Kapitel 4: Relationen-Kalkül

Größe: px
Ab Seite anzeigen:

Download "Kapitel 4: Relationen-Kalkül"

Transkript

1 Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2006/2007 Vorlesung: Dr. Peer Kröger Übungen: Karsten Borgwardt, Dr. Peer Kröger Skript 2005 Christian Böhm Begriff...das Kalkül der Kalkül... 2

2 Begriff Mathematik: Prädikatenkalkül Formeln wie {x x ΙN x 3 > 0 x 3 < 1000} Anwendung solcher Formeln für DB-Anfragen Bezugnahme auf DB-Relationen im Bedingungsteil: (x 1, y 1, z 1 ) Mitarbeiter, t 1 Abteilungen Terme werden gebildet aus Variablen, Konstanten usw. Atomare Formeln aus Prädikaten der Datentypen: =, <, >,, usw. Atomare Formeln können mit logischen Operatoren zu komplexen Formeln zusammengefasst werden: F 1 F 2, F 1 F 2, F 1, x: F 1, x: F 1 3 Bsp: Finde alle Großstädte in Bayern: {t t Städte t[land] = Bayern t[seinw] } Unterschied zur Rel. Algebra 4 Relationale Algebra ist prozedurale Sprache: Ausdruck gibt an, unter Benutzung welcher Operationen das Ergebnis berechnet werden soll WIE Relationen-Kalkül ist deklarative Sprache: Ausdruck beschreibt, welche Eigenschaften die Tupel der Ergebnisrelation haben müssen ohne eine Berechnungsprozedur dafür anzugeben WAS Es gibt zwei verschiedene Ansätze: Tupelkalkül: Variablen sind vom Typ Tupel Bereichskalkül: Variablen haben einfachen Typ

3 Der Tupelkalkül Man arbeitet mit Tupelvariablen: t Formeln: ψ(t) Ausdrücken: {t ψ(t)} Idee: Ein Ausdruck beschreibt die Menge aller Tupel, die die Formel ψ erfüllen (wahr machen) Ein Kalkül besteht immer aus Syntax: Wie sind Ausdrücke aufgebaut? Semantik: Was bedeuten die Ausdrücke? 5 Tupelvariablen Tupelvariablen haben ein definiertes Schema: Schema(t) = (A 1 : D 1, A 2 : D 2,...) Schema(t) = R 1 (t hat dasselbe Schema wie Relation) Für Zugriff auf die Komponenten t[a] oder t.a für einen Attributnamen A Schema(t) oder auch t[1], t[2] usw. Tupelvariable kann in einer Formel ψ frei oder gebunden auftreten (s. unten) 6

4 Atome Es gibt drei Arten von Atomen: R(t) R ist Relationenname, t Tupelvariable lies: t ist ein Tupel von R t[a] Θ s[b] t bzw. s sind zwei Tupelvariablen mit passenden Attributen lies: t[a] steht in Beziehung Θ zu... t[a] Θ c tist Tupelvariable und c eine passende Konstante Θ Vergleichsoperator: Θ {=, <,, >,, } 7 Formeln Der Aufbau von Formeln ψ ist rekursiv definiert: Atome: Verknüpfungen: Quantoren: Jedes Atom ist eine Formel Alle vorkommenden Variablen sind frei Sind ψ 1 und ψ 2 Formeln, dann auch: ψ 1 nicht (ψ 1 ψ 2 ) und (ψ 1 ψ 2 ) oder Alle Variablen behalten ihren Status. Ist ψ eine Formel, in der t als freie Variable auftritt, sind auch Formeln... ( t)(ψ) es gibt ein t, für das ψ ( t)(ψ) für alle t gilt ψ die Variable t wird gebunden. 8

5 Formeln 9 Gebräuchliche vereinfachende Schreibweisen: ψ 1 ψ 2 für ( ψ 1 ) ψ 2 (Implikation) t 1,...,t k : ψ(t 1,...t k ) für ( t 1 ) (...(( t k ) (ψ(t 1,...t k )))...) ( t R) (ψ(t)) für ( t) (R(t) ψ(t)) ( t R) (ψ(t)) für ( t) (R(t) ψ(t)) Bei Eindeutigkeit können Klammern weggelassen werden Beispiel: ( s)(s[a] u[b] ( u)(r(u) u[c] > t[d])) t ist s ist frei gebunden u ist frei beim ersten Auftreten und dann gebunden Ausdruck (Anfrage) Ein Ausdruck des Tupelkalküls hat die Form {t ψ(t)} In Formel ψ ist t die einzige freie Variable 10

