Kap.4 JPEG: Bildkompression. Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist.

Größe: px
Ab Seite anzeigen:

Download "Kap.4 JPEG: Bildkompression. Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist."

Transkript

1 Kap.4 JPEG: Bildkompression Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist. Originalbild y (30Kbt) Komprimiertes Bild z y(7kbt)

2 JPEG (Joint Photographic Experts Group) wurde 1992 entwickelt und hat sich im Internet als Bildstandard durchgesetzt. Ablauf der JPEG-Kompression: Ursprüngliche Datei.bmp Komprimierte Datei.jpg

3 4.1 Bildmodelle Kriterium für die Qualität eines Bildes ist die menschliche Wahrnehmung des Bildes (menschliches Auge): 130 Millionen schwarz-weiße Rezeptoren, 100 Grautöne 6 Millionen farbige Rezeptoren: rot, grün, blau. Definition: Ein Schwarz-Weiß-Bild ist eine N 1 N 2 Matrix B = (B[i, j]) mit ganzzahligen Einträgen (Pixeln) B[i, j] {0,...,255}. 8 Bit-Farbtiefe: Ein Bild benötigt Bit =: 1kByte

4 RGB-Farbraum (Komputermonitoren) Definition: Ein Farbbild ist eine N 1 N 2 3 Matrix B = (B[i, j, k]) mit ganzzahligen Einträgen (Pixeln) B[i, j, k] {0,...,255}. Pixel[i, j] = Schwarz+ B[i, j, 1] Rot + B[i, j, 2] Grün+B[i, j, 3] Blau.

5 YCbCr-Farbraum (digitales Fernsehen) Y Luminanz (Helligkeit) Cb und Cr skalierte Chrominanzen (Farbigkeit) mit Y Cb Cr = } {{ } reguläre Matrix 0 Y Cb Cr R G B

6 4.2 JPEG: Farbmodelländerung } {{ } Datei.bmp gespeichert als }{{} RGB Farbraum oder äquivalent }{{} YCbCr Farbraum

7 4.3. JPEG: Blockeinteilung

8 4.4. JPEG: Subsampling } {{ } Datei.bmp gespeichert als }{{} RGB Farbraum oder äquivalent }{{} YCbCr Farbraum Daten können um einen Faktor 2 reduziert werden (verlustbehaftete Kompression)

9 4.5. JPEG: Indexverschiebung R G B Y Cb Cr { 128,...,127} vorzeichenlose Bit vorzeichenbehaftete Bit Verlustbehaftet aber keine Kompression.

10 4.6. JPEG: 2-dim Diskrete Cosinus Transformation Definition: Die 2-dim DCT ist eine lineare Transformation auf R M M, M N, B ˆB, ˆB = C B C T, C R M M, (1) die Matrix C = (C[n,l]) n,l=0,...,m 1 ist gegeben durch mit C[n,l] = d[n] cos π(2l+1)n 2M d[n] = 1 M { 1, falls n = 0, 2, sonst. (2)

11 Beispiel: nach DCT:

12 Sei B = (B[n,l]) n,l=0,...,m 1. Definiere den Vektor und die Matrix Lemma: Es gilt B vek = B[0, 0]. B[0, M 1] B[1, 0]. B[1, M 1]. B[M 1, M 1] R M2 C T C = (C[l, n] C) l,n=0,...,m 1, C = (C[n,l]) n,l=0,...,m 1. ˆB = C B C T ˆB vek = ( C T C ) B vek.

13 4.7. JPEG: 2-dim DCT via 1-dim DCT Die 2-dim DCT ist separabel, d.h. man kann die 2-dim DCT mit Hilfe der 1-dim DCT ausführen. Definition: Die 1-dim DCT ist eine lineare Transformation auf R M, M N, y ŷ, ŷ = Cy, C R M M. (3) Die Matrix C = (C[n,l]) n,l=0,...,m 1 ist definiert wie in (2). Eigenschaften der 1-dim DCT: (i) 1-dim DCT ist nicht symmetrisch, d.h. C C T ; (ii) 1-dim DCT ist eine orthogonale Transformation, d.h. CC T = I; (iii) 1-dim DCT ist eine Rotation in R M, d.h. CC T = I und det(c) = 1; (iv) 1-dim DCT ist eine der Techniken zur Dekorrelation.

