Mathematische Methoden der graphischen Datenverarbeitung

Größe: px
Ab Seite anzeigen:

Download "Mathematische Methoden der graphischen Datenverarbeitung"

Transkript

1 Teil I: Aufgaben der Bildverarbeitung: Komprimierung (compression); Mathematische Methoden der graphischen Datenverarbeitung PD Dr.(USA) Maria Charina Originalbild, 30Kbt Komprimiertes Bild, 7Kbt Teil I: Aufgaben der Bildverarbeitung: Entrauschen (denoising). Teil II: Interpolation und Approximation in den Anwendungen Modellierung und Animation: durch Veränderung von Parametern wird eine Kurve oder Fläche erzeugt, die die gewünschte Form hat.

2 Teil I: Bildkompression mit JPEG und JPEG000 Ablauf der JPEG Kompression: JPEG (Joint Photographic Experts Group) wurde 99 entwickelt und hat sich im Internet als Bildstandard durchgesetzt. Ursprüngliche Datei.bmp Schwerpunkte: hohe Kompressionsrate; hohe Geschwindigkeit zum Kodieren und Dekodieren. Komprimierte Datei.jpg. Bilddarstellungen. Motivation Kriterium für die Qualität eines Bildes ist die menschliche Wahrnehmung des Bildes (menschliches Auge).. Schwarz-weiße Bilder Definition: Ein Bild ist eine N N Matrix B = (B[i, j]) mit ganzzahligen Einträgen (Pixeln) B[i, j] {0,...,55}. 8 Bit-Farbtiefe: Millionen schwarz-weiße Rezeptoren, 00 Grautöne 6 Millionen farbige Rezeptoren: rot, grün, blau. Ein 3 3 Bild benötigt 04 8Bit =: kbyte

3 .3 Farbbilde.3. RGB Farbraum (Komputermonitoren) Definition: Ein Bild ist eine N N 3 Matrix B = (B[i, j, k]) mit ganzzahligen Einträgen (Pixeln) B[i, j, k] {0,...,55}..3. YUV Farbraum (PAL System) Y Luminanz (Helligkeit) U und V Chrominanzen (Farbigkeit) mit Y U V = } {{ } reguläre Matrix R G B 0 Y 55.8 U V Pixel[i, j] = Schwarz+B[i, j, ] Rot+B[i, j, ] Gr ün+b[i, j, 3] Blau..3.3 YCbCr Farbraum (digitales Fernsehen).. JPEG: Farbmodelländerung Y Luminanz (Helligkeit) Cb und Cr skalierte Chrominanzen (Farbigkeit) mit Y Cb Cr = } {{ } reguläre Matrix R G B 0 Y Cb Cr 7.5 } {{ } Datei.bmp gespeichert als }{{} RGB Farbraum oder äquivalent }{{} YCbCr Farbraum

4 .. JPEG: Blockeinteilung.3. JPEG: Subsampling } {{ } Datei.bmp gespeichert als }{{} RGB Farbraum oder äquivalent }{{} YCbCr Farbraum Daten können um einen Faktor reduziert werden (verlustbehaftete Kompression).5. JPEG: -dim Diskrete Cosinus Transformation.4. JPEG: Indexverschiebung R G B Y Cb Cr { 8,...,7} vorzeichenlose Bit vorzeichenbehaftete Bit Verlustbehaftet aber keine Kompression. a) N N DCT Basisbilder; b)-d) zusammengeführte N N DCT Blöcke. (N = 8)

5 Beispiel: JPEG: -dim DCT via -dim DCT C Block (C Block) C T Block nach DCT: Separierbarkeitseigenschaft der -dim DCT.5. (i) -dim DCT ist nicht symmetrisch, denn für N = 8 gilt.5. JPEG: Eigenschaften der -dim DCT: (i) -dim DCT ist nicht symmetrisch; (ii) -dim DCT ist eine unitäre Transformation; (iii) Rechenaufwand: O(N ). Kann aber mit Hilfe der schnellen Fourier Transformation in O(N log N) berechnet werden; (iv) -dim DCT ist eine Rotation in R N ; (v) -dim DCT ist eine der Techniken zur Dekorrelation. mit C = 8 a b c d d c b a a b b a a b b a b d a c c a d b c a d b b d a c b a a b b a a b d c b a a b c d a = cos π 6 a = cos π b = cos 3π 6 b = cos 6π 6 c = cos 5π 6 d = cos 7π 6

6 .5. (iii) inverse DCT (IDCT) Beispiel: ( DCT : ˆB = C B C T = C 3 4 IDCT : B = 5 ( ) ( ) ( C T 5 = 0 ) ( ). ).5.(iii) Sei N = l, l N. [ ˆx F k + j N ] = ) ( ) ) ((F N x gerade [k] + ( ) j e iπk N F N x ungerade [k] N j = 0, und k = 0,..., N Rechenaufwand: R(N) = R(N/) + Induktiv: R(N) = m R( l m ) + m l+, }{{} N + }{{} N Additionen Multiplikationen m =,...,l. Ist die Rekonstruktion von B immer möglich? Für m = l: R(N) = l R() + l l+ = N(R() + log N) = O(N log N)..5. (iii) schnelle Fourier Transformation (FFT) für N = 8.5. (iii) DFT und DCT W N := e πi N, k = 0,...,7. Gibbs Phänomen, Unstetigkeit der periodischen Fortsetzung

7 .5. (iii) Energieerhaltung.5. (v) Beispiel (Erwartungswert): Würfel wurden 400 mal zusammen geworfen Seien x R N und A R N N, A T A = AA T = E. Dann gilt Beweis: Sei y = A x. N A x = k=0 A x = x. y [k] = y T y = x T A T Ax = x. Unitäre Transformationen ändern die Länge (Energieinhalt) eines Vektors nicht. Ω := {(, ); (, );...,(6, 6)}..5. (v) Beispiel (Erwartungswert):.5. (v) Beispiel (Erwartungswert): jedem Ereignis wird die Augensumme zugeordnet Zufallsvariable X : Ω {, 3, 4, 5, 6, 7, 8, 9, 0,, } =: Ω. Mittelwert: x = x Ω x relative Häufigkeit(x) = 7.6

8 .5. (v) Beispiel (Erwartungswert):.5. (v) Beispiel (Kovarianz+Korrelationskoeffizient): Y.5 Y X X Maximale Streuung ist Maximale Streuung ist 4 Erwartungswert E(X) ist die Verallgemeinerung des x: E(X) = x Ω x P(X = x) = 7 Cov(X, Y) = E(X Y) = / Cov(X, Y) = / Kor(X, Y) = Kor(X, Y) = (v) Beispiel (Kovarianz+Korrelationskoeffizient): Y X Y X.5..(v) Beispiel (Cov(X, X ) = 0 X, X stoch. unabh.) Gegeben: Y, Y : Ω {0, } stoch. unabh., P(Y i = 0) = P(Y i = ) = 0.5 gemeinsame WV: P(Y = k, Y = j) = 0.5, k, j = 0, Dann gilt aber Cov(Y + Y, Y Y ) = 0 unkorelliert, Maximale Streuung ist Maximale Streuung ist 4 Cov(X, Y) = E(X Y) = / Cov(X, Y) = P(Y + Y = 0, Y Y = 0) P(Y + Y = 0) P(Y Y = 0), d.h. Y + Y und Y Y sind nicht stoch. unabh. Kor(X, Y) = Kor(X, Y) = 0.707

9 .5. (v): Seien X ein N Markov, stationäres, stoch. Feld und K R N N unitär mit K T Cov(X) K = diag([λ,...,λ N ])..6. JPEG: Quantisierung (verlustbehaftet) Resultat: Unter allen unitären Transformationen Y = A T X verteilt die Karhunen-Loeve-Transformation Y = K T X am meinsten Information auf ersten m Koeffizienten von Y, denn max A T A=E m ( A T Cov(X)A ) [k, k] k=0 m max A=[a,...a N ] a k T a l =0,k l k=0 ( m a k k=0 ( A T Cov(X)A ) [k, k] und ak T a k = m ak T Cov(X)a k + k=0 λ k ( a T k a k ) Damit A = [k,...,k m, a m+,...,a N ], K = [k,...,k N ], da Cov(X)a k = λ k a k, k = 0,...,m. ) = 0, k = 0,...,m. m =,...,N ist beliebig A = K..6. JPEG: Quantisierung ˆB quantisiert [i, j] = sgn(ˆb[i, j]) ˆB[i, j], 0 i, j 7. Q[i, j].6. JPEG: Quantisierung Qualitätsstufen nehmen von links nach rechts ab. Beachte: Multipliziere komponentweise mit Q vor IDCT!

10 .6. JPEG: Quantisierung Zig Zag Scan von DCT Koeffizienten:.7. JPEG: Kodierung Gegeben: Info-Quelle (ZVe) X : Ω Ω = {s,...,s n } mit WV ( P(X = sj ), s j Ω ) j=,...,n. Kodealphabet Σ = {σ,...,σ m } Ziel: Ersetze die Symbole s jk in der Nachricht s j s j... s jk, s jk Ω, durch Kodewörte k(s i ) M>0Σ M, i =,...,n, so dass die erwartete Kodewortlänge n Länge(k(s i )) P(X = s i ) min! i=.7. JPEG: Kodierung Definition: Ein Kode ist das Bild der Abbildung K = {k(s ),...,k(s n )} k : Ω M>0Σ M. Definition: Ein eindeutig dekodierbarer Kode K heißt optimal für eine Info-Quelle X, falls n Länge(k(s i )) P(X = s i ) min! i=.7. JPEG: Kodierung Beispiel (Kode mit fester Bitbreite vs. Huffman Kode): Seien 3 Bitbreite Länge Huffman Länge A B C D E X f : {A, B, C, D, E} {3} X H : {A, B, C, D, E} {, 3} mit P(X H = ) = /5 und P(X H = 3) = 4/5. Dann gilt E(X f ) = 3, E(X H ) =.6 Mit P(X H = ) = 5/39 und P(X H = 3) = 4/39 gilt E(X f ) = 3, E(X H ).3

11 .7. JPEG: Kodierung Beispiel (Kode mit fester Bitbreite vs. Huffman Kode): 3 Bitbreite Länge Huffman Länge A B C D E JPEG: Kodierung Binärbaum: Gesendete Teilnachricht 0 AE? Huffman Kode ist präfixfrei unmittelbar decodierbar..7. JPEG: Kodierung.7. JPEG: Kodierung Konstruktion eines Huffman Baums für Zeichen A B C D E Häufigkeit

12 Huffman Baum pflanzen:. Erzeuge eine nach Wahrscheinlichkeiten sortierte Liste von Bäumen mit jeweils nur einem Knoten (Symbol und seine Wahrscheinlichkeit).. Entferne die letzten beiden Bäume und hänge sie unter eine gemeinsame Wurzel, die die Summe der Wahrscheinlichkeiten ihrer Kinder speichert. Sortiere die Liste von Bäumen um. 3. Wiederhole Schritt., bis nur ein Baum in der Liste enthalten ist. Dieser ist der Huffman Baum. Huffman-Kode erzeugen:. Von der Wurzel ausgehend, für alle eindeutigen Wege, Kode:=leerer String. wenn ein linker Teilbaum beschritten wird, schreibe eine hinter den bisherigen Kode 3. wenn ein rechter Teilbaum beschritten wird, schreibe eine 0 hinter den bisherigen Kode 4. Wiederhole Schritt. oder 3., bis ein Blatt (Symbol) erreicht wird. Schreibe den gefundenen Kode in die Kodetabelle an die Position des jeweiligen Symbols. Huffman-Kodierung: Eigenschaften eines binären, präfixfreien, optimalen Kodes K := { k(s ),... k(s n )}, oder äquivalent Baumes G:. Erzeuge eine Tabelle mit allen im Originaltext vorhandenen Symbolen und deren Wahrscheinlichkeiten. Pflanze den Huffman Baum und erzeuge daraus eine Kodetabelle 3. Durchlaufe den Text und ersetze jedes Symbol mit dem entsprechenden Kode Dekodieren: Kodetabelle. Alle Symbole s j sind Blätter.. G ist vollständig. 3. Seltene Symbole sind tiefer in G als Häufige. 4. Die zwei seltensten Symbole sind Geschwister, d.h. s i, s j : P(X = s i ), P(X = s j ) c(s i ) = u... u M 0 c(s j ) = u... u M, u l {0, }. min P(X = s l) l {,...,n}\{i,j}

13 Satz: Der Huffman-Kode K mit dem Huffman-Baum G ist optimal für jede Info-Quelle X. Beweis: I.A. Ω = {s, s }. Dann ist K = {0, } optimal, da nur Bit pro Symbol benötigt wird. I.S. Sei K nicht optimal. Dann existiert ein binär, präfixfreier, optimaler Kode K mit dem Baum G, so dass n Länge( k(s i )) P(X = s i ) < i= n Länge(k(s i )) P(X = s i ). K optimal seltenste Symbole s j, s j Ω sind Geschwister mit dem Vater v, d.h. i= k(s j ) = k(v)0 und k(s j ) = k(v). Daraus folgt für D = {,...,n} \ {j, j } n Länge( k(s i )) P(X = s i ) Länge( k(s i )) P(X = s i ) = i= i D [ ] + Länge( k(v)) + [P(X = s j ) + P(X = s j ) ] = }{{} =:P(X=v) Länge( k(s i )) P(X = s i ) + P(X = v) < i (Ω {v})\j,j n Länge(k(s Ë i )) P(X = s i ) = i= i (Ω Ë {v})\{j,j } Länge(k(s i )) P(X = s i ) + P(X = v) Widerspruch zur Induktionsvoraussetzung. Beachte: H-Kode ist optimal, nur falls P(X = s j ) = l j, l j N. Arithmetische Codierung: 3. JPEG versus JPEG000. Ausgangsintervall [0, ). Ordne jedem Symbol eines Textes ein Subintervall des Ausgangsintervalls zu, dessen Größe der Wahrscheinlichkeit des Symbols entspricht. Das Subintervall, das dem nächsten Symbol des Textes entspricht, wird zum Ausgangsintervall. 4. Sind noch weitere Symbole zu codieren, dann wiederhole Schritt, sonst zum Schritt Der Code ist eine beliebige Zahl aus dem letzten Ausgangsintervall. Dekodieren: Code und die Anzahl der Textsymbole Original JPEG 9: JPEG000 50: JPEG000 Vorteile: gute Qualität für Kompressionsraten bis : 65

14 Ablauf der JPEG000 Kompression: Zeit Frequenz Ebene: Abtastraten, N = 4, Ursprüngliche Datei.bmp Komprimierte Datei.jp JPEG000 Vorteile: keine Blockeinteilung keine Blockartefakte DCT cos (k + )πj N Wavelet Transformation j ψ( j n kn) -dim Haar Transformation, N=8: -dim Haar Transformation, N=8. Zerlegung V 3 = V W entspricht Matrix Multiplikation mit W =

15 -dim Haar Transformation, N=8. V 3 = V W W entspricht Matrix Multiplikation mit -dim Haar Transformation, N=8. V 3 = V 0 W 0 W W entspricht Matrix Multiplikation mit W W = W 0 W W = dim DWT, N = M : Teilbände Beispiel: Wavelet Arten Haar Daubechies JPEG000 Vorteile: kompakter Träger keine Blockeinteilung Haar Transformation, N = 8: L := H := und L = Bild L T und H = Bild H T

16 -dim DWT, N = M : Teilbände -dim Wavelet Transformation: iteratives Verfahren Haar Transformation, N = 8: LL = L Bild L T HL = L Bild H T Original Iteration Iteration LH = H Bild L T LH = H Bild H T. -dim Wavelet Transformation: schnelle Implementierung -dim DWT: Teilband Quantisierung und -Codierung Beispiel: Quantisierungsmatrix, N = 8, Q = JPEG000 Vorteile: Rechenaufwand O(N) Jedes Teilband ist ein Bild, das separat behandelt wird.

17 -dim DWT: Teilband Quantisierung und -Codierung -dim DWT: Teilband Quantisierung und -Codierung JPEG000 Vorteile: Nachladen der Bilddaten JPEG000 Vorteile: qualitativ hervorgehobene Bildbereiche JPEG000 Nachteile: Qualitätseinbußen bei Kompressionsraten größer : 65; geringe Verbreitung und Unterstützung.

Kap.4 JPEG: Bildkompression. Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist.

Kap.4 JPEG: Bildkompression. Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist. Kap.4 JPEG: Bildkompression Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist. Originalbild y (30Kbt) Komprimiertes Bild z y(7kbt) JPEG (Joint Photographic

Mehr

Bildkompression mit JPEG

Bildkompression mit JPEG Bildkompression mit JPEG aria Charina November 6, 013 1 Bildmodelle Wir betrachten folgende deterministische odelle von Schwarz-Weiß- und Farbbildern Definition 11 Ein Schwarz-Weiß-Bild ist eine N atrix

Mehr

JPEG Kompression technische Realisierung

JPEG Kompression technische Realisierung Experimentalphysik V 20. Januar 2005 Schema der JPEG Kompression Farbraumkonvertierung RGB YCbCr Subsampling der Farbkomponenten Cb, Cr Zerlegung in Blöcke 8 8 2D Kosinustransformation (DCT) Quantisierung

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Image Compression. Vorlesung FH-Hagenberg DSB

Image Compression. Vorlesung FH-Hagenberg DSB Image Compression Vorlesung FH-Hagenberg DSB Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Inhalte Redundanz Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Informationen zur Klausur Termin: 21. Februar 2013,

Mehr

Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2

Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2 Kompression Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Folie 2 1 Inhalte Redundanz Channel Encoding Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

DCT: Diskrete Kosinus-Transformation

DCT: Diskrete Kosinus-Transformation DCT: Diskrete Kosinus-Transformation Kosinusfunktionen für die 1D DCT: zunehmende Frequenz entsprechende Abtastpunkte (Salomon) DCT: 8x8 2D-Transformation DCT: IDCT: effiziente Implementierung? Vorberechnung

Mehr

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg Image Compression Vorlesung FH-Hagenberg SEM Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz 1 Inhalte Redundanz Error-Free Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg Image Compression Vorlesung FH-Hagenberg SEM Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz 1 Inhalte Redundanz Channel Encoding Error-Free Compression Hufmann Coding Runlength

Mehr

Kompressionsverfahren

Kompressionsverfahren Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Verlustlose Kompressionsalgorithmen RLC Huffman Adaptive Huffman Kodierung Arithmetische

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Informationen zur Klausur Termin: 21. Februar 2013,

Mehr

5 JPEG. 5.1 Bayer Filter. 5.2 Überblick. 5.3 Diskrete Cosinus-Transformation. 5.4 Bildmodell. 5.5 Codierung. 5.6 Übertragungsmodi

5 JPEG. 5.1 Bayer Filter. 5.2 Überblick. 5.3 Diskrete Cosinus-Transformation. 5.4 Bildmodell. 5.5 Codierung. 5.6 Übertragungsmodi 5 JPEG Bayer Filter: G01 R02 G03 R04 G05 R06 G07 R08 5.1 Bayer Filter B09 G10 B11 G12 B13 G14 B15 G16 B17 R18 G19 R20 G21 R22 G23 G24 5.2 Überblick B25 B26 B27 G28 B29 G30 B31 G32 5.3 Diskrete Cosinus-Transformation

Mehr

Kapitel 7: Optimalcodierung und Huffman Coding

Kapitel 7: Optimalcodierung und Huffman Coding Kapitel 7: codierung und Huffman Coding Ziele des Kapitels Auftreten von Fehlern bei zu starker Kompression Konstruktion optimaler Codes Huffman Coding 2 Bisher Theorem (Shannon I): Die mittlere Codewortlänge

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie Fakultät für Informatik Lehrstuhl 2 Vorlesung Effiziente Algorithmen und Komplexitätstheorie Sommersemester 2008 Ingo Wegener; Vertretung: Carsten Witt 7. Juli 2008 Vorlesung am 14.07. (nächste Woche):

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1 Bildkompression InTh, 25, JPEG, Hak, Rur, 1 Referenzen [1] D Salomon, Data Compression, Springer, 24 [2] Prof Dr A Steffen, Kurs SU, ZHW, 1999-24 [3] G Wallace, The JPEG Still Picture Compression Standard,

Mehr

Datenkomprimierung. Lauflängenkodierung

Datenkomprimierung. Lauflängenkodierung Datenkomprimierung Datenkomprimierung dient der Einsparung von Speicherplatz und von Übertragungskapazität für digitale Daten. Dabei werden Daten in neuen Datenstrukturen platzsparender repräsen@ert. Wir

Mehr

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 JPEG - Kompression Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 Inhaltsverzeichnis 1 Entwicklung von JPEG 2 1.1 Was heisst und was ist JPEG?................... 2

Mehr

Eike Müller. Kompression-Algorithmen für Bilder. 3. Juli 2013

Eike Müller. Kompression-Algorithmen für Bilder. 3. Juli 2013 Eike Müller Kompression-Algorithmen für Bilder 3. Juli 23 Inhaltsverzeichnis Huffman-Kodierung 2. Präfixfreie Codes................................. 2.2 Huffman Code.................................. 3.3

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Video-Kompression Zusammenfassung http://www.nanocosmos.de/lietz/mtv 2009 1 Motivation: Video-Kompression Unkomprimierte Datenmengen sind zu groß! TV: 20 MB/s = 72 GB/h (720x576x2x25)

Mehr

Independent JPEG Group. JPEG Software Tools

Independent JPEG Group. JPEG Software Tools Independent JPEG Group JPEG Software Tools cjpeg Pixelmap Bildfileformat JPEG Bildfileformat jpegtran djpeg Beiträge zu: jpegtran: Verlustfreie Transformationsfunktionen (Rotation in 90 Grad Schritten,

Mehr

ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder.

ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder. Kapitel 9 Pixeldateiformate Es gibt diverse Formate, in denen die generierten Grafiken abgespeichert werden können Stellvertretend soll hier nur auf 2 Formate eingegangen werden; eines, bei dem die Pixel

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

'LJLWDOH%LOGHUXQG'DWHLIRUPDWH

'LJLWDOH%LOGHUXQG'DWHLIRUPDWH 'LJLWDOH%LOGHUXQG'DWHLIRUPDWH Seminar: Simulation und Bildanalyse mit Java 07.07.2003 Seite 1 von 25 hehuvlfkw 1. Digitalisierung 2. Bilddateiformate 3. verlustfreie Datenkompression 4. JPEG Kompression

Mehr

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression Digitale Bildverarbeitung Bildkompression Einleitung Datenmenge für ein unkomprimiertes Bild Verwendungszweck des Bildes Bild soll weiterverarbeitet werden Bild soll archiviert werden Bild soll per E-Mail

Mehr

Diskrete Cosinustransformation (DCT)

Diskrete Cosinustransformation (DCT) Fachbereich Medieninformatik Hochschule Harz Diskrete Cosinustransformation (DCT) Referat Björn Wöldecke 10954 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort... 1. Methoden zur Datenreduktion...

Mehr

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Name: Matrikel-Nr.:

Mehr

Datenkompression. Theorie

Datenkompression. Theorie Datenkompression Theorie Einleitung Übersicht Wie lassen sich beliebige Daten verdichtet (komprimiert) darstellen? verlustfreie Kompression: Programme Texte verlustbehaftete Kompression: Audio Video Kompressionsfaktor:

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner Proseminar Datenkomprimierung Dr. U. Tamm JPEG - Kompression WS 2002/03 Torsten Zichner Inhaltsangabe: 1. Einleitung 2. JPEG Kompression 2.1. Konvertierung des Bildes in ein geeignetes Farbmodell 2.2.

Mehr

Einführungsvortrag zum Proseminar Datenkompression im Wintersemester 2003/2004

Einführungsvortrag zum Proseminar Datenkompression im Wintersemester 2003/2004 Einführungsvortrag zum Proseminar Datenkompression im Wintersemester 2003/2004 Dr. Ralf Schlüter Lehrstuhl für Informatik VI RWTH Aachen 52056 Aachen schlueter@cs.rwth-aachen.de Ralf Schlüter Einführungsvortrag

Mehr

Inhaltsverzeichnis. 1 Einführung 1

Inhaltsverzeichnis. 1 Einführung 1 Inhaltsverzeichnis Inhaltsverzeichnis IX 1 Einführung 1 2 Grundlagen der Datenkompression 5 2.1 Informationsgehalt und Entropie....................... 5 2.2 Kriterien zur Kompressionsbewertung....................

Mehr

Einführung in die Informatik II Aus der Informationstheorie: Datenkompression

Einführung in die Informatik II Aus der Informationstheorie: Datenkompression Einführung in die Informatik II Aus der Informationstheorie: Datenkompression Prof. Bernd Brügge, Ph.D Institut für Informatik Technische Universität München Sommersemester 2 2. Juli 2 Copyright 2 Bernd

Mehr

compressed domain image retrieval

compressed domain image retrieval Compressed domain image retrieval Christian Ott Seminar Inhaltsbasierte Bildsuche - Universität reiburg - 4. ebruar 25 4. ebruar 25, C.Ott Seite 1 Übersicht 1. Einleitung 2. JPEG 3. Merkmalsextraktion

Mehr

JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012

JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012 JPEG Seminar: Kompressionsalgorithmen Ruslan Ragimov 5. September 2012 Zusammenfassung Die allgemeinen verlustfreien Verfahren zur Datenkompression können gute Kompressionsraten für verschiedene Dateitypen

Mehr

Einleitung. Kapitel 1

Einleitung. Kapitel 1 Kapitel 1 Einleitung In diesem Abschnitt geben wir einen kurzen Überblick über den Inhalt der Vorlesung. Wir werden kurz die wesentlichen Probleme erläutern, die wir ansprechen wollen. Wir werden auch

Mehr

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus?

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus? Huffman-Code Dieser Text ist als Hintergrundinformation ausschliesslich für die Lehrperson gedacht. Der Text ist deshalb eher technisch gehalten. Er lehnt sich an das entsprechende Kapitel in "Turing Omnibus"

Mehr

Kompressionsverfahren

Kompressionsverfahren Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Adaptive Huffman - Kodierung Nach 17 Zeichen: A(1),B(2),C(2),D(2),E(10) Kodierung A: 000

Mehr

Einführung Proseminar Datenkompression Wintersemester 2017/2018

Einführung Proseminar Datenkompression Wintersemester 2017/2018 Einführung Proseminar Datenkompression Wintersemester 2017/2018 Dr. Ralf Schlüter Lehrstuhl für Informatik 6 RWTH Aachen 52056 Aachen mailto:schlueter@cs.rwth-aachen.de R. Schlüter: Proseminar Datenkompression

Mehr

Einführung Medienforscher Aufgabe 3 - MPEG. Tobias Reinsch 2011

Einführung Medienforscher Aufgabe 3 - MPEG. Tobias Reinsch 2011 Einführung Medienforscher Tobias Reinsch 2011 Allgemeines Ziel der Aufgabe Kennenlernen der Bildkodierungsverfahren des MPEG Standards Praktische Umsetzung dieser Techniken mit Java Bearbeitungszeitraum:

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Wintersemester 2012/13. Dr. Tobias Lasser. 7 Fortgeschrittene Datenstrukturen

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Wintersemester 2012/13. Dr. Tobias Lasser. 7 Fortgeschrittene Datenstrukturen Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 202/3 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin

JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin Referat KIM Alex Titze Angewandte Informatik FHTW-Berlin 76900504811 Einleitung JPEG Geschichte & Überblick Komprimierungsablauf Farbformat DCT (Diskrete Cosinus Transformation) Quantisierung Koeffizientenkodierung

Mehr

3 Codierung diskreter Quellen. Quelle Quellcodierer Kanalcodierer reduziert die benötigte Datenmenge. fügt Daten zur Fehlerkorrektur ein.

3 Codierung diskreter Quellen. Quelle Quellcodierer Kanalcodierer reduziert die benötigte Datenmenge. fügt Daten zur Fehlerkorrektur ein. 3 Codierung diskreter Quellen 3 Einführung 32 Ungleichmäßige Codierung 33 Präfix-Codes 34 Grenzen der Code-Effizienz 35 Optimal-Codierung 3 Zusammenfassung < 24 / 228 > 3 Codierung diskreter Quellen Quelle

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 11. November 2010 1 Erwartungswert und Varianz Erwartungswert Varianz und Streuung Rechenregeln Binomialverteilung

Mehr

Verlustbehaftete Kompression. Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden)

Verlustbehaftete Kompression. Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden) Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden)

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K.

Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Standbildcodierung Dipl.-Ing. Guido Heising Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Barthel 1 Gliederung der Vorlesung Einführung in die Bildcodierung - verlustlose/verlustbehaftete

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 28 (Algorithmen & Datenstrukturen) Vorlesung 22 (6.7.28) Greedy Algorithmen II (Datenkompression) Algorithmen und Komplexität Datenkompression Reduziert Größen von Files Viele Verfahren

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1! Licht und Farbe: Physikalische und physiologische Aspekte 6.2! Farbmodelle 6.3! Raster-Bilddatenformate 6.4! Verlustbehaftete Kompression bei Bildern 6.5! Weiterentwicklungen

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Codierung, Datenreduktion Quantisierung, Lauflängencodierung DCT, JPEG http://www.nanocosmos.de/lietz/mtv Inhalt Codierung digitaler Signale Datenreduktion (Kompression) Verlustfrei

Mehr

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir

Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir Kapitel 3: Entropie Motivation Wir erinnern uns: Um eine Zufallsvariable mit N verschiedenen, gleichwahrscheinlichen Zuständen binär zu codieren, benötigen wir log N Bits log p N Bits Die Information steht

Mehr

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge.

Darstellung als Filterbank. Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. Darstellung als Filterbank Annahme für die Codierung: bestimmter Betrachtungsabstand, Wiedergabegröße Bestimmter Betrachtungswinkel für das Auge. - Trifft in bestimmten Maße auch auf das Original zu, da

Mehr

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor:

Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) = sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: 5 Splineinterpolation Beispiel für eine periodische Spline-Interpolationsfunktion: Wir betrachten f(x) sin(πx) und geben die folgenden Stützstellen und Stützwerte vor: x i 3 f i Damit ist n 5, h Forderung

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm 11 Datenkompression Einführung Grundlagen

Mehr

Kap. 7: Wavelets. 2. Diskrete Wavelet-Transformation (DWT) 4. JPEG2000. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1

Kap. 7: Wavelets. 2. Diskrete Wavelet-Transformation (DWT) 4. JPEG2000. H. Burkhardt, Institut für Informatik, Universität Freiburg DBV-I 1 Kap. 7: Wavelets. Die kontinuierliche Wavelet-Transformation (WT). Diskrete Wavelet-Transformation (DWT) 3. Sh Schnelle Wavelet-Transformation ltt ti (FWT) 4. JPEG000 H. Burkhardt, Institut für Informatik,

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Lerneinheit 3: Greedy Algorithmen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2016 10.5.2016 Einleitung Einleitung Diese Lerneinheit

Mehr

Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011

Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011 Einführung Aufgabe 3 - MPEG Tobias Reinsch 2011 Allgemeines Aufgabe 3 - MPEG Ziel der Aufgabe Kennenlernen der Bildkodierungsverfahren des MPEG Standards Praktische Umsetzung dieser Techniken mit Java

Mehr

16 - Kompressionsverfahren für Texte

16 - Kompressionsverfahren für Texte 16 - Kompressionsverfahren für Texte Prof. Dr. S. Albers Kompressionsverfahren für Texte Verlustfreie Kompression Original kann perfekt rekonstruiert werden Beispiele: Huffman Code, Lauflängencodierung,

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Proseminar. Thema: Shannon-Fano und Huffman Verfahren

Proseminar. Thema: Shannon-Fano und Huffman Verfahren Proseminar Datenkompression Thema: Shannon-Fano und Huffman Verfahren Gehalten am 27.11.2002 von Lars Donat 1. Huffman Code Bei diesem bereits 1951 von David A. Huffman veröffentlichtem Algorithmus handelt

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Universität Trier. Fachbereich IV. Wintersemester 2004/2005. Wavelets made easy. Kapitel 2 Mehrdimensionale Wavelets und Anwendungen

Universität Trier. Fachbereich IV. Wintersemester 2004/2005. Wavelets made easy. Kapitel 2 Mehrdimensionale Wavelets und Anwendungen Universität Trier Fachbereich IV Wintersemester 2004/2005 Wavelets made easy Kapitel 2 Mehrdimensionale Wavelets und Anwendungen Thomas Queckbörner 16.11.2004 Übersicht des Kapitels: 1. Einführung 2. Zweidimensionale

Mehr

Grafikformate: JPG - PNG

Grafikformate: JPG - PNG Grafikformate: JPG - PNG JPG JPG ist die Kurzform von JPEG (Joint Photographic Experts Group) Das Dateiformat nennt sich eigentlich JFIF (JPEG File Interchange Format) Spezifikation Bezeichnungen JPEG

Mehr

1 Einführung. Bildformate Analyse der LSB-Ersetzung Weitere steganographische Algorithmen. Syndromkodierung in der Steganographie

1 Einführung. Bildformate Analyse der LSB-Ersetzung Weitere steganographische Algorithmen. Syndromkodierung in der Steganographie Gliederung Einführung 1 Einführung 2 3 4 WS 2012/2013 Steganographie und Multimedia-Forensik Folie 121 Farbwahrnehmung Blau: 435,8 nm Grün: 546,1 nm Rot: 700 nm (445 nm) (535 nm) (575 nm) Empfindlichkeit

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate Grundbegriffe für Bildspeicherung und -Bearbeitung Bitmap-Formate Verlustfrei

Mehr

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Bilddatenformate BMP Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Format: Raster Farben: 1 Bit (s/w), 4 Bit (16 Farben), 8 Bit (256 Farben), 24 Bit (16,7 Mio. Farben) Kompression: Keine (meist) oder

Mehr

2.7 Der Shannon-Fano-Elias Code

2.7 Der Shannon-Fano-Elias Code 2.7 Der Shannon-Fano-Elias Code Die Huffman-Codierung ist ein asymptotisch optimales Verfahren. Wir haben auch gesehen, dass sich die Huffman-Codierung gut berechnen und dann auch gut decodieren lassen.

Mehr

Tutorium 23 Grundbegriffe der Informatik (6. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (6. Sitzung) Tutorium 23 Grundbegriffe der Informatik (6. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell Inhaltsbasierte Bildsuche J.P.E.G = Joint Photographic Expert Group Informatica Feminale Universität Bremen, Aug. 2005 Maja Temerinac Albert-Ludwigs-Universität Freiburg J.P.E.G. Standard Standard zur

Mehr

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung Huffman-Codierung, arithmetische Codierung Theoretische Informatik RWTH-Aachen 4. April 2012 Übersicht 1 Einführung 2 3 4 5 6 Einführung Datenkompression Disziplin,die Kompressionsalgorithmen entwirft

Mehr

Lossy Bildkompression: Techniken und Bildqualität

Lossy Bildkompression: Techniken und Bildqualität Lossy Bildkompression: Techniken und Bildqualität Brigitte Forster Zentrum Mathematik, Technische Universität München, und Institut für Biomathematik und Biometrie, Helmholtz-Zentrum München Konsensuskonferenz:

Mehr

Entropie. Um der Begriff der Entropie zu erläutern brauchen wir erst mal einige Definitionen, z.b.

Entropie. Um der Begriff der Entropie zu erläutern brauchen wir erst mal einige Definitionen, z.b. Entropie Grundlegend für das Verständnis des Begriffes der Komprimierung ist der Begriff der Entropie. In der Physik ist die Entropie ein Maß für die Unordnung eines Systems. In der Informationstheorie

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Wann sind Codes eindeutig entschlüsselbar?

Wann sind Codes eindeutig entschlüsselbar? Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 22 (20.7.2016) Greedy Algorithmen - Datenkompression Algorithmen und Komplexität Greedy Algorithmen Greedy Algorithmen sind eine Algorithmenmethode,

Mehr

4. Licht, Farbe und Bilder

4. Licht, Farbe und Bilder 4. Licht, Farbe und Bilder 4.1 Licht und Farbe: Physikalische und physiologische Aspekte 4.2 Farbmodelle 4.3 Raster-Bilddatenformate 4.4 Verlustbehaftete Kompression bei Bildern JPEG Progressives und hierarchisches

Mehr

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Komprimierung 6. Komprimierung (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Platz brauchen Motivation: beschleunigt Plattenzugriffe oder Datenübertragungen Voraussetzung:

Mehr

Diskrete Cosinus-Transformation (DCT)

Diskrete Cosinus-Transformation (DCT) Diskrete Cosinus-Transformation (DCT) Prinzip von DCT: (in einer oder zwei Dimensionen...) Menge von Datenpunkten f(x) bzw. f(x,y) (für x,y = 1, N) Forward DCT (FDCT) Inverse DCT (IDCT) Rekonstruktion

Mehr

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 581 21. Greedy Algorithmen Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 Aktivitäten Auswahl 582 Koordination von Aktivitäten, die gemeinsame Resource exklusiv

Mehr

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen Matrizen 28. November 2007 Summe & Produkt Beispiel: Einwohnerzahlen Beispiel Addition Multiplikation Inverse Addition & Multiplikation Anwendung

Mehr

5. Licht, Farbe und Bilder

5. Licht, Farbe und Bilder 5. Licht, Farbe und Bilder 5.1 Licht und Farbe: Physikalische und physiologische Aspekte 5.2 Farbmodelle 5.3 Raster-Bilddatenformate 5.4 Verlustbehaftete Kompression bei Bildern JPEG Weiterführende Literatur:

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate Grundbegriffe für Bildspeicherung und -Bearbeitung Bitmap-Formate Verlustfrei

Mehr

Kompression. Tim Kilian

Kompression. Tim Kilian Kompression Tim Kilian Seminar Effiziente Programmierung Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Datenkompression. Motivation Datenmengen

Datenkompression. Motivation Datenmengen Motivation Übersicht, Informationstheorie, Modellierung Verlustfreie : Huffman-Codierung, Arithmetische Codierung,... Verlustbehaftete : Fourier-Analyse, JPEG, MPEG,... Datenorganisation 6 Seite Motivation

Mehr

Gierige Algorithmen Interval Scheduling

Gierige Algorithmen Interval Scheduling Gierige Algorithmen Interval Scheduling IntervalScheduling(s,f). n length[s] 2. A {} 3. j 4. for i 2 to n do 5. if s[i] f[j] then 6. A A {i} 7. j i 8. return A Gierige Algorithmen Interval Scheduling Beweisidee:

Mehr

Kompressionsverfahren für Texte

Kompressionsverfahren für Texte Kompressionsverfahren für Texte Prof. Dr. S. Albers Prof. Dr. Th. Ottmann 1 Zeichenkettenverarbeitung Suche in Texten, Textindizes Mustererkennung (Pattern-Matching) Verschlüsseln Komprimiern Analysieren

Mehr

Digitalisierung. analoges Signal PAM. Quantisierung

Digitalisierung. analoges Signal PAM. Quantisierung Digitalisierung U analoges Signal t U PAM t U Quantisierung t Datenreduktion Redundanzreduktion (verlustfrei): mehrfach vorhandene Informationen werden nur einmal übertragen, das Signal ist ohne Verluste

Mehr

Probeklausur. Grundlagen der Medieninformatik. Wintersemester 2018/19

Probeklausur. Grundlagen der Medieninformatik. Wintersemester 2018/19 Wintersemester 2018/19 Hinweise: Die Bearbeitungszeit beträgt 80 Minuten. 1 Punkt entspricht ungefähr einer Minute. Hilfsmittel sind keine erlaubt außer einem nicht programmierbarem Taschenrechner. Verwenden

Mehr

Graphische Datenverarbeitung

Graphische Datenverarbeitung Graphische Datenverarbeitung Bildkompression & Dateiformate Prof. Dr. Elke Hergenröther Gründe für eine Kompression Unkomprimierte Rasterbilder benötigen: viel Speicherplatz hohe Bandbreite zur Übertragung

Mehr