6 Semantik Bedeutung, die einem korrekt gebildeten Ausdruck durch eine Interpretation zugeordnet wird: Syntax Tupelvariablen Formeln Ausdrücke Interpretation Semantik konkrete Tupel true, false Relationen 11 Belegung von Variablen Gegeben: eine Tupelvariable t mit Schema(t) = (D 1, D 2,...) eine Formel ψ(t), in der t frei vorkommt ein beliebiges konkretes Tupel r (d.h. mit Werten). Es muß nicht zu einer Relation der Datenbank gehören Bei der Belegung wird jedes freie Vorkommen von t durch r ersetzt. Insbesondere wird t[a] durch den Attributwert von r[a] ersetzt. Man schreibt: ψ(r t) 12

7 Beispiel Gegeben sei folgendes Relationenschema: Städte (SName: String, SEinw: Integer, Land: String) Länder (LName: String, LEinw: Integer, Partei * : String) * bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei ψ(t) = (t.land=bayern t.seinw ) mit Schema(t) = Schema(Städte) r 1 = (Passau, 49800, Bayern): ψ(r 1 t) = (Bayern = Bayern ) r 2 = (Bremen, , Bayern): ψ(r 2 t) = (Bremen = Bayern ) 13 Interpretation von Formeln Interpretation I(ψ) analog zu syntaktischem Aufbau Anm: Alle Variablen sind durch konkrete Tupel belegt Atome: R(r): I(R(r)) = true r ist in R enthalten c i Θ c j : I(c i Θ c j ) = true der Vergleich ist erfüllt Logische Operatoren: ψ: I( ψ) = true I(ψ) = false ψ 1 ψ 2 : I(ψ 1 ψ 2 )=true I(ψ 1 )=true und I(ψ 2 )=true ψ 1 ψ 2 : I(ψ 1 ψ 2 )=true I(ψ 1 )=true oder I(ψ 2 )=true 14

8 Beispiele Atome: I(Städte (Passau, , Bayern) ) =? true I( ) =? false Logische Operatoren: I( ) =? true I(Städte (Passau, , Bayern) ) =? true I(Städte (Passau, , Bayern) ) =? false 15 Interpretation von Quantoren Interpretation I(( s)(ψ)) bzw. I(( s)(ψ)): In ψ darf nur s als freie Variable auftreten. I(( s)(ψ)) = true ein Tupel r D 1 D 2... existiert, daß bei Belegung der Variablen s die Formel ψ gilt: I(ψ(r s) ) = true I(( s)(ψ)) = true für alle Tupel r D 1 D 2... gilt die Formel ψ. Beispiele: I(( s)(städte(s) s.land = Bayern)) =? true I(( s)(s.name = Passau)) =? false 16

9 Interpretation von Ausdrücken Interpretation von Ausdruck I({t ψ(t)}) stützt sich auf Belegung von Variablen und Interpretation von Formeln Gegeben: E = {t ψ(t)} t die einzige freie Variable in ψ(t) Schema(t) = D 1 D 2... Dann ist der Wert von E die Menge aller * (denkbaren) Tupel r D 1 D 2... für die gilt: I(ψ(r t)) = true * Grundmenge sind hier nicht nur die gespeicherten Tupel aus der DB 17 Beispiel-Anfragen Gegeben sei folgendes Relationenschema: Städte (SName: String, SEinw: Integer, Land: String) Länder (LName: String, LEinw: Integer, Partei * : String) * bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei Finde alle Großstädte (SName, SEinw, Land) in Bayern: {t Städte(t) t[land] = Bayern t[seinw] } In welchem Land liegt Passau? Schema(t) = (Land:String) {t ( u Städte)(u[Sname] = Passau u[land] = t[land]} Finde alle Städte in CDU-regierten Ländern: {t Städte(t) ( u Länder)(u[Lname]=t[Land] u[partei]=cdu)} 18

10 Beispiel-Anfragen Gegeben sei folgendes Relationenschema: Städte (SName: String, SEinw: Integer, Land: String) Länder (LName: String, LEinw: Integer, Partei * : String) * bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei Welche Länder werden von der SPD allein regiert? {t Länder(t) ( u Länder)(u[LName]=t[LName] u[partei]=spd} Gleichbedeutend mit: {t Länder(t) ( u Länder) (u[lname]=t[lname] u[partei] SPD} 19 Sichere Ausdrücke Mit den bisherigen Definitionen ist es möglich, unendliche Relationen zu beschreiben: Schema(t) = {String, String} {t t[1] = t[2] } Ergebnis: {(A,A),(B,B),...,(AA,AA),(AB,AB),...} Probleme: Ergebnis kann nicht gespeichert werden Ergebnis kann nicht in endlicher Zeit berechnet werden Definition: Ein Ausdruck heißt sicher, wenn jede Tupelvariable nur Werte einer gespeicherten Relation annehmen kann, also positiv in einem Atom R(t) vorkommt. 20