14 4.7 (i) 1-dim DCT ist nicht symmetrisch, denn für N = 8 gilt a 1 b 1 c 1 d 1 d 1 c 1 b 1 a 1 C = 1 a 2 b 2 b 2 a 2 a 2 b 2 b 2 a 2 b 1 d 1 a 1 c 1 c 1 a 1 d 1 b c 1 a 1 d 1 b 1 b 1 d 1 a 1 c 1 b 2 a 2 a 2 b 2 b 2 a 2 a 2 b 2 d 1 c 1 b 1 a 1 a 1 b 1 c 1 d 1 mit a 1 = 2 cos π 16 a 2 = 2 cos 2π b 1 = 2 cos 3π 16 b 2 = 2 cos 6π 16 c 1 = 2 cos 5π 16 d 1 = 2 cos 7π 16

15 4.7 (iii) Energie eines Vektors y R M ist gegeben durch y 2 = M y j. j=1 Lemma: Seien y R M. Dann gilt C y 2 2 = y 2 2. Beweis: Sei ŷ = C y. C y 2 2 = (Cy)T Cy = y T C T Cy = y 2 2. Orthogonale Transformationen ändern die Länge (Energie, Informationsinhalt) eines Vektors (Bildes) nicht.

16 B = 4.7 (iv) Sei B ein 8 8 Block eines Bildes. Beispiel: Nicht alle ˆB = CBC T sind dünnbesetzt nach DCT: ˆB = Solche Bildblöcke B kommen aber selten vor. Z.z.: ˆB = CBC T ist mit hoher Wahrscheinlichkeit dünnbesetzt.

17 Definition: Sei X = (X[n]) n=0,...,m 1 ein M 1 Markov, stationäres, stoch. Feld mit E(X[n]) = 0 und cov(x[n] 2 ) = 1, n = 0,...,M 1, d.h. 1 ρ ρ 2... ρ N 1 ρ 1 ρ... ρ N 2 cov(x, X) =....., ρ = cov(x[0], X[1]). ρ N 2... ρ 1 ρ ρ N 1... ρ 2 ρ 1 Die Transformation ˆX = K X heißt Karhunen-Loeve-Transformation von X, falls K cov(x, X) K T diagonal ist und die Diagonaleinträge von K cov(x, X) K T die Eigenwerte von cov(x, X) sind. Satz: Unter allen orthogonalen Transformationen ˆX = A X, A R M M verteilt die Karhunen-Loeve-Transformation ˆX = K X am meisten Energie auf die ersten m+1 < M Einträge von ˆX. Satz: Für ρ 1, gilt K C.

18 Die 8 8 KLT-Matrix K für ρ = und die 8 8 DCT-Matrix C

19 4.8. JPEG: Quantisierung mit Q = (3+2(i + j)) i,j=0,...,7 ˆB[i, j] ˆB q [i, j] = sgn(ˆb[i, j]), 0 i, j 7. Q[i, j]

20 4.8. JPEG: Quantisierung Zig-Zag-Scan von DCT-Koeffizienten:

21 4.9. JPEG: Kodierung Gegeben: Info-Quelle (d.h. die ZVe) X : Ω {s 1,...,s n } mit WV P(X = s j ), j = 1,...,n. Kodealphabet Σ = {σ 1,...,σ M } Ziel: Ersetze die Symbole s ji in der Nachricht s j1 s j2...s jm, s ji {s 1,...,s n }, durch Kodewörte k(s j ) M>0Σ M, j = 1,...,n, so dass die erwartete n Kodewortlänge Länge(k(s j )) P(X = s j ) minimal wird. Falls dieser j=1 Kode eindeutig dekodierbar ist, dann heißt er optimal

22 Huffman-Kodierung: 1. Erzeuge eine Tabelle mit allen in der Nachricht s j1 s j2...s jm, s ji {s 1,...,s n }, vorhandenen Symbolen s j und deren Wahrscheinlichkeiten. 2. Pflanze den Huffman-Baum und erzeuge daraus eine Kodetabelle 3. Durchlaufe die Nachricht und ersetze jedes Symbol s ji mit dem entsprechenden Kodewort.

