Datenkomprimierung. Lauflängenkodierung

Größe: px
Ab Seite anzeigen:

Download "Datenkomprimierung. Lauflängenkodierung"

Transkript

1 Datenkomprimierung Datenkomprimierung dient der Einsparung von Speicherplatz und von Übertragungskapazität für digitale Daten. Dabei werden Daten in neuen Datenstrukturen platzsparender Wir behandeln Komprimierungstechniken am Beispiel von Bilddaten. Bildatendatakomprimierung ist für - Bildarchivierung z.b. Satellitenbilder - Bildübertragung z.b. Bilder aus dem Internet - Mul@media- Anwendungen z.b. Bildschirmedi5erarbeiten Datenkompression nutzt Redundanz zum Komprimieren aus. Digitalbild Digitalbild redundanzvermindernde Kodierung Dekodierung Übertragung, Speicherung 1 Lauflängenkodierung Bilder mit wiederholten Grauwerten können durch Speichern von "Läufen" (runs) mit gleichen Grauwerten komprimiert werden. Grauwert1 Wiederholfaktor1 Grauwert2 Wiederholfaktor2 Bei S/W Bildern (z.b. Faxdaten) wird eine spezielle Lauflängenkodierung angewendet: Zeile # Spalte # Anfang Lauf1 Spalte # Ende Lauf1 Spalte # Anfang Lauf2 Spalte # Ende Lauf Lauflängenkodierung: ( ) ( ) ( ) 2 1!

2 Datenkomprimierung In einem diskreten Bild wird redundant kodiert, wenn 1. die Grauwerte der Pixel nicht gleichverteilt sind, und / oder 2. die Grauwerte von Pixeln korreliert sind Die Informa@onstheorie beschreibt Grenzen für minimales Kodieren von Informa@on. Redundanz einer Kodierung von Pixeln mit G Graustufen: r = b - H b = Zahl der Bits pro Pixel =! "!"# $ %# $,!* *! = " "#$%&'($ $=+ ) "#$% H = Entropie einer "Pixelquelle" = mielere Zahl von Bits, die zum Kodieren dieser Informa@onsquelle erforderlich sind Die Entropie einer Pixelquelle mit gleichwahrscheinlichen Grauwerten ist gleich der Zahl der Bits zur Kodierung der Grauwerte. 3 Huffman Kodierung Ein Huffmann- Kode erlaubt es, Nachrichten mit minimaler mielerer Länge, d.h. mit minimaler Redundanz, zu kodieren. "Nachrichten" (hier Grauwerte von Pixeln) werden mit unterschiedlichen Kodewortlängen kodiert. 1. Ordne Nachrichten nach absteigenden Wahrscheinlichkeiten. g (1) und g (2) seien die am wenigsten wahrscheinlichen Nachrichten. 2. Teile dem Kodewort von g (1) eine 1 und dem Kodewort von g (2) eine zu. 3. Fasse g (1) und g (2) durch Addi@on der Wahrscheinlichkeiten zu einer Nachricht zusammen. 4. Wiederhole Schriee 1 4, bis eine einzige Nachricht übrig bleibt. Beispiel: Nachricht Wahrschein- Kodewort Kodierungsbaum lichkeit g (5).3 g (4).25 1 g (3).25 1 g (2).1 11 g (1) Entropie: H = Mielere Kodewortlänge: !

3 Abhängigkeiten Ein Bild kann als eine Menge von Zufallsvariablen mit einer Verteilung p(x 1, x 2,..., x N ) = p(x) modelliert werden. Die exakte Verteilung ist meist unbekannt, aber Korrela@onen können häufig bes@mmt werden. Korrela@on von zwei Variablen: E[x i x j ] = c ij Korrela@onsmatrix: Kovarianz von zwei Variablen: E[(x i - m i )(x j - m j )] = v ij mit m k = Mieelwert von x k Kovarianzmatrix: E[x x T ] = c 11 c 12 c c 21 c 22 c 23 c 31 c 32 c E[(x- m) (x- m) T ] = v 11 v 12 v v 21 v 22 v 23 v 31 v 32 v Anmerkung: Unkorrelierte Variable müssen nicht sta@s@sch unabhängig sein: E[x i x j ] = p(x i x j ) = p(x i ) p(x j ) Aber: Unkorrelierte Gauss'sche Zufallsvariable sind sta@s@sch unabhängig. 5 Karhunen- Loève Transforma@on Bes@mme unkorrelierte Variable y von korrelierten Variablen x durch eine lineare Transforma@on. y = A (x - m) (auch bekannt als Hauptkomponentenanalyse ) E[y y T ] = A E[(x - m) (x - m) T ] A T = A V A T = D D ist eine Diagonalmatrix Es exis@ert stets eine orthonormale Matrix A, die eine reelle symmetrische Kovarianzmatrix V diagonalisiert. A ist die Matrix der Eigenvektoren von V, D ist die Matrix der zugehörigen Eigenwerte. x = A T y + m Rekonstruk@on von x aus y Betrachtet man x als Punkt im n- dimensionalen Euklid'schen Vektorraum, dann definiert A ein ro@ertes Koordinatensystem. 6 3!