11 Der Bereichskalkül Tupelkalkül: Tupelvariablen t (ganze Tupel) Bereichskalkül: Bereichsvariablen x 1 :D 1, x 2 :D 2,... für einzelne Attribute (Bereich=Wertebereich=Domäne) Ein Ausdruck hat die Form: {x 1, x 2,... ψ (x 1, x 2,...)} Atome haben die Form: R 1 (x 1, x 2,...): Tupel (x 1, x 2,...) tritt in Relation R 1 auf x Θ y: x,y Bereichsvariablen bzw. Konstanten Θ {=, <,, >,, } Formeln analog zum Tupelkalkül 21 Beispiel-Anfragen Städte (SName: String, SEinw: Integer, Land: String) Länder (LName: String, LEinw: Integer, Partei * : String) * bei Koalitionsregierungen: jeweils eigenes Tupel pro Partei In welchem Land liegt Passau? {x 3 x 1, x 2 : (Städte(x 1, x 2, x 3 ) x 1 = Passau) } oder auch {x 3 x 2 : (Städte(Passau, x 2, x 3 ) ) } Finde alle Städte in CDU-regierten Ländern: {x 1 x 2, x 3, y 2 : (Städte(x 1,x 2,x 3 ) Länder (x 1,y 2,CDU))} Welche Länder werden von der SPD allein regiert? {x 1 x 2 :(Länder(x 1,x 2,SPD) y 3 :(Länder(x 1,x 2,y 3 ) y 3 SPD))} 22

12 Query By Example (QBE) Beruht auf dem Bereichskalkül Ausdrücke nicht wie in SQL als Text Dem Benutzer wird am Bildschirm ein Tabellen-Gerüst angeboten, das mit Spezial-Editor bearbeitet werden kann Nach Eintrag von Werten in das Tabellengerüst (Anfrage) füllt das System die Tabelle Zielgruppe: Gelegentliche Benutzer 23 Query By Example (QBE) Relationenname Attribute Komplexe Bedingungen Conditions 24 Kommandos Anfrage-Spezifikation Sprachelemente: Kommandos, z.b. P. (print), I. (insert), D. (delete)... Bereichsvariablen (beginnen mit _ ): _x, _y Konstanten (Huber, Milch) Vergleichsoperatoren und arithmetische Operatoren Condition-Box: Zusätzlicher Kasten zum Eintragen einer Liste von Bedingungen (AND, OR, kein NOT)

13 Beispiel-Dialog 25 Beginn: leeres Tabellengerüst Benutzer gibt interessierende Relation und P. ein Kunde P. System trägt Attributsnamen der Relation ein Kunde KName KAdr Kto Benutzer stellt Anfrage Kunde KName KAdr Kto P. P. <0 System füllt Tabelle mit Ergebnis-Werten Kunde KName KAdr Huber Innsbruck Maier München evtl. weitere Tabelle (Join) Anfragen mit Bedingungen Welche Lieferanten liefern Mehl oder Milch? P. P. _w Freie Variablen Bereichsvariable CONDITIONS _w=mehl OR _w=milch Bedeutung: {x 1, x 2 w, x 4 :Lieferant(x 1,x 2,w,x 4 ) (w=mehl w=milch)} Kommando P. für print bzw. auch für die Projektion 26

14 Anfragen mit Bedingungen Welche Lieferanten liefern Brie und Perrier, wobei Gesamtpreis 7,00 nicht übersteigt? P. _L Brie _y _L Perrier _z CONDITIONS _y + _z <= 7.00 Bedeutung: {l x 1, x 2, y, z: Lieferant (l, x 1, Brie, y) Lieferant (l, x 2, Perrier, z) y + z 7.00} 27 Join-Anfragen Welcher Lieferant liefert etwas das Huber bestellt hat? P. _w Auftrag KName Ware Menge Huber _w Bedeutung: {x 1 x 2, w, x 4, y 3 : Lieferant (x 1, x 2, w, x 4 ) Auftrag (Huber, w, y 3 )} Beachte: Automatische Duplikat-Elimination in QBE 28