23 Konstruktion eines Huffman-Baums für Zeichen A B C D E Häufigkeit

24 Huffman-Baum pflanzen: 1. Erzeuge eine nach Wahrscheinlichkeiten sortierte Liste von Bäumen mit jeweils nur einem Knoten (Symbol s j und seine Wahrscheinlichkeit). 2. Entferne die letzten beiden Bäume und hänge sie unter eine gemeinsame Wurzel, die die Summe der Wahrscheinlichkeiten ihrer Kinder speichert. Sortiere die Liste von Bäumen um. 3. Wiederhole Schritt 2., bis nur ein Baum in der Liste enthalten ist. Dieser ist der Huffman-Baum.

25 Huffman-Kode erzeugen: 1. Von der Wurzel ausgehend, für alle eindeutigen Wege, Kode:=leeres Wort 2. wenn ein linker Teilbaum beschritten wird, schreibe eine 1 hinter den bisherigen Kode 3. wenn ein rechter Teilbaum beschritten wird, schreibe eine 0 hinter den bisherigen Kode 4. Wiederhole Schritt 2. oder 3., bis ein Blatt (Symbol s j ) erreicht wird. Schreibe den gefundenen Kode in die Kodetabelle an die Position des jeweiligen Symbols s j.

26 Eigenschaften des Huffman-Kodes k : {s 1,...,s n } {k(s 1 ),...k(s n )}, oder, äquivalent, des Huffman-Baumes G = (V, E) (i) Alle Symbole s j sind Blätter von G. (ii) Der Baum G ist vollständig und binär. (iii) Seltene Symbole s j sind tiefer in G als die häufigen Symbole. (iv) Die zwei seltensten Symbole sind Geschwister, d.h. falls dann gilt P(X = s i ), P(X = s j ) < min P(X = s l) l {1,...,n}\{i,j} k(s i ) = σ j1...σ jm 0, k(s j ) = σ j1...σ jm 1, σ l {0, 1}. (v) Der Huffman-Kode ist optimal.

27 Beweis: I.A. X : Ω {s 1, s 2 }. Dann ist der Kode k(s 1 ) = 0, k(s 2 ) = 1, optimal, da nur 1Bit pro Symbol benötigt wird. I.S. Sei k nicht optimal. Dann existiert ein binär, präfixfreier, optimaler Kode k mit dem Baum G, so dass n Länge( k(s i )) P(X = s i ) < i=1 n Länge(k(s i )) P(X = s i ). i=1 k optimal es exitieren s j1, s j2 {s 1,...,s n }, die Geschwister mit dem Vater v sind, d.h. k(s j1 ) = k(v)0 und k(s j2 ) = k(v)1.

28 Daraus folgt für D = {s 1,...,s n }\{s j1, s j2 } = n Länge( k(s i )) P(X = s i ) = Länge( k(s i )) P(X = s i ) s i D i=1 [ ] + Länge( k(v))+1 [P(X = s j1 )+P(X = s j2 )] = }{{} =:P(X=v) Länge( k(s i )) P(X = s i )+P(X = v) I.V. < Länge(k(s i )) P(X = s i )+P(X = v) s i D {v} s i D {v} n Länge(k(s i )) P(X = s i ). i=1

29 Arithmetische Kodierung (ist nicht prüfungsrelevant): wird auch bei JPEG verwendet. Eingabe: Nachricht s j1 s j2...s jm, s ji {s 1,...,s n }. Initializierung: Ausgangsintervall [0, 1). Für i = 1,...,m: Ordne jedem Symbol s j, j = 1,...,n, der Nachricht ein Subintervall des Ausgangsintervalls zu, dessen Größe der Wahrscheinlichkeit P(X = s j ) des Symbols s j entspricht. Das Subintervall, das dem Symbol s ji der Nachricht entspricht, wird zum neuen Ausgangsintervall. Ausgabe: Der Kode ist eine beliebige reele Zahl (in der dyadischen Darstellung) aus dem letzten Ausgangsintervall. Zum Dekodieren: braucht man den Kode und die Anzahl m der Symbole in der kodierten Nachricht.

Mathematische Methoden der graphischen Datenverarbeitung

Mathematische Methoden der graphischen Datenverarbeitung Teil I: Aufgaben der Bildverarbeitung: Komprimierung (compression); Mathematische Methoden der graphischen Datenverarbeitung PD Dr.(USA) Maria Charina Originalbild, 30Kbt Komprimiertes Bild, 7Kbt Teil

Mehr

Bildkompression mit JPEG

Bildkompression mit JPEG Bildkompression mit JPEG aria Charina November 6, 013 1 Bildmodelle Wir betrachten folgende deterministische odelle von Schwarz-Weiß- und Farbbildern Definition 11 Ein Schwarz-Weiß-Bild ist eine N atrix

Mehr

JPEG Kompression technische Realisierung

JPEG Kompression technische Realisierung Experimentalphysik V 20. Januar 2005 Schema der JPEG Kompression Farbraumkonvertierung RGB YCbCr Subsampling der Farbkomponenten Cb, Cr Zerlegung in Blöcke 8 8 2D Kosinustransformation (DCT) Quantisierung

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Datenkomprimierung. Lauflängenkodierung

Datenkomprimierung. Lauflängenkodierung Datenkomprimierung Datenkomprimierung dient der Einsparung von Speicherplatz und von Übertragungskapazität für digitale Daten. Dabei werden Daten in neuen Datenstrukturen platzsparender repräsen@ert. Wir

Mehr

Image Compression. Vorlesung FH-Hagenberg DSB

Image Compression. Vorlesung FH-Hagenberg DSB Image Compression Vorlesung FH-Hagenberg DSB Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Inhalte Redundanz Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2

Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2 Kompression Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Folie 2 1 Inhalte Redundanz Channel Encoding Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Informationen zur Klausur Termin: 21. Februar 2013,

Mehr

Kapitel 7: Optimalcodierung und Huffman Coding

Kapitel 7: Optimalcodierung und Huffman Coding Kapitel 7: codierung und Huffman Coding Ziele des Kapitels Auftreten von Fehlern bei zu starker Kompression Konstruktion optimaler Codes Huffman Coding 2 Bisher Theorem (Shannon I): Die mittlere Codewortlänge

Mehr

Kompressionsverfahren

Kompressionsverfahren Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Verlustlose Kompressionsalgorithmen RLC Huffman Adaptive Huffman Kodierung Arithmetische

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

5 JPEG. 5.1 Bayer Filter. 5.2 Überblick. 5.3 Diskrete Cosinus-Transformation. 5.4 Bildmodell. 5.5 Codierung. 5.6 Übertragungsmodi

5 JPEG. 5.1 Bayer Filter. 5.2 Überblick. 5.3 Diskrete Cosinus-Transformation. 5.4 Bildmodell. 5.5 Codierung. 5.6 Übertragungsmodi 5 JPEG Bayer Filter: G01 R02 G03 R04 G05 R06 G07 R08 5.1 Bayer Filter B09 G10 B11 G12 B13 G14 B15 G16 B17 R18 G19 R20 G21 R22 G23 G24 5.2 Überblick B25 B26 B27 G28 B29 G30 B31 G32 5.3 Diskrete Cosinus-Transformation

Mehr

'LJLWDOH%LOGHUXQG'DWHLIRUPDWH

'LJLWDOH%LOGHUXQG'DWHLIRUPDWH 'LJLWDOH%LOGHUXQG'DWHLIRUPDWH Seminar: Simulation und Bildanalyse mit Java 07.07.2003 Seite 1 von 25 hehuvlfkw 1. Digitalisierung 2. Bilddateiformate 3. verlustfreie Datenkompression 4. JPEG Kompression

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Informationen zur Klausur Termin: 21. Februar 2013,

Mehr

Wann sind Codes eindeutig entschlüsselbar?

Wann sind Codes eindeutig entschlüsselbar? Wann sind Codes eindeutig entschlüsselbar? Definition Suffix Sei C ein Code. Ein Folge s {0, 1} heißt Suffix in C falls 1 c i, c j C : c i = c j s oder 2 c C und einen Suffix s in C: s = cs oder 3 c C

Mehr

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung

2. Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 2 Woche: Eindeutige Entschlüsselbarleit, Sätze von Kraft und McMillan, Huffmancodierung 24/ 44 Zwei Beispiele a 0

Mehr

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg Image Compression Vorlesung FH-Hagenberg SEM Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz 1 Inhalte Redundanz Error-Free Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

1 Einführung. Bildformate Analyse der LSB-Ersetzung Weitere steganographische Algorithmen. Syndromkodierung in der Steganographie

1 Einführung. Bildformate Analyse der LSB-Ersetzung Weitere steganographische Algorithmen. Syndromkodierung in der Steganographie Gliederung Einführung 1 Einführung 2 3 4 WS 2012/2013 Steganographie und Multimedia-Forensik Folie 121 Farbwahrnehmung Blau: 435,8 nm Grün: 546,1 nm Rot: 700 nm (445 nm) (535 nm) (575 nm) Empfindlichkeit

Mehr

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg Image Compression Vorlesung FH-Hagenberg SEM Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz 1 Inhalte Redundanz Channel Encoding Error-Free Compression Hufmann Coding Runlength

Mehr

Einleitung. Kapitel 1

Einleitung. Kapitel 1 Kapitel 1 Einleitung In diesem Abschnitt geben wir einen kurzen Überblick über den Inhalt der Vorlesung. Wir werden kurz die wesentlichen Probleme erläutern, die wir ansprechen wollen. Wir werden auch

Mehr

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1 Bildkompression InTh, 25, JPEG, Hak, Rur, 1 Referenzen [1] D Salomon, Data Compression, Springer, 24 [2] Prof Dr A Steffen, Kurs SU, ZHW, 1999-24 [3] G Wallace, The JPEG Still Picture Compression Standard,

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner Proseminar Datenkomprimierung Dr. U. Tamm JPEG - Kompression WS 2002/03 Torsten Zichner Inhaltsangabe: 1. Einleitung 2. JPEG Kompression 2.1. Konvertierung des Bildes in ein geeignetes Farbmodell 2.2.

Mehr

DCT: Diskrete Kosinus-Transformation

DCT: Diskrete Kosinus-Transformation DCT: Diskrete Kosinus-Transformation Kosinusfunktionen für die 1D DCT: zunehmende Frequenz entsprechende Abtastpunkte (Salomon) DCT: 8x8 2D-Transformation DCT: IDCT: effiziente Implementierung? Vorberechnung

Mehr

Independent JPEG Group. JPEG Software Tools

Independent JPEG Group. JPEG Software Tools Independent JPEG Group JPEG Software Tools cjpeg Pixelmap Bildfileformat JPEG Bildfileformat jpegtran djpeg Beiträge zu: jpegtran: Verlustfreie Transformationsfunktionen (Rotation in 90 Grad Schritten,

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 JPEG - Kompression Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 Inhaltsverzeichnis 1 Entwicklung von JPEG 2 1.1 Was heisst und was ist JPEG?................... 2

Mehr

Satz 172 Jedes vergleichsbasierte Sortierverfahren benötigt im worst-case mindestens n ld n + O(n) Vergleiche und hat damit Laufzeit Ω(n log n).

Satz 172 Jedes vergleichsbasierte Sortierverfahren benötigt im worst-case mindestens n ld n + O(n) Vergleiche und hat damit Laufzeit Ω(n log n). 2.6 Vergleichsbasierte Sortierverfahren Alle bisher betrachteten Sortierverfahren sind vergleichsbasiert, d.h. sie greifen auf Schlüssel k, k (außer in Zuweisungen) nur in Vergleichsoperationen der Form

Mehr

ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder.

ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder. Kapitel 9 Pixeldateiformate Es gibt diverse Formate, in denen die generierten Grafiken abgespeichert werden können Stellvertretend soll hier nur auf 2 Formate eingegangen werden; eines, bei dem die Pixel

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 22 (20.7.2016) Greedy Algorithmen - Datenkompression Algorithmen und Komplexität Greedy Algorithmen Greedy Algorithmen sind eine Algorithmenmethode,

Mehr

Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011

Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011 Einführung Aufgabe 3 - MPEG Tobias Reinsch 2011 Allgemeines Aufgabe 3 - MPEG Ziel der Aufgabe Kennenlernen der Bildkodierungsverfahren des MPEG Standards Praktische Umsetzung dieser Techniken mit Java

Mehr

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3

21. Greedy Algorithmen. Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 581 21. Greedy Algorithmen Aktivitätenauswahl, Fractional Knapsack Problem, Huffman Coding Cormen et al, Kap. 16.1, 16.3 Aktivitäten Auswahl 582 Koordination von Aktivitäten, die gemeinsame Resource exklusiv

Mehr

Effiziente Algorithmen und Komplexitätstheorie

Effiziente Algorithmen und Komplexitätstheorie Fakultät für Informatik Lehrstuhl 2 Vorlesung Effiziente Algorithmen und Komplexitätstheorie Sommersemester 2008 Ingo Wegener; Vertretung: Carsten Witt 7. Juli 2008 Vorlesung am 14.07. (nächste Woche):

Mehr

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 28. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen Matrizen 28. November 2007 Summe & Produkt Beispiel: Einwohnerzahlen Beispiel Addition Multiplikation Inverse Addition & Multiplikation Anwendung

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 28 (Algorithmen & Datenstrukturen) Vorlesung 22 (6.7.28) Greedy Algorithmen II (Datenkompression) Algorithmen und Komplexität Datenkompression Reduziert Größen von Files Viele Verfahren

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Video-Kompression Zusammenfassung http://www.nanocosmos.de/lietz/mtv 2009 1 Motivation: Video-Kompression Unkomprimierte Datenmengen sind zu groß! TV: 20 MB/s = 72 GB/h (720x576x2x25)

Mehr

Proseminar WS 2002/2003

Proseminar WS 2002/2003 Technische Universität Chemnitz Fakultät für Informatik Professur Theoretische Informatik Proseminar WS 2002/2003 Thema: Datenkompression Dynamisches / Adaptives Huffman-Verfahren Danny Grobe Rainer Kuhn

Mehr

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Name: Matrikel-Nr.:

Mehr

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j

D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 011 Tom Ilmanen. Musterlösung 12. a ij = v i,av j (A ist symmetrisch) = Av i,v j D-MATH, D-PHYS, D-CHEM Lineare Algebra II SS 0 Tom Ilmanen Musterlösung 2. Falls b := (v,,v n ) eine Orthonormalbasis von V ist, dann lassen sich die Komponenten von einem Vektor v = n i= t i v i bezüglich

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Untersuchung von Verfahren zur Messdatenreduktion und kompression für den Einsatz in einer Nanomessmaschine

Untersuchung von Verfahren zur Messdatenreduktion und kompression für den Einsatz in einer Nanomessmaschine Untersuchung von Verfahren zur Messdatenreduktion und kompression für den Einsatz in einer Nanomessmaschine Dipl.-Ing. T. Machleidt PD Dr.-Ing. habil. K.-H. Franke Fachgebiet Graphische Datenverarbeitung

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Gierige Algorithmen Interval Scheduling

Gierige Algorithmen Interval Scheduling Gierige Algorithmen Interval Scheduling IntervalScheduling(s,f). n length[s] 2. A {} 3. j 4. for i 2 to n do 5. if s[i] f[j] then 6. A A {i} 7. j i 8. return A Gierige Algorithmen Interval Scheduling Beweisidee:

Mehr

JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012

JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012 JPEG Seminar: Kompressionsalgorithmen Ruslan Ragimov 5. September 2012 Zusammenfassung Die allgemeinen verlustfreien Verfahren zur Datenkompression können gute Kompressionsraten für verschiedene Dateitypen

Mehr

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger

6. Komprimierung. (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Komprimierung 6. Komprimierung (Text)komprimierung ist ein Wechsel der Repräsentation von Daten, so daß sie weniger Platz brauchen Motivation: beschleunigt Plattenzugriffe oder Datenübertragungen Voraussetzung:

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Matrizen. Stefan Keppeler. 19. & 26. November Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematik I für Biologen, Geowissenschaftler und Geoökologen 19. & 26. November 2008 Definition, Summe & Produkt Transponierte Beispiel: Einwohnerzahlen Leslie-Populationsmodell Beispiel Addition Multiplikation

Mehr

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Bilddatenformate BMP Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Format: Raster Farben: 1 Bit (s/w), 4 Bit (16 Farben), 8 Bit (256 Farben), 24 Bit (16,7 Mio. Farben) Kompression: Keine (meist) oder

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität Gierige Algorithmen: Berechne Lösung schrittweise In jedem Schritt mache lokal optimale Wahl Daumenregel: Wenn optimale Lösung

Mehr

Diskrete Cosinustransformation (DCT)

Diskrete Cosinustransformation (DCT) Fachbereich Medieninformatik Hochschule Harz Diskrete Cosinustransformation (DCT) Referat Björn Wöldecke 10954 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort... 1. Methoden zur Datenreduktion...

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

Übungsblatt 5 - Musterlösung

Übungsblatt 5 - Musterlösung Universität Mannheim Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Christoph Kuhmünch, Gerald Kühne Praktische Informatik II SS 2000 Übungsblatt 5 - Musterlösung Aufgabe 1: Huffman-Codierung

Mehr

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell Inhaltsbasierte Bildsuche J.P.E.G = Joint Photographic Expert Group Informatica Feminale Universität Bremen, Aug. 2005 Maja Temerinac Albert-Ludwigs-Universität Freiburg J.P.E.G. Standard Standard zur

Mehr

JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin

JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin Referat KIM Alex Titze Angewandte Informatik FHTW-Berlin 76900504811 Einleitung JPEG Geschichte & Überblick Komprimierungsablauf Farbformat DCT (Diskrete Cosinus Transformation) Quantisierung Koeffizientenkodierung

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Proseminar. Thema: Shannon-Fano und Huffman Verfahren

Proseminar. Thema: Shannon-Fano und Huffman Verfahren Proseminar Datenkompression Thema: Shannon-Fano und Huffman Verfahren Gehalten am 27.11.2002 von Lars Donat 1. Huffman Code Bei diesem bereits 1951 von David A. Huffman veröffentlichtem Algorithmus handelt

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Darstellung von Gruppen

Darstellung von Gruppen Darstellung von Gruppen Definition Darstellung von Gruppen Sei G eine endlich erzeugte abelsche Gruppe mit Erzeugern S = (g 1,..., g k ) G k. Elemente des Kerns von ϕ S : Z k G, (m 1,..., m k ) k i=1 m

Mehr

Musterlösung: 11. Dezember 2014, 10:43. Informationstheorie und Entropiekodierung

Musterlösung: 11. Dezember 2014, 10:43. Informationstheorie und Entropiekodierung Audiotechnik II Digitale Audiotechnik: 8. Übung Prof. Dr. Stefan Weinzierl 11.12.2014 Musterlösung: 11. Dezember 2014, 10:43 Informationstheorie und Entropiekodierung Bei der Entropiekodierung werden die

Mehr

Optimalcodierung. Thema: Optimalcodierung. Ziele

Optimalcodierung. Thema: Optimalcodierung. Ziele Optimalcodierung Ziele Diese rechnerischen und experimentellen Übungen dienen der Vertiefung der Kenntnisse im Bereich der Optimalcodierung, mit der die Zeichen diskreter Quellen codiert werden können.

Mehr

Grafikformate: JPG - PNG

Grafikformate: JPG - PNG Grafikformate: JPG - PNG JPG JPG ist die Kurzform von JPEG (Joint Photographic Experts Group) Das Dateiformat nennt sich eigentlich JFIF (JPEG File Interchange Format) Spezifikation Bezeichnungen JPEG

Mehr

Erzeugendensystem und Basis

Erzeugendensystem und Basis Erzeugendensystem und Basis Definition Erzeugendensystem und Basis eines Unterraums Sei S F n 2 ein Unterraum. Eine Menge G = {g 1,..., g k } S heißt Erzeugendensystem von S, falls jedes x S als Linearkombination

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238

6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke. 6. Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 6 Woche: Lineare Codes, Syndrom, Gilbert-Varshamov Schranke 107/ 238 Erinnerung: Der Vektorraum F n 2 Schreiben {0, 1} n als F n 2 Definition

Mehr

Grundbegriffe der Informatik Tutorium 3

Grundbegriffe der Informatik Tutorium 3 Grundbegriffe der Informatik Tutorium 3 Tutorium Nr. 16 Philipp Oppermann 18. November 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Farb-Fernsehsignal (Composite FBAS)

Farb-Fernsehsignal (Composite FBAS) Farb-Fernsehsignal (Composite FBAS) Quelle: Ze-Nian Li : Script Multimedia Systems, Simon Fraser University, Canada VIDEO- Digitalisierung Gemeinsame Kodierung FBAS Farbbild- Austast- und Synchronsignal

Mehr

Grundlagen der Signalverarbeitung und Robo7k

Grundlagen der Signalverarbeitung und Robo7k MIN- Fakultät Fachbereich Informa7k Arbeitsbereich SAV/BV (KOGS) Grundlagen der Signalverarbeitung und Robo7k Teil 1: Grundlagen der Signalverarbeitung Vorlesung 5: Datenkompression Benjamin Seppke Jianwei

Mehr

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14 Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die

Mehr

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus?

Übrigens: um den Algorithmus im Unterricht einzuführen, sind keine Formeln notwendig! Warum reicht die normale ASCII-Codierung nicht aus? Huffman-Code Dieser Text ist als Hintergrundinformation ausschliesslich für die Lehrperson gedacht. Der Text ist deshalb eher technisch gehalten. Er lehnt sich an das entsprechende Kapitel in "Turing Omnibus"

Mehr

16 - Kompressionsverfahren für Texte

16 - Kompressionsverfahren für Texte 16 - Kompressionsverfahren für Texte Prof. Dr. S. Albers Kompressionsverfahren für Texte Verlustfreie Kompression Original kann perfekt rekonstruiert werden Beispiele: Huffman Code, Lauflängencodierung,

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg Vortrag am 25. Januar 200 Werner von Siemens Gymnasium Magdeburg Zeitansatz: 5h (inklusive Programmieraufgaben) Datenkompression Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Mehr

Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K.

Standbildcodierung. Dipl.-Ing. Guido Heising. Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Standbildcodierung Dipl.-Ing. Guido Heising Digitale Videotechnik, SS 02, TFH Berlin, Dipl.-Ing. G. Heising G. Heising, K. Barthel 1 Gliederung der Vorlesung Einführung in die Bildcodierung - verlustlose/verlustbehaftete

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Molekulare Bioinformatik

Molekulare Bioinformatik Molekulare Bioinformatik Wintersemester 203/204 Prof. Thomas Martinetz Institut für Neuro- und Bioinformatik Universität zu Luebeck 07.0.204 Molekulare Bioinformatik - Vorlesung 0 Wiederhohlung Die Entropie

Mehr

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen

Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen D-MATH Lineare Algebra I/II HS 2017/FS 2018 Dr. Meike Akveld Serie 17: Satz von Cayley-Hamilton & spezielle Endomorphismen 1. Sei V ein K-Vektorraum. a) Sei T End(V ). Zeigen Sie, dass die folgenden alles

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm 11 Datenkompression Einführung Grundlagen

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Wintersemester 2012/13. Dr. Tobias Lasser. 7 Fortgeschrittene Datenstrukturen

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Wintersemester 2012/13. Dr. Tobias Lasser. 7 Fortgeschrittene Datenstrukturen Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 202/3 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Grundbegriffe der Informatik Tutorium 5

Grundbegriffe der Informatik Tutorium 5 Grundbegriffe der Informatik Tutorium 5 Tutorium Nr. 32 Philipp Oppermann 13. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Übersicht. Aktivitäten-Auswahl-Problem. Greedy Algorithmen. Aktivitäten-Auswahl-Problem. Aktivitäten-Auswahl-Problem. Datenstrukturen & Algorithmen

Übersicht. Aktivitäten-Auswahl-Problem. Greedy Algorithmen. Aktivitäten-Auswahl-Problem. Aktivitäten-Auswahl-Problem. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Übersicht Greedy Algorithmen Einführung Aktivitäten-Auswahl-Problem Huffman Codierung Matthias Zwicker Universität Bern Frühling 2009 2 Greedy Algorithmen Entwurfsstrategie

Mehr