JPEG Kompression technische Realisierung
|
|
|
- Stephanie Hafner
- vor 9 Jahren
- Abrufe
Transkript
1 Experimentalphysik V 20. Januar 2005
2 Schema der JPEG Kompression Farbraumkonvertierung RGB YCbCr Subsampling der Farbkomponenten Cb, Cr Zerlegung in Blöcke 8 8 2D Kosinustransformation (DCT) Quantisierung der DCT-Koeffizienten (Verlust!) Verlustfreie Kompression der quantisierten Koffizienten (RLE, Huffman)
3 Farbraum YCbCr (CCIR Recommendation 601) Das Auge ist auf Helligkeit sehr empfindlich. Repräsentation der Farbe durch Helligkeit (Y) und Farbkomponenten (Cr, Cb) Y R C b = G C r B
4 Subsampling der Chroma-Komponenten (optional) Chroma-Komponenten werden nicht mit voller Auflösung gespeichert Platzersparnis bis 50% 4:1:1 4:2:2 Ersparnis Ersparnis 50% 33%
5 2D-Kosinustransformation von Blöcken 8 8 F uv = c uv 4 mit 7 7 x=0 y=0 ( π ) ( π ) f xy cos 16 (2x + 1) u cos 16 (2y + 1) v 1 2, wenn u = v = 0 c uv = 1 2, wenn entweder u = 0 oder v = 0 1 sonst level shift DCT
6 Beispiel Lena : Blockartefakte Ausschnitt aus Lena, Ausschnitt aus Lena, JPEG q=20
7 Quantisierung der Koeffizienten Lineare Quantisierung = Integer-Division ( ) Fuv Sq uv = round q uv Durch Runden entsteht Verlust
8 Folgen der Quantisierung 1D Beispiel Term 3 Terme 9 Terme Durch das Quantisieren werden schwache Frequenzanteile unterdrückt. Wellen werden geglättet Sprünge erzeugen Wellen
9 Verlustfreie Kompression der Koeffizienten 0. Fourierkomponente (DC-Komponente, Mittelwert) differenzkodiert: D 0 D 1 D 2 D 0 (D 1 D 0 )(D 2 D 1 )... Zero Run-length Encoding (RLE) für übrige Komponenten: (0, 0, 0, 3, 0, 20, 10, 0, 0, 50,... ) (3, 3)(1, 20)(0, 10)(2, 50)(0, 0) Spezieller Marker (0, 0) zeigt das Ende der Koeffizienten an Anzahl aufeinanderfolgender Nullen immer 15 Differenzkodierung und RLE-Output wird nach Huffman kodiert (oder arithmetische Kodierung)
10 Huffman-Verfahren Anzahl Nullen und Bitlänge des Koeffizienten zu 1 Byte (Code) kombiniert Der Code wird Huffman kodiert, die Bits des Koeffizienten werden angehängt a c a,b,c,d c,d b,c,d d b Verfolgen der Bits von der Wurzel bis zum Blatt im Huffman-Baum liefert den Code. Häufige Zeichen bekommen kurzen Code, seltene Zeichen langen Code Aufstellen des Huffman-Baums erfolgt durch Zusammenfassen seltener Zeichen
11 Schema für einen transform coder Transformation zur Dekorrelation der Daten (DCT, Wavelet, Singular-Value-Decomposition, Karhunen-Loeve-Transformation,... ) Entfernung überflüssiger Daten = Quantisierung der Koeffizienten (Lineare Quantisierung, logarithmische Quantisierung, Vektorquantisierung,... ) Verlustfreie Kompression der quantisierten Koffizienten (RLE, Huffman, LZ77, arithmetische Kodierung, Burrows-Wheeler-Transformation,... )
12 Literatur ISO/IEC :1993 (E) (auch: ITU CCITT Recommendation T.81) Cristu Cuturicu, 1999: A note about the JPEG decoding algorithm ISO/IEC 15948:2003 (E) (PNG) ISO/IEC (JPEG 2000),
Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2
Kompression Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Folie 2 1 Inhalte Redundanz Channel Encoding Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression
Image Compression. Vorlesung FH-Hagenberg DSB
Image Compression Vorlesung FH-Hagenberg DSB Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Inhalte Redundanz Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Informationen zur Klausur Termin: 21. Februar 2013,
Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg
Image Compression Vorlesung FH-Hagenberg SEM Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz 1 Inhalte Redundanz Channel Encoding Error-Free Compression Hufmann Coding Runlength
Kompressionsverfahren
Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Verlustlose Kompressionsalgorithmen RLC Huffman Adaptive Huffman Kodierung Arithmetische
Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg
Image Compression Vorlesung FH-Hagenberg SEM Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz 1 Inhalte Redundanz Error-Free Compression Hufmann Coding Runlength Coding Lossy Compression
Mathematische Methoden der graphischen Datenverarbeitung
Teil I: Aufgaben der Bildverarbeitung: Komprimierung (compression); Mathematische Methoden der graphischen Datenverarbeitung PD Dr.(USA) Maria Charina Originalbild, 30Kbt Komprimiertes Bild, 7Kbt Teil
Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011
Einführung Aufgabe 3 - MPEG Tobias Reinsch 2011 Allgemeines Aufgabe 3 - MPEG Ziel der Aufgabe Kennenlernen der Bildkodierungsverfahren des MPEG Standards Praktische Umsetzung dieser Techniken mit Java
Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group
Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)
Independent JPEG Group. JPEG Software Tools
Independent JPEG Group JPEG Software Tools cjpeg Pixelmap Bildfileformat JPEG Bildfileformat jpegtran djpeg Beiträge zu: jpegtran: Verlustfreie Transformationsfunktionen (Rotation in 90 Grad Schritten,
Diskrete Cosinus-Transformation (DCT)
Diskrete Cosinus-Transformation (DCT) Prinzip von DCT: (in einer oder zwei Dimensionen...) Menge von Datenpunkten f(x) bzw. f(x,y) (für x,y = 1, N) Forward DCT (FDCT) Inverse DCT (IDCT) Rekonstruktion
Verlustbehaftete Kompression. Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden)
Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden)
JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012
JPEG Seminar: Kompressionsalgorithmen Ruslan Ragimov 5. September 2012 Zusammenfassung Die allgemeinen verlustfreien Verfahren zur Datenkompression können gute Kompressionsraten für verschiedene Dateitypen
Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB
Bilddatenformate BMP Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Format: Raster Farben: 1 Bit (s/w), 4 Bit (16 Farben), 8 Bit (256 Farben), 24 Bit (16,7 Mio. Farben) Kompression: Keine (meist) oder
Bildkompression am Beispiel JPEG
Bildkompression am Beispiel JPEG Medientechnologie IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Sommersemester 2014 Andreas Unterweger (FH Salzburg) Bildkompression am
Bildkompression InTh, 2005, JPEG, Hak, Rur, 1
Bildkompression InTh, 25, JPEG, Hak, Rur, 1 Referenzen [1] D Salomon, Data Compression, Springer, 24 [2] Prof Dr A Steffen, Kurs SU, ZHW, 1999-24 [3] G Wallace, The JPEG Still Picture Compression Standard,
DCT: Diskrete Kosinus-Transformation
DCT: Diskrete Kosinus-Transformation Kosinusfunktionen für die 1D DCT: zunehmende Frequenz entsprechende Abtastpunkte (Salomon) DCT: 8x8 2D-Transformation DCT: IDCT: effiziente Implementierung? Vorberechnung
Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression
Digitale Bildverarbeitung Bildkompression Einleitung Datenmenge für ein unkomprimiertes Bild Verwendungszweck des Bildes Bild soll weiterverarbeitet werden Bild soll archiviert werden Bild soll per E-Mail
Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut
Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,
J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell
Inhaltsbasierte Bildsuche J.P.E.G = Joint Photographic Expert Group Informatica Feminale Universität Bremen, Aug. 2005 Maja Temerinac Albert-Ludwigs-Universität Freiburg J.P.E.G. Standard Standard zur
Kompressionsverfahren
Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Adaptive Huffman - Kodierung Nach 17 Zeichen: A(1),B(2),C(2),D(2),E(10) Kodierung A: 000
Grafikformate: JPG - PNG
Grafikformate: JPG - PNG JPG JPG ist die Kurzform von JPEG (Joint Photographic Experts Group) Das Dateiformat nennt sich eigentlich JFIF (JPEG File Interchange Format) Spezifikation Bezeichnungen JPEG
Kodierung. Kodierung von Zeichen mit dem ASCII-Code
Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel
1 Einführung. Bildformate Analyse der LSB-Ersetzung Weitere steganographische Algorithmen. Syndromkodierung in der Steganographie
Gliederung Einführung 1 Einführung 2 3 4 WS 2012/2013 Steganographie und Multimedia-Forensik Folie 121 Farbwahrnehmung Blau: 435,8 nm Grün: 546,1 nm Rot: 700 nm (445 nm) (535 nm) (575 nm) Empfindlichkeit
Zusatzaufgabe 3 für Informatiker
Mathematisches Praktikum Sommersemester 2016 Prof. Dr. Wolfgang Dahmen Felix Gruber, Michael Rom Zusatzaufgabe 3 für Informatiker Bearbeitungszeit: drei Wochen (bis Montag, 18. Juli 2016) Mathematischer
Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner
Proseminar Datenkomprimierung Dr. U. Tamm JPEG - Kompression WS 2002/03 Torsten Zichner Inhaltsangabe: 1. Einleitung 2. JPEG Kompression 2.1. Konvertierung des Bildes in ein geeignetes Farbmodell 2.2.
Bildkompression Proseminar Datenkompression Daniel Koch
Bildkompression Proseminar Datenkompression Daniel Koch 0 Inhalt INHALT...1 VERLUSTFREIE KOMPRESSIONSVERFAHREN...2 VERLUSTBEHAFTETE KOMPRESSIONSVERFAHREN...3 YUV-FARBREDUKTION...3 QUANTISIERUNG...3 JPEG...4
5. Licht, Farbe und Bilder
5. Licht, Farbe und Bilder 5.1 Licht und Farbe: Physikalische und physiologische Aspekte 5.2 Farbmodelle 5.3 Raster-Bilddatenformate 5.4 Verlustbehaftete Kompression bei Bildern JPEG Weiterführende Literatur:
Einführung in die Medieninformatik 1
Einführung in die Medieninformatik 1 Wintersemester 2007/08 Prof. Dr. Rainer Malaka, Digitale Medien Medieninformatik 1 1 Plan (vorläufig) 31.10. Einführung 7.11. Menschen: Wahrnehmung 14.11. Menschen:
ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder.
Kapitel 9 Pixeldateiformate Es gibt diverse Formate, in denen die generierten Grafiken abgespeichert werden können Stellvertretend soll hier nur auf 2 Formate eingegangen werden; eines, bei dem die Pixel
Digitalisierung. analoges Signal PAM. Quantisierung
Digitalisierung U analoges Signal t U PAM t U Quantisierung t Datenreduktion Redundanzreduktion (verlustfrei): mehrfach vorhandene Informationen werden nur einmal übertragen, das Signal ist ohne Verluste
Diskrete Cosinustransformation (DCT)
Fachbereich Medieninformatik Hochschule Harz Diskrete Cosinustransformation (DCT) Referat Björn Wöldecke 10954 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort... 1. Methoden zur Datenreduktion...
Datenkompression. Theorie
Datenkompression Theorie Einleitung Übersicht Wie lassen sich beliebige Daten verdichtet (komprimiert) darstellen? verlustfreie Kompression: Programme Texte verlustbehaftete Kompression: Audio Video Kompressionsfaktor:
Multimediatechnik / Video
Multimediatechnik / Video Video-Kompression Zusammenfassung http://www.nanocosmos.de/lietz/mtv 2009 1 Motivation: Video-Kompression Unkomprimierte Datenmengen sind zu groß! TV: 20 MB/s = 72 GB/h (720x576x2x25)
Der JPEG-Standard. Der JPEG-Standard. Der JPEG-Standard. Der JPEG-Standard. Lineare Quantisierung
09.05.006 8x8 DCT Berechnungsvorschrift (horiz. Frequenz) k D DCTKoeffizienten X [l, k ] = Ck Cl x[n, m] /, für i = 0 Ci = /, für i > 0 l=3 l= l=5 D DCT Basisfunktionen Normierungsfaktoren Direkte D 8-DCT
Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg
Vortrag am 25. Januar 200 Werner von Siemens Gymnasium Magdeburg Zeitansatz: 5h (inklusive Programmieraufgaben) Datenkompression Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg
Farb-Fernsehsignal (Composite FBAS)
Farb-Fernsehsignal (Composite FBAS) Quelle: Ze-Nian Li : Script Multimedia Systems, Simon Fraser University, Canada VIDEO- Digitalisierung Gemeinsame Kodierung FBAS Farbbild- Austast- und Synchronsignal
JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002
JPEG - Kompression Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 Inhaltsverzeichnis 1 Entwicklung von JPEG 2 1.1 Was heisst und was ist JPEG?................... 2
Einführung in Kompressionstechniken
Einführung in Kompressionstechniken W. Kowarschick 7. Februar 997. November 9 W. Kowarschick Motivation Dateigrößen Text Vektorgraphiken Rasterbilder Tomographien Telephon CD-Stereo Bildfolgen VD7 VD7
Digitales Video. Digitales Video
Digitales Video Analoges Signal ist durch Bildwandlung weitgehend quantisiert Zeitlich in Einzelbilder und räumlich in Zeilen Beim Einsatz eines CCD-Bildwandlers werden Bildpunkte gebildet Videosignal
Verlustfreie Kompressionsverfahren. RLE, LZW, Huffmann, CCITT, ZIP
Verlustfreie Kompressionsverfahren RLE, LZW, Huffmann, CCITT, ZIP Run-Length-Encoding (RLE) Sinnvoll beim Auftreten von stark redundanten Datenmustern, wie z. B. flächige Farben Verwendung eines Kennzeichens
Multimediatechnik / Video
Multimediatechnik / Video Codierung, Datenreduktion Quantisierung, Lauflängencodierung DCT, JPEG http://www.nanocosmos.de/lietz/mtv Inhalt Codierung digitaler Signale Datenreduktion (Kompression) Verlustfrei
Algorithmen und Datenstrukturen (für ET/IT)
Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm 11 Datenkompression Einführung Grundlagen
Qualitätskriterien digitaler Bilder im Langzeitarchiv! KOST Veranstaltung in Bern vom Dr. Peter Fornaro
Qualitätskriterien digitaler Bilder im Langzeitarchiv! KOST Veranstaltung in Bern vom 11. 11. 2009 Dr. Peter Fornaro Workflow Aufnahme Nachbearbeitung Archivierung Das Archivieren beginnt bei der Aufnahme!
Neue Methoden zur adaptiven Farbquantisierung für komprimierte Farbbildrepräsentation
Neue Methoden zur adaptiven Farbquantisierung für komprimierte Farbbildrepräsentation Guido Vollbeding Kapelan GmbH Breite Straße 3 D-06108 Halle e-mail: [email protected] URL: http://jpegclub.org http://jpegclub.org/foveon/
Proseminar Datenkomprimierung Dr. U. Tamm. Bildkompression WS 2002/03. Florian Strunk
Proseminar Datenkomprimierung Dr. U. Tamm Bildkompression WS 2002/03 Florian Strunk Problematik: Die Datencodierung und Kompression ist so alt wie die Geschichte des Computers. Seit dem es hochauflösende
Beispielhafte Testfragen (auch aus Schülerreferaten, Fragen können redundant sein, keine Audio Kompression berücksichtigt):
Beispielhafte Testfragen (auch aus Schülerreferaten, Fragen können redundant sein, keine Audio Kompression berücksichtigt): Was versteht man unter PCM, DPCM, DM, ADPCM? Skizze! Was versteht man unter PCM
Basisinformationstechnologie II
Basisinformationstechnologie II Sommersemester 2015 13. Mai 2015 Algorithmen der Bildverarbeitung I: Kompression Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Dr. Jan
Kompression.pdf h. völz /17
Kompression.pdf h. völz 23.5.02 1/17 Lauflängen-Codierung CCCCCCAABBBBAAAAEE _ 6C2A4B4A2E Pixel- und Zähl-Byte unterscheiden Pointer-Verfahren ABRABRIKADABRA Ab 4. Buchstaben ABR _ Verweis . total
Vorlesung. Grundlagen der Medieninformatik. Prof. Dr. Antonio Krüger.
Vorlesung Grundlagen der Medieninformatik Prof. Dr. Antonio Krüger [email protected] Wintersemester 2017/ 2018 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2
JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin
Referat KIM Alex Titze Angewandte Informatik FHTW-Berlin 76900504811 Einleitung JPEG Geschichte & Überblick Komprimierungsablauf Farbformat DCT (Diskrete Cosinus Transformation) Quantisierung Koeffizientenkodierung
Vorlesung Grundlagen Videotechnik Psycho-Optik. -Geschichte: verschiedene Abstraktionsstufen
Vorlesung Grundlagen Videotechnik Psycho-Optik -Geschichte: verschiedene Abstraktionsstufen - Abbildung 3-D auf 2-D - erste Zeichnungen, Höhlenbilder - Zerlegung in Bildpunkte: Photozellen, parallele Übertragung
Graphische Datenverarbeitung
Graphische Datenverarbeitung Bildkompression & Dateiformate Prof. Dr. Elke Hergenröther Gründe für eine Kompression Unkomprimierte Rasterbilder benötigen: viel Speicherplatz hohe Bandbreite zur Übertragung
4. Licht, Farbe und Bilder
4. Licht, Farbe und Bilder 4.1 Licht und Farbe: Physikalische und physiologische Aspekte 4.2 Farbmodelle 4.3 Raster-Bilddatenformate 4.4 Verlustbehaftete Kompression bei Bildern JPEG 4.5 Bewegte Bilder:
Lossy Bildkompression: Techniken und Bildqualität
Lossy Bildkompression: Techniken und Bildqualität Brigitte Forster Zentrum Mathematik, Technische Universität München, und Institut für Biomathematik und Biometrie, Helmholtz-Zentrum München Konsensuskonferenz:
JPEG DAS BILDFORMAT. Teil 1: Theorie und Grundlagen
JPEG DAS BILDFORMAT Teil 1: Theorie und Grundlagen Inhaltsverzeichnis JPEG Das Bildformat (Teil 1: Theorie und Grundlagen)...3 JPEG in der Praxis...3 Digitale Photographie...3 Heimische Abspielgeräte...3
2. Digitale Codierung und Übertragung
2. Digitale Codierung und Übertragung 2.1 Informationstheoretische Grundlagen 2.2 Verlustfreie universelle Kompression 2.3 Digitalisierung, Digitale Medien Ludwig-Maximilians-Universität München, Medieninformatik,
Übung zur Vorlesung. Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider
Übung zur Vorlesung Digitale Medien Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider Wintersemester 2015/16 JPEG Kompression 2 JPEG Kompression Konvertierung von 8x8 Bildblöcken in
Nichtlineare Quantisierung
Nichtlineare Quantisierung Die einfachste Form der Codierung besteht in einer nichtlinearen Quantisierung der Abtastwerte, um die wesentlich häufiger auftretenden kleinen Amplitudenwerte mit einer höheren
Molekulare Bioinformatik
Molekulare Bioinformatik Wintersemester 203/204 Prof. Thomas Martinetz Institut für Neuro- und Bioinformatik Universität zu Luebeck 07.0.204 Molekulare Bioinformatik - Vorlesung 0 Wiederhohlung Die Entropie
Nichtlineare Quantisierung
Nichtlineare Quantisierung Die einfachste Form der Codierung besteht in einer nichtlinearen Quantisierung der Abtastwerte, um die wesentlich häufiger auftretenden kleinen Amplitudenwerte mit einer höheren
Digitale Medien. Übung zur Vorlesung. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid
Übung zur Vorlesung Digitale Medien Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid Wintersemester 2016/17 JPEG Kompression 2 JPEG Kompression Konvertierung von 8x8 Bildblöcken in den Frequenzraum
Bilder 3.1 Bilder sind überall 3.2 Es werde Licht! 3.3 Farben im Kopf 3.4 Farbaddition, Farbsubtraktion und Farbräume 3.5 Weitere Farbmodelle
Bilder 3.1 Bilder sind überall................................ 86 3.2 Es werde Licht!................................... 87 3.3 Farben im Kopf................................... 89 3.4 Farbaddition, Farbsubtraktion
Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003
Name:........................................ Vorname:..................................... Matrikelnummer:.............................. Bitte Studiengang ankreuzen: Computervisualistik Informatik Hauptklausur
Datenkomprimierung. Lauflängenkodierung
Datenkomprimierung Datenkomprimierung dient der Einsparung von Speicherplatz und von Übertragungskapazität für digitale Daten. Dabei werden Daten in neuen Datenstrukturen platzsparender repräsen@ert. Wir
JPEG-Standbildcodierung
JPEG-Standbildcodierung Dipl.-Ing. Guido Heising Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Barthel, G. Blättermann 1 Gliederung der Vorlesung Einführung JPEG (1992)
Kodierung und Komprimierung von Bilddaten
Kodierung und Komprimierung von Bilddaten Seminarvortrag von Dennis Heimann Seminar: Neue Technologien in Internet und WWW Seminarleiter: Dr. rer. nat. H. Sack Wintersemester 2003/2004 Institut für Informatik