15 Join-Anfragen Abkürzung! 29 Meist ist für Ergebnis neues Tabellengerüst nötig: Beispiel: Bestellungen mit Kontostand des Kunden Falsch (leider nicht möglich): Kunde KName KAdr Kto P. _n P. Auftrag KName Ware Menge _n P. P. Richtig: Kunde KName KAdr Kto _n _k Auftrag KName Ware Menge _n _w _m Bestellung Name Was Wieviel Kontostand P. P. _n P. _w P. _m P. _k Anfragen mit Ungleichung Wer liefert Milch zu Preis zw. 0,50 und 0,60? Variante mit zwei Zeilen: P. _L Milch >= 0.5 _L Milch <= 0.6 Variante mit Condition-Box P. Milch _p 30 CONDITIONS _p >= 0.5 AND _p <= 0.6

16 Anfragen mit Negation Finde für jede Ware den billigsten Lieferanten P. _w _p _w < _p Das Symbol in der ersten Spalte bedeutet: Es gibt kein solches Tupel Bedeutung: {x 1, x 2, w, p y 1, y 2, y 3 : Lieferant (x 1, x 2, w, p) Lieferant (y 1, y 2, w, y 3 ) y 3 < p} 31 Einfügen Einfügen von einzelnen Tupeln Kommando I. für INSERT Kunde KName KAdr Kto I. Schulz Wien 0 Einfügen von Tupeln aus einem Anfrageergebnis Beispiel: Alle Lieferanten in Kundentabelle übernehmen Kunde KName KAdr Kto I. _n _a 0 _n _a 32

17 Löschen und Ändern Löschen aller Kunden mit negativem Kontostand Kunde KName KAdr Kto D. < 0 Ändern eines Tupels (U. für UPDATE) Kunde KName KAdr Kto Schulz Wien U. 100 oder auch: Kunde KName KAdr Kto Meier _a _k U. Meier _a _k 110 oder auch mit Condition-Box 33 Vergleich QBE Konstanten Bereichsvariablen leere Spalten Spalten mit P. Spalten ohne P. Bereichskalkül Konstanten Bereichsvariablen paarweise verschiedene Bereichsvariablen, -quantifiziert freie Variablen -quantifizierte Variablen 34 Anmerkung: QBE ist relational vollständig, jedoch ist für manche Anfragen der relationalen Algebra eine Folge von QBE-Anfragen nötig

18 Umsetzung einer QBE-Anfrage (ohne Negation) Erzeuge für alle Attribute A i aller vorkommenden Tabellen-Zeilen der Anfrage eine Bereichsvariable x i Steht bei Attribut A i das Kommando P. dann schreibe x i zu den freien Variablen ({... x i,......}), sonst binde x i mit einem -Quantor ({......, x i,...}) Binde alle Variablen der Anfrage mit einem -Quantor P. P. P. _w Auftrag KName Ware Menge Huber _w >= 5 35 {x 1, x 2, x 3 x 4, x 5, x 6, x 7, w:... Umsetzung einer QBE-Anfrage P. P. P. _w Auftrag KName Ware Menge Huber _w >= 5 Füge für jede vorkommende Relation R ein Atom der Form R(x i, x i+1,...) mit an die Formel Ψ an {x 1,x 2,x 3 x 4,x 5,x 6,x 7,w: Lieferant(x 1,x 2,x 3,x 4 ) Auftrag(x 5,x 6,x 7 )... Steht bei A i ein Zusatz der Form Const bzw. Const etc., dann hänge x i = Const bzw. x i Const mit an Formel. {x 1,x 2,x 3 x 4,x 5,x 6,x 7,w: Lieferant(x 1,x 2,x 3,x 4 ) Auftrag(x 5,x 6,x 7 ) x 5 = Huber x

19 Umsetzung einer QBE-Anfrage P. P. P. _w Auftrag KName Ware Menge Huber _w >= 5 Gleiches Vorgehen bei Zusätzen der Form _Variable bzw. _Variable usw: {x 1,x 2,x 3 x 4,x 5,x 6,x 7,w: Lieferant(x 1,x 2,x 3,x 4 ) Auftrag(x 5,x 6,x 7 ) x 5 =Huber x 7 5 w = x 3 w = x 6 } Ggf. wird der Inhalt der Condition-Box mit angehängt. Meist lässt sich der Term noch vereinfachen: 37 {x 1,x 2,w x 4,x 5,x 7 : Lieferant(x 1,x 2,w,x 4 ) Auftrag(Huber,w,x 7 ) x 7 5}

Kapitel 4: Relationen-Kalkül

Kapitel 4: Relationen-Kalkül Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2013/2014 Vorlesung: Prof. Dr. Christian Böhm Übungen:

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Grundlagen von Datenbanken SS 2010 5. Bereichskalkül (=Domänenkalkül) Agenda: Prof. Dr. Stefan Böttcher Universität Paderborn mit Material von Prof. Dr. Gregor Engels Grundlagen von Datenbanken - SS 2010

Mehr

Kapitel 2: Das Relationale Modell

Kapitel 2: Das Relationale Modell Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2006/2007 Kapitel 2: Das Relationale Modell Vorlesung:

Mehr

Welche Kunden haben die gleiche Ware bestellt? select distinct a1.name, a2.name from Auftrag a1, Auftrag a2 where a1.ware = a2.ware.

Welche Kunden haben die gleiche Ware bestellt? select distinct a1.name, a2.name from Auftrag a1, Auftrag a2 where a1.ware = a2.ware. *HVFKDFKWHOWH$QIUDJHQ In einer SQL-Anweisung können in der where-klausel, from-klausel, select-klausel wieder SQL-Anweisungen auftreten. Man spricht dann auch von einer geschachtelten Anfrage oder Unteranfrage.

Mehr

Kapitel DB:V (Fortsetzung)

Kapitel DB:V (Fortsetzung) Kapitel DB:V (Fortsetzung) V. Grundlagen relationaler Anfragesprachen Anfragen und Änderungen Relationale Algebra Anfragekalküle Relationaler Tupelkalkül Relationaler Domänenkalkül DB:V-70 Relational Algebra

Mehr

Das Relationale Modell

Das Relationale Modell Kapitel 3 Das Relationale Modell 1 / 50 Generelle Anmerkungen Wurde in den Siebzigern von E.F.Codd entwickelt (er bekam den Turing Award dafür) Im Moment das am weitesten verbreitete Datenmodell Hat die

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Agenda: Grundlagen von Datenbanken SS 2010 3. Relationale Algebra Prof. Dr. Stefan Böttcher Universität Paderborn mit Material von Prof. Dr. Gregor Engels Grundlagen von Datenbanken - SS 2010 - Prof. Dr.

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2014 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Kapitel 3: Die Relationale Algebra

Kapitel 3: Die Relationale Algebra Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Vorlesung Wintersemester 2014/2015 Kapitel 3: Die Relationale Algebra Vorlesung: PD Dr. Arthur

Mehr

Kapitel 2: Das Relationale Modell

Kapitel 2: Das Relationale Modell Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Datenbanksysteme I Wintersemester 2012/2013 Kapitel 2: Das Relationale

Mehr

Kapitel DB:V (Fortsetzung)

Kapitel DB:V (Fortsetzung) Kapitel DB:V (Fortsetzung) V. Grundlagen relationaler Anfragesprachen Anfragen und Änderungen Relationale Algebra Anfragekalküle Relationaler Tupelkalkül Relationaler Domänenkalkül DB:V-67 Relational Algebra

Mehr

Kapitel 3: Die Relationale Algebra

Kapitel 3: Die Relationale Algebra Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Wintersemester 2005/2006 Kapitel 3: Die Relationale Algebra Vorlesung:

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Datenbanken Unit 4: Das Relationale Modell & Datenintegrität

Datenbanken Unit 4: Das Relationale Modell & Datenintegrität Datenbanken Unit 4: Das Relationale Modell & Datenintegrität 15. III. 2016 Outline 1 Organisatorisches 2 SQL 3 Relationale Algebra Notation 4 Datenintegrität Organisatorisches Erster Zwischentest: nach

Mehr

Mathematik für Informatiker I

Mathematik für Informatiker I Mathematik für Informatiker I Mitschrift zur Vorlesung vom 19.10.2004 In diesem Kurs geht es um Mathematik und um Informatik. Es gibt sehr verschiedene Definitionen, aber für mich ist Mathematik die Wissenschaft

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 σ KID= 11a (Schüler) π S Name (σ KID= 11a (Schüler))

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 σ KID= 11a (Schüler) π S Name (σ KID= 11a (Schüler)) 3. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 Hinweis: Wir schlagen vor, die Aufgaben in der Reihenfolge

Mehr

Der relationale Tupel-Kalkül

Der relationale Tupel-Kalkül Der relationale Tupel-Kalkül Udo Kelter 24.11.2001 Zusammenfassung dieses Lehrmoduls Die relationalen Kalküle sind neben der relationalen Algebra ein alternativer Formalismus, mit dem sich die grundlegenden

Mehr

Query Languages (QL) Relationale Abfragesprachen/Relational

Query Languages (QL) Relationale Abfragesprachen/Relational Relationale Algebra Relationale Abfragesprachen/Relational Query Languages (QL) Abfragesprachen: Daten aus einer Datenbank zu manipulieren und abzufragen (retrieve information) Das relationalle Modell

Mehr

Kap. 3 Relationenmodell mit relationaler Algebra

Kap. 3 Relationenmodell mit relationaler Algebra Kap. 3 Relationenmodell mit relationaler Algebra Kap. 3.1. Trägermenge Seien D 1, D 2,..., D k Domänen: (Typen, Arten, Sorten, Wertmengen) z.b. string integer real Boolean DateTime BLOB, TIFF-image, HTML-Doc,

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

Es geht also im die SQL Data Manipulation Language.