4 Kompression and mit der Karhunen- Loève Wir nehmen an, dass die Eigenwerte λ n und die zugehörigen Eigenvektoren von A in absteigender Reihenfolge sor@ert sind: λ 1 λ 2... λ N D =! λ! 1...! λ 2! λ 3...!! x kann in einen K- dimensionalen Vektor y K, K < N transformiert werden, mit einer Transforma@onsmatrix A K, die nur die ersten K Eigenvektoren von A enthält, korrespondierend zu den K größten Eigenwerten. y K = A K (x - m) Eigenvektoren a and Eigenwerte λ sind definiert durch V a = λ a und können bes@mmt werden, indem man det [V - λi ] = löst. Zum Bes@mmen der Eigenwerte von reellen symmetrischen Matrizen gibt es spezielle Verfahren. Die angenäherte Rekonstruk@on x minimiert den mieleren quadra@schen Fehler (MSE mean square error) einer Repräsenta@on mit K Dimensionen: x! = A T K y K + m Deshalb kann y K zur (verlustbehayeten) Datenkomprimierung verwendet werden. 7 Illustra@on der Dimensionsreduk@on Mit der Karhunen- Loève- Transforma@on wird Datenkompression erreicht durch Wechseln (Drehen) des Koordinatensystems Weglassen der am wenigsten informa@ven Dimensionen Beispiel: y 2 x 2 y 1 x 2 x 1 x 1 y 2 y 1 y 1 8 4!

5 Eigenfaces (1) Turk & Pentland: Face Recognition Using Eigenfaces (1991)! Eigenfaces = Eigenvektoren der Kovarianzmatrix von normalisierten Gesichtsbildern! Beispielbilder des Eigenface-Projekts an der Rice University! 9 Eigenfaces (2) Die ersten 18 Eigenfaces (= ersten 18 Eigenvektoren) der Kovarianzmatrix von 86 Gesichtsbildern! 1 5!

6 Eigenfaces (3) Originalbilder und Rekonstruktionen aus 5 Eigenfaces! 11 Diskrete Kosinus- Transforma@on (DCT) Die Diskrete Kosinus- Transforma@on ist in Bildkompressionsverfahren verbreitet, z.b. im JPEG (Joint Photographic Expert Group) Standard. Defini@on der DCT: " $!# &="" $!#! "" = # $ '=" % &'! "# = $ &!$ &!$ " ( %& )=+" ' *=+ )*,-./%) + $1"#23,-./%* + $1##2 Inverse DCT:! "# = $ % & + $ %!$ %!$ & '' " " (% ) *=' +=' *+,-./(" + $1*#23,-./(# + $1+#2 Die DCT berechnet im Effekt die Fourier Transforma@on einer Funk@on, die bei N durch Ergänzung einer gespiegelter Kopie symmetrisch gemacht wurde. => 1. Resultat enthält keine Sinusterme 2. Keine Fehler durch periodische Fortsetzung. Eine Kompression erfolgt durch Beschränken auf niedere Frequenzen oder gröbere Kodierung höherer Frequenzen. 12 6!

7 Koeffizienten der 2D- Die Koeffizienten einer 8x8- DCT- Kosinus- Bestandteile mit Längen von Vielfachen von π. 13 Prinzip von "Baseline JPEG" (JPG Grundformat) (Quelle: Gibson et al., Digital Compression for Morgan Kaufmann 98) 8 x 8 Blöcke Kodierer FDCT Quantisierer Entropiekodierer Daten der Bildquelle tabellierte Spezifikationen tabellierte Spezifikationen komprimierte Bilddaten von RGB nach YCbCr transformieren, Farbinforma@on unterabtasten Bild in 8 x 8 Blöcke par@@onieren, von links nach rechts, von oben nach unten Diskrete Kosinus- Transforma@on (DCT) von jedem Block berechnen Koeffizienten der DCT entsprechend psychovisuellen Tabellen quan@sieren DCT Koeffizienten im Zickzack anordnen Lauflängenkodierung des Bitstroms aller Koeffizienten eines Blocks Huffman- Kodierung für Bitmuster eines Blocks 14 7!

8 YCbCr Farbmodell für JPEG Menschliche Augen sind gegenüber Luminanzschwankungen (Helligkeit) empfindlicher als gegenüber Chrominanzschwankungen (Farbe). YCbCr Farbkodierung verwendet für Chrominanz weniger Bits als für Luminanz. CCIR- 61 Schema: Y =.299 R G B "Luminanz" Cb =.1687 R G +.5 B "Blaugehalt" Cr =.5 R G B "Rotgehalt" In JPEG: 1 Cb, 1 Cr und 4 Y Werte für jedes 2 x 2 Teilbild (6 anstelle von 12 Werten) 15 Illustra@onen zur Grundform von JPEG Zerlegen eines Bildes in Blöcke Blöcke 1 2 DCT- Koeffizienten a 2 a a 1 a 3 a 63 Reihenfolge der DCT- Koeffizienten zur effizienten Lauflängenkodierung Übertragungsreihenfolge von Bildblöcken MSB LSB 16 8!

9 JPEG- komprimiertes Bild Original mit 5.8 MB JPEG- komprimiert auf 45 KB Differenzbild Standardabweichung der Luminanzwerte: 1,44 17 Probleme mit der Blockstruktur von JPEG JPEG-Kodierung mit einer Kompressionsrate von 1:7 Blockgrenzen sind erkennbar 18 9!

10 Progressives Kodieren Progressive Kodierung ermöglicht es, zuerst eine Grobversion eines Bildes und dann fortschreitende Verfeinerungen zu übertragen (angenehm für schnelle im Internet). Spektrale Auswahl 1. Übertragung: DCT- Koeffizienten a... a k1 2. Übertragung: DCT- Koeffizienten a k1... a k2 Auswahl von signifikanten Bits 1. Übertragung: Bits 7... n 1 2. Übertragung: Bits n n 2 niederfrequente Koeffizienten zuerst signifikante Bits zuerst 19 Eigenschayen: Bildrepräsenta@on als Quadbaum Jeder Knoten repräsen@ert eine rechteckige Bildfläche, z.b. durch dessen Mieelwert Jeder Knoten hat 4 Kinder, mit Ausnahme der Blaeknoten Kinder eines Knoten repräsen@eren gleichgroße Teilrechtecke Knoten können bei Bedarf weiter verfeinert werden Teilrechtecke werden entsprechend der Zerlegungsschriee adressiert Quadbaum- Struktur: Wurzel !

11 Bildkompression mit einem Quadbaum Ein vollständiger Quadbaum ein Bild mit N = 2 K x 2 K Pixeln durch K 1.33 N Knoten. Ein Bild kann komprimiert werden, - indem jeder Kindknoten nur die Differenz zum Elternknoten speichert - indem Teilbäume mit (annähernd) gleichen Werten weggelassen werden Quadbaum- Bildkompression unterstützt progressive Bildübertragung: Bilder werden mit steigender Quadbaum@efe übertragen, d.h. Bilder werden fortschreitend verfeinert Zwischenrepräsenta@onen bieten interessante Näherungsinforma@onen, z.b. zum Abruf von ähnlichen Bildern 21 11!

Grundlagen der Signalverarbeitung und Robo7k

Grundlagen der Signalverarbeitung und Robo7k MIN- Fakultät Fachbereich Informa7k Arbeitsbereich SAV/BV (KOGS) Grundlagen der Signalverarbeitung und Robo7k Teil 1: Grundlagen der Signalverarbeitung Vorlesung 5: Datenkompression Benjamin Seppke Jianwei

Mehr

Kap.4 JPEG: Bildkompression. Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist.

Kap.4 JPEG: Bildkompression. Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist. Kap.4 JPEG: Bildkompression Ziel: Gegeben sind Daten y R N. Bestimme C R N N mit C C T = I, so dass x = C y dünbesetzt ist. Originalbild y (30Kbt) Komprimiertes Bild z y(7kbt) JPEG (Joint Photographic

Mehr

Fragen und Antworten zu Teil 1 der LV "Grundlagen der Signalverarbeitung und Robo;k"

Fragen und Antworten zu Teil 1 der LV Grundlagen der Signalverarbeitung und Robo;k Fragen und Antworten zu Teil 1 der LV "Grundlagen der Signalverarbeitung und Robo;k" Die Fragen sollen bei der Nachbereitung des Stoffes nach den Vorlesungen und bei der Vorbereitung zur mündliche Prüfung

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2

Kompression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Folie 2 Kompression Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Folie 2 1 Inhalte Redundanz Channel Encoding Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

1 Einführung. Bildformate Analyse der LSB-Ersetzung Weitere steganographische Algorithmen. Syndromkodierung in der Steganographie

1 Einführung. Bildformate Analyse der LSB-Ersetzung Weitere steganographische Algorithmen. Syndromkodierung in der Steganographie Gliederung Einführung 1 Einführung 2 3 4 WS 2012/2013 Steganographie und Multimedia-Forensik Folie 121 Farbwahrnehmung Blau: 435,8 nm Grün: 546,1 nm Rot: 700 nm (445 nm) (535 nm) (575 nm) Empfindlichkeit

Mehr

Mathematische Methoden der graphischen Datenverarