiebe: Theoretische Informatik für ING-IF und Lehrer, Reguläre Sprachen Reguläre Sprachen (Typ-3-Sprachen) haben große Bedeutung in Textverarbeitung und Programmierung (z.b. lexikalische Analyse) besitzen für viele Entscheidungsprobleme effiziente Algorithmen

Mehr

Formale Sprachen. Grammatiken. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marion OSWALD. Grammatiken: Ableitung

Formale Sprachen. Grammatiken. Grammatiken und die Chomsky-Hierarchie. Rudolf FREUND, Marion OSWALD. Grammatiken: Ableitung Formale Sprachen rammatiken und die Chomsky-Hierarchie Rudolf FREUND, Marion OSWALD rammatiken Das fundamentale Modell zur Beschreibung von formalen Sprachen durch Erzeugungsmechanismen sind rammatiken.

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 5. Vorlesung 09.11.2006 schindel@informatik.uni-freiburg.de 1 Äquivalenzklassen Definition und Beispiel Definition Für eine Sprache L Σ* bezeichnen

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Das Halteproblem für Turingmaschinen

Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen Das Halteproblem für Turingmaschinen ist definiert als die Sprache H := { T w : T ist eine TM, die bei Eingabe w {0, 1} hält }. Behauptung: H {0, 1} ist nicht entscheidbar.

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 07.11.2005 5. Vorlesung 1 Überblick: Kontextfreie Sprachen Formale Grammatik Einführung, Beispiele Formale

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie prachen (VI) 25.06.2015 Viorica ofronie-tokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18. Januar 2018 INSTITUT FÜR THEORETISCHE 0 18.01.2018 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Hochschule Bonn-Rhein-Sieg University of Applied Sciences Grantham-Allee Sankt Augustin

Hochschule Bonn-Rhein-Sieg University of Applied Sciences Grantham-Allee Sankt Augustin Hochschule Bonn-Rhein-Sieg Uniersity of Applied Sciences Grantham-Allee 20 53757 Sankt Augustin Director b-it Applied Science Institute Fachbereich Informatik Prof. Dr. Kurt-Ulrich Witt Mathematische und

Mehr

Chomsky-Grammatiken 16. Chomsky-Grammatiken

Chomsky-Grammatiken 16. Chomsky-Grammatiken Chomsky-Grammatiken 16 Chomsky-Grammatiken Ursprünglich von Chomsky in den 1950er Jahren eingeführt zur Beschreibung natürlicher Sprachen. Enge Verwandschaft zu Automaten Grundlage wichtiger Softwarekomponenten

Mehr

Kapitel IV Formale Sprachen und Grammatiken

Kapitel IV Formale Sprachen und Grammatiken Kapitel IV Formale Sprachen und Grammatiken 1. Begriffe und Notationen Sei Σ ein (endliches) Alphabet. Dann Definition 42 1 ist Σ das Monoid über Σ, d.h. die Menge aller endlichen Wörter über Σ; 2 ist

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 18/19 Ausgabe 8. Januar 2019 Abgabe 22. Januar 2019, 11:00 Uhr (im

Mehr

Kontextfreie Sprachen. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kontextfreie Sprachen

Kontextfreie Sprachen. Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester Kontextfreie Sprachen Automaten und Formale Sprachen alias Theoretische Informatik Sommersemester 2012 Dr. Sander Bruggink Übungsleitung: Jan Stückrath Wortproblem: der CYK-Algorithmus Pumping Lemma für kontextfreie Sprachen

Mehr

Akzeptierende Turing-Maschine

Akzeptierende Turing-Maschine Akzeptierende Turing-Maschine Definition: Eine akzeptierende Turing-Maschine M ist ein Sechstupel M = (X, Z, z 0, Q, δ, F ), wobei (X, Z, z 0, Q, δ) eine Turing-Maschine ist und F Q gilt. Die von M akzeptierte

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Kontextfreie Sprachen und Pushdown-Automaten Dozentin: Wiebke Petersen WS 2004/2005 Wiebke Petersen Formale Komplexität natürlicher Sprachen WS 03/04 Wiederholung c

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Zentralübung zur Vorlesung Theoretische Informatik

Zentralübung zur Vorlesung Theoretische Informatik SS 2015 Zentralübung zur Vorlesung Theoretische Informatik Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2015ss/theo/uebung/ 7. Mai 2015 ZÜ THEO ZÜ IV Übersicht: 1.

Mehr

Vorlesung Theoretische Informatik (Info III)

Vorlesung Theoretische Informatik (Info III) 1 Vorlesung Theoretische Informatik (Info III) Prof. Dr. Dorothea Wagner Dipl.-Math. Martin Holzer 22. Januar 2008 Einleitung Motivation 2 Thema heute Kontextfreie Grammatiken: Lemma von Ogden Eigenschaften

Mehr

Theoretische Informatik und Logik Übungsblatt 2 (2017S) Lösung

Theoretische Informatik und Logik Übungsblatt 2 (2017S) Lösung Theoretische Informatik und Logik Übungsblatt 2 (2017) en Aufgabe 2.1 Geben ie jeweils eine kontextfreie Grammatik an, welche die folgenden prachen erzeugt, sowie eine Linksableitung und einen Ableitungsbaum

Mehr

I.5. Kontextfreie Sprachen

I.5. Kontextfreie Sprachen I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 5: Reguläre Ausdrücke und Grammatiken schulz@eprover.org Software Systems Engineering Reguläre Sprachen Bisher: Charakterisierung von Sprachen über Automaten

Mehr

Grundbegriffe. Grammatiken

Grundbegriffe. Grammatiken Grammatiken Grammatiken in der Informatik sind ähnlich wie Grammatiken für natürliche Sprachen ein Mittel, um alle syntaktisch korrekten Sätze (hier: Wörter) einer Sprache zu erzeugen. Beispiel: Eine vereinfachte

Mehr

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben

Grundlagen der Theoretischen Informatik Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekt mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann.

Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden kann. Der Satz von Kleene Wir haben somit Folgendes bewiesen: Der Satz von Kleene Sei Σ ein endliches Alphabet. Eine Sprache L Σ ist genau dann regulär, wenn sie von einem regulären Ausdruck beschrieben werden

Mehr

(Prüfungs-)Aufgaben zu formale Sprachen

(Prüfungs-)Aufgaben zu formale Sprachen (Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),

Mehr

1. Übungsblatt 6.0 VU Theoretische Informatik und Logik

1. Übungsblatt 6.0 VU Theoretische Informatik und Logik . Übungsblatt 6. VU Theoretische Informatik und Logik 25. September 23 Aufgabe Sind folgende Aussagen korrekt? Begründen Sie jeweils Ihre Antwort. a) Für jede Sprache L gilt: L < L (wobei A die Anzahl

Mehr

Vorlesungsmitschrift zur Vorlesung Theoretische Informatik I vom 23. Juni Christian Franz

Vorlesungsmitschrift zur Vorlesung Theoretische Informatik I vom 23. Juni Christian Franz Vorlesungsmitschrift zur Vorlesung Theoretische Informatik I vom 23. Juni 2 Christian Franz Inhaltsverzeichnis Wiederholung: Vorlesung vom 9.6.2... Beispiele für Äquivalenzklassen... 4.5. Minimierung

Mehr

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13 Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2003/04 ILKD Prof. Dr. D. Wagner 14. April 2004 2. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004 Hier Aufkleber

Mehr

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 2 Lösungen. Wiederholung: von einer Grammatik erzeugte Sprache

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 2 Lösungen. Wiederholung: von einer Grammatik erzeugte Sprache Prof. Dr. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Fachbereich 4: Informatik Dennis Peuter 27. April 2017 Übung zur Vorlesung Grundlagen der theoretischen Informatik Aufgabenblatt 2 Lösungen

Mehr

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)

Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs) ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 24.03.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name:................................

Mehr

DisMod-Repetitorium Tag 4

DisMod-Repetitorium Tag 4 DisMod-Repetitorium Tag 4 Endliche Automaten, Reguläre Sprachen und Kontextfreie Grammatiken 22. März 2018 1 Endliche Automaten Definition DFA Auswertungen Äquivalenzrelationen Verschmelzungsrelation und

Mehr

Beweis des Pumping Lemmas

Beweis des Pumping Lemmas Beweis des Pumping Lemmas Die Sprache L sei eine Typ-2 Sprache, d.h. es gibt eine Typ-2 Grammatik G =(V,, P, S) in CNF, so dass L = L(G) gilt. Wir fixieren eine solche Grammatik G und wählen n = 2 V. Nun

Mehr

Klausur zur Vorlesung Einführung in die Theoretische Informatik

Klausur zur Vorlesung Einführung in die Theoretische Informatik Universität Heidelberg 19. Juli 2012 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Einführung in die Theoretische Informatik LÖSUNGEN Es können

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 18.01.2011 INSTITUT FÜR THEORETISCHE INFORMATIK 0 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften

Formalismen für REG. Formale Grundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen. Das Pumping Lemma. Abschlusseigenschaften Formalismen für RE Formale rundlagen der Informatik 1 Kapitel 7 Kontextfreie Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de Satz Zu jeder regulären Sprache L gibt es einen DFA A mit L(A) =

Mehr

Lösungen zum Ergänzungsblatt 2

Lösungen zum Ergänzungsblatt 2 Theoretische Informatik I WS 2018 Carlos Camino en zum Ergänzungsblatt 2 Hinweise: In der Literatur sind zwei verschiedene Definitionen der natürlichen Zahlen gängig. Während in der Mathematik-I-Vorlesung

Mehr

3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation

3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation Formale Systeme, Automaten, Prozesse Übersicht 3 3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation 3.5 Normalformen für CFGs 3.6 Chomsky-Normalform 3.7 Greibach-Normalform

Mehr

Endliche Automaten. δ : Z Σ Z die Überführungsfunktion, z 0 Z der Startzustand und F Z die Menge der Endzustände (Finalzustände).

Endliche Automaten. δ : Z Σ Z die Überführungsfunktion, z 0 Z der Startzustand und F Z die Menge der Endzustände (Finalzustände). Endliche Automaten Endliche Automaten Definition Ein deterministischer endlicher Automat (kurz DFA für deterministic finite automaton ) ist ein Quintupel M = (Σ, Z, δ, z 0, F), wobei Σ ein Alphabet ist,

Mehr

Informatik III. Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung

Informatik III. Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung Informatik III Christian Schindelhauer Wintersemester 2006/07 6. Vorlesung 10.11.2006 schindel@informatik.uni-freiburg.de 1 Kapitel IV Kontextfreie Sprachen Kontextfreie Grammatik Informatik III 6. Vorlesung

Mehr

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 7 Lösungen. Wiederholung: Pumping-Lemma für kontextfreie Sprachen

Übung zur Vorlesung Grundlagen der theoretischen Informatik. Aufgabenblatt 7 Lösungen. Wiederholung: Pumping-Lemma für kontextfreie Sprachen Prof. Dr. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Fachbereich 4: Informatik Dennis Peuter 01. Juni 2017 Übung zur Vorlesung Grundlagen der theoretischen Informatik Aufgabenblatt 7 Lösungen

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung

Mehr

Eine Chomsky-Grammatik für die Fibonacci-Zahlen

Eine Chomsky-Grammatik für die Fibonacci-Zahlen Eine Chomsky-Grammatik für die Fibonacci-Zahlen FSU Jena 26. Juni 2017 rekursive Berechnung Definition Die Fibonacci-Folge ist rekursiv folgendermaßen definiert: f (0) = 0 f (1) = 1 Beginn der Folge: f

Mehr

Ein Fragment von Pascal

Ein Fragment von Pascal Ein Fragment von Pascal Wir beschreiben einen (allerdings sehr kleinen) Ausschnitt von Pascal durch eine kontextfreie Grammatik. Wir benutzen das Alphabet Σ = {a,..., z, ;, :=, begin, end, while, do} und

Mehr

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik

2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum

Mehr

Übersicht. 3 3 Kontextfreie Sprachen

Übersicht. 3 3 Kontextfreie Sprachen Formale Systeme, Automaten, Prozesse Übersicht 3 3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation 3.4 Entscheidungsprobleme für CFGs 3.5 Normalformen für CFGs 3.6 Chomsky-Normalform

Mehr

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben

Mehr

Informatik III - WS07/08

Informatik III - WS07/08 Informatik III - WS07/08 Kapitel 5 1 Informatik III - WS07/08 Prof. Dr. Dorothea Wagner dwagner@ira.uka.de Kapitel 5 : Grammatiken und die Chomsky-Hierarchie Informatik III - WS07/08 Kapitel 5 2 Definition

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien Automaten und formale prachen Notizen zu den Folien 10 Kontextfreie Grammatiken Beispiele für kontextfreien Grammatiken ei Σ = {a, b}. Beispiel 1 (Folie 233, oben) Geben ie eine kontextfreie Grammatik

Mehr

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b

q 0 q gdw. nicht (q A) (q A) q i+1 q gdw. q i q oder ( a Σ) δ(q, a) i δ(q, a) L = {a n b n : n N} für a, b Σ, a b Kap. 2: Endliche Automaten Myhill Nerode 2.4 Minimalautomat für reguläre Sprache Abschnitt 2.4.3 L Σ regulär der Äuivalenzklassen-Automat zu L ist ein DFA mit minimaler Zustandszahl (= index( L )) unter

Mehr

Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen

Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen Formale Grundlagen der Informatik 1 Kapitel 7 Eigenschaften kontextfreier Sprachen Frank Heitmann heitmann@informatik.uni-hamburg.de 28. April 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/39

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Technische Universität München akultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 6 11. Juni 2010 Einführung in die Theoretische

Mehr

Kontextfreie Sprachen

Kontextfreie Sprachen Kontextfreie Sprachen besitzen große Bedeutung im Compilerbau Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung durch

Mehr

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ.

Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (ii) ε ist ein regulärer Ausdruck über Σ. Reguläre Ausdrücke Definition (Reguläre Ausdrücke) Sei Σ ein Alphabet, dann gilt: (i) ist ein regulärer Ausdruck über Σ. (ii) ε ist ein regulärer Ausdruck über Σ. (iii) Für jedes a Σ ist a ein regulärer

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV 1 Wir betrachten die folgende Signatur

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 5 Eigenschaften regulärer Sprachen 51: Die Nerode-Relation Theoretische Informatik Mitschrift Definition 51: Sei L * L * * mit L :={u, v * * w *:uw L v w L }heißt Nerode-Relation von L Sei ={0,1}, L= *{00}

Mehr

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive

Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G

Mehr

Zusammenfassung. Beispiel. 1 Wir betrachten die folgende Signatur F = {,, +, 0, 1} sodass. 3 Wir betrachten die Identitäten E. 4 Dann gilt E 1 + x = 1

Zusammenfassung. Beispiel. 1 Wir betrachten die folgende Signatur F = {,, +, 0, 1} sodass. 3 Wir betrachten die Identitäten E. 4 Dann gilt E 1 + x = 1 Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele eorg Moser Michael Schaper Institut für Informatik @ UIBK Wintersemester 2016

Mehr

Grundlagen der theoretischen Informatik

Grundlagen der theoretischen Informatik Grundlagen der theoretischen Informatik Kurt Sieber Fakultät IV, Department ETI Universität Siegen SS 2013 Vorlesung vom 04.06.2013 An den Transitionen sieht man zunächst, dass nur die folgenden Zustandsübergänge

Mehr

Vorlesung Automaten und Formale Sprachen Sommersemester Beispielsprachen. Sprachen

Vorlesung Automaten und Formale Sprachen Sommersemester Beispielsprachen. Sprachen Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Wörter Wort Sei Σ ein Alphabet, d.h., eine endliche Menge von Zeichen. Dann bezeichnet

Mehr

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.

Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz. Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe

Mehr

2.1 Allgemeines. Was ist eine Sprache? Beispiele:

2.1 Allgemeines. Was ist eine Sprache? Beispiele: Was ist eine Sprache? Beispiele: (a) Deutsch, Japanisch, Latein, Esperanto,...: Natürliche Sprachen (b) Pascal, C, Java, Aussagenlogik,...: Formale Sprachen Wie beschreibt man eine Sprache? (i) Syntax

Mehr