Es geht also im die SQL Data Manipulation Language. 1 In diesem Abschnitt wollen wir uns mit den SQL Befehlen beschäftigen, mit denen wir Inhalte in Tabellen ( Zeilen) einfügen nach Tabelleninhalten suchen die Inhalte ändern und ggf. auch löschen können.

Mehr

Motivation Anford. Anfrage- Kalküle Bereichskalkül. Sichere Anfragen Beispiele. Ausdrucksfähigkeit. Tupelkalkül. Motivation Anford.

Motivation Anford. Anfrage- Kalküle Bereichskalkül. Sichere Anfragen Beispiele. Ausdrucksfähigkeit. Tupelkalkül. Motivation Anford. Kapitel 4: Grundlagen von Grundlagen von Anforderungen an Anfragesprachen,. Datenbankeinsatz: Grundlagen von 1 Datenbankeinsatz: Grundlagen von 2 Einführung (1) Einführung (2) Anfrage: Formulierung eines

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück Kapitel 6b: Das relationale Modell Das Relationale Modell (vgl. Lerneinheit 6a) Wertebereiche (Domänen):

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2008 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2008 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies Kapitel 7 Dr. Jérôme Kunegis Logische Kalküle WeST Web Science & Technologies Lernziele Grundideen des Domain-Relationenkalküls (DRK) und des Tupel-Relationenkalküls (TRK) Relationale Datenbank als Formelmenge

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Indexstrukturen in SQL

Indexstrukturen in SQL Indestrukturen in SQL Anlegen eines Primärinde in SQL: Anlegen eines Sekundärinde in SQL: Bsp: create table Dozenten ( DNr integer primary key, Name varchar(0), Geburt date, ) create [Unique] inde indename

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur : Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 3: Datenbanksysteme : PDDr. Peer

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Die Anweisung create table

Die Anweisung create table SQL-Datendefinition Die Anweisung create table create table basisrelationenname ( spaltenname 1 wertebereich 1 [not null],... spaltenname k wertebereich k [not null]) Wirkung dieses Kommandos ist sowohl

Mehr

3. Grundlagen relationaler Datenbanksysteme

3. Grundlagen relationaler Datenbanksysteme 3. Grundlagen relationaler Datenbanksysteme Hier nur kurze Rekapitulation, bei Bedarf nachlesen 3.1 Basiskonzepte des Relationenmodells 1 Darstellung der Miniwelt in Tabellenform (DB = Menge von Relationen

Mehr

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform 2 Normalformen 2.1 Äquivalenz und Folgerung Definition 2.1 Äquivalenz, Folgerung). Seien ϕ, ψ FO[σ]. a) ϕ und ψ heißen äquivalent kurz: ϕ ψ, bzw. ϕ = ψ), wenn für alle zu ϕ und ψ äquivalent passenden σ-interpretationen

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade [email protected] 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

d.h. zu Definitions-Stelle eindeutiger Funktionswert x X! y Y : (x,y) f umgekehrt: (x 1,y), (x 2,y) f ist o.k. X Y f(x) = y

d.h. zu Definitions-Stelle eindeutiger Funktionswert x X! y Y : (x,y) f umgekehrt: (x 1,y), (x 2,y) f ist o.k. X Y f(x) = y Kapitel 7 Normalformen und DB-Entwurf Kap. 7.1 Normalformen Theorie Funktionale Abhängigkeit: f X Y f als Relation, d.h. Menge von Paaren {(x,y)} x: Definitions-Stelle, y: Funktionswert f ist Funktion

Mehr

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle)

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) Kapitel 6 Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) 1 Datenmanipulationssprache (DML) SQL Einfügen: Insert-Statement Ändern: Update-Statement Löschen:

Mehr

Relationen-Algebra. Prof. Dr. T. Kudraß 1

Relationen-Algebra. Prof. Dr. T. Kudraß 1 Relationen-Algebra Prof. Dr. T. Kudraß 1 Relationale Anfragesprachen Query Language (QL): Manipulation und Retrieval von Daten einer Datenbank Relationenmodell erlaubt einfache, mächtige Anfragesprachen

Mehr

Kapitel 2: Grundlagen von Anfragesprachen

Kapitel 2: Grundlagen von Anfragesprachen 2. Grundlagen von Anfragesprachen Seite 1 Kapitel 2: Grundlagen von Anfragesprachen Sprachparadigmen Relationenalgebra Relationenkalkül später SQL 2. Grundlagen von Anfragesprachen 2.1. Relationenalgebra

Mehr

insert, update, delete Definition des Datenbankschemas select, from, where Rechteverwaltung, Transaktionskontrolle

insert, update, delete Definition des Datenbankschemas select, from, where Rechteverwaltung, Transaktionskontrolle Einführung in SQL insert, update, delete Definition des Datenbankschemas select, from, where Rechteverwaltung, Transaktionskontrolle Quelle Wikipedia, 3.9.2015 SQL zur Kommunikation mit dem DBMS SQL ist

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Aggregatfunktionen in der Relationenalgebra?

Aggregatfunktionen in der Relationenalgebra? Aggregatfunktionen in der Relationenalgebra? Dieter Sosna Aggregatfunktionen in der Relationenalgebra p.1/23 Gliederung Motivation Begriffe Definitionen Anwendungen Zusammenfassung Aggregatfunktionen in

Mehr

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik Theorie der Informatik 3. März 2014 4. Prädikatenlogik I Theorie der Informatik 4. Prädikatenlogik I 4.1 Motivation Malte Helmert Gabriele Röger 4.2 Syntax der Prädikatenlogik Universität Basel 3. März

Mehr

Syntax der Prädikatenlogik: Komplexe Formeln

Syntax der Prädikatenlogik: Komplexe Formeln Syntax der Prädikatenlogik: Komplexe Formeln Σ = P, F eine prädikatenlogische Signatur Var eine Menge von Variablen Definition: Menge For Σ der Formeln über Σ Logik für Informatiker, SS 06 p.10 Syntax

Mehr

Vorlesung Datenbanksysteme vom

Vorlesung Datenbanksysteme vom Vorlesung Datenbanksysteme vom 27.10.2008 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D 1,

Mehr

Fragen zum Nachdenken: Wie könnte man das Fehlen eines Attribut-Wertes interpretieren?

Fragen zum Nachdenken: Wie könnte man das Fehlen eines Attribut-Wertes interpretieren? Attribut-Werte-Paare Eine Eigenschaft kann beschrieben werden durch ein Paar [a,w]. Dabei bezeichnet a das Attribut und w den konkreten Wert aus dem Wertebereich W a des Attributs. Die Eigenschaften eines

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Relationale Kalküle. Grundlagen der Datenbanken. Dr. Jérôme Kunegis Wintersemester 2013/14

Relationale Kalküle. Grundlagen der Datenbanken. Dr. Jérôme Kunegis Wintersemester 2013/14 Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Jérôme Kunegis Wintersemester 2013/14 Lernziele Grundideen des Domänen-Relationenkalküls (DRK) und des Tupel-Relationenkalküls

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1) Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete, Abbildungen, Aussagenlogik Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/32 Überblick Alphabete

Mehr

Die Logik der Sprache PL

Die Logik der Sprache PL II Die Logik der Sprache PL 16 Der Aufbau der Sprache PL Ein Beispiel Problem (1) Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also: Sokrates ist sterblich. Intuitiv ist dieses Argument gültig.

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Schlüssel. Definition: Ein Schlüssel (key) einer Relation r(r) ist eine Til Teilmenge K von R, so dass für je zwei verschiedene Tupeln t 1

Schlüssel. Definition: Ein Schlüssel (key) einer Relation r(r) ist eine Til Teilmenge K von R, so dass für je zwei verschiedene Tupeln t 1 Schlüssel Definition: Ein Schlüssel (key) einer Relation r(r) ist eine Til Teilmenge K von R, so dass für je zwei verschiedene Tupeln t 1 und t 2 r gilt: - t 1 (K) t 2 (K) und - keine echte Teilmenge K'

Mehr

Einführung in Datenbanksysteme. H. Wünsch 01.2001

Einführung in Datenbanksysteme. H. Wünsch 01.2001 Einführung in Datenbanksysteme H. Wünsch 01.2001 H. Wünsch 01/2001 Einführung Datenbanken 2 Was sind Datenbanken? Datenbanken sind Systeme zur Beschreibung, Speicherung und Wiedergewinnung von Datenmengen.

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

Wiederholung: Relationale Algebra

Wiederholung: Relationale Algebra Vorlesung Datenbanksysteme vom 1.11.016 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D1, D,,

Mehr

Relationaler Tupelkalkül Datenbanken I (Systemorientierte Informatik IV) Sommersemester Syntax des relationalen Tupelkalküls

Relationaler Tupelkalkül Datenbanken I (Systemorientierte Informatik IV) Sommersemester Syntax des relationalen Tupelkalküls Concept Content.. Information Topic Relationaler Tupelkalkül Datenbanken I (Systemorientierte Informatik IV) Sommersemester 2007 Gunar Fiedler ([email protected]) Institut für Informatik

Mehr

Eigenschaften von Datenbanken, insbesondere

Eigenschaften von Datenbanken, insbesondere Eigenschaften von Datenbanken In diesem Abschnitt beschreiben wir wünschenswerte Eigenschaften von Datenbanken, insbesondere Relationenschemata: Normalformen, die auf mathematischen Modellen beruhen und

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

Grundbegriffe aus Logik und Mengenlehre. Prädikatenlogik

Grundbegriffe aus Logik und Mengenlehre. Prädikatenlogik Grundbegriffe aus Logik und Mengenlehre Prädikatenlogik wohlverstandene Grundlagen, eine formale Sprache zur Beschreibung statischer und dynamischer Gesichtspunkte eines Unternehmens syntaktisch und semantisch

Mehr

Kalkülteil. Structured Query Language, SQL. 1. Semantik: erzeuge alle Kombinationen von Tupeln

Kalkülteil. Structured Query Language, SQL. 1. Semantik: erzeuge alle Kombinationen von Tupeln Structured Query Language, SQL vom American National Standards Institute, ANSI, genormte Datenbanksprache. enthält eine Teilsprache, die eine relationale Anfragesprache ist, Mischung von tupelorientierten

Mehr

4.1 SQL. Wichtige skalare Datentypen

4.1 SQL. Wichtige skalare Datentypen 4. Basierend auf dem Tupelkalkül und der relationalen Algebra wurden mit dem Aufkommen relationaler DBMS auch spezielle Sprachen entwickelt. SQL ist die derzeit am weitesten verbreitete Anfragesprache

Mehr

FachPraktikum 1590 Erweiterbare Datenbanksysteme. Aufgaben Phase 1

FachPraktikum 1590 Erweiterbare Datenbanksysteme. Aufgaben Phase 1 FachPraktikum 1590 Erweiterbare Datenbanksysteme Aufgaben Phase 1 Wintersemester 2004/2005 Ralf Hartmut Güting, Dirk Ansorge, Thomas Behr, Markus Spiekermann Praktische Informatik IV, Fernuniversität Hagen

Mehr

Logik-Grundlagen. Syntax der Prädikatenlogik

Logik-Grundlagen. Syntax der Prädikatenlogik Logik-Grundlagen X 1 :...: X k : ( A 1 A 2... A m B 1 B 2... B n ) Logische und funktionale Programmierung - Universität Potsdam - M. Thomas - Prädikatenlogik III.1 Syntax der Prädikatenlogik Prädikat:

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Datenbanksysteme I

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Datenbanksysteme I SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R VII-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

SQL als Zugriffssprache

SQL als Zugriffssprache SQL als Zugriffssprache Der Select Befehl: Aufbau Select- und From-Klausel Where-Klausel Group-By- und Having-Klausel Union Join-Verbindung Order-By-Klausel Der Update-Befehl Der Delete-Befehl Der Insert-Befehl

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann [email protected] 23. Juni 2015 Frank Heitmann [email protected] 1/25 Motivation Die ist eine Erweiterung

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 7 Sprachen erster Sufe Die in der letzten Vorlesung erwähnten Konstruktionsmöglichkeiten für Aussagen sind im Wesentlichen

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Unvollständigkeit der Arithmetik

Unvollständigkeit der Arithmetik Unvollständigkeit der Arithmetik Slide 1 Unvollständigkeit der Arithmetik Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Unvollständigkeit der Arithmetik Slide

Mehr

1. Einführung in Temporallogik CTL

1. Einführung in Temporallogik CTL 1. Einführung in Temporallogik CTL Temporallogik dient dazu, Aussagen über Abläufe über die Zeit auszudrücken und zu beweisen. Zeit wird in den hier zunächst behandelten Logiken als diskret angenommen

Mehr

2.5 Relationale Algebra

2.5 Relationale Algebra 2.5 Relationale Algebra 2.5.1 Überblick Codd-vollständige relationale Sprachen Relationale Algebra Abfragen werden durch exakte Angabe der auf den Relationen durchzuführenden Operationen formuliert Relationenkalküle

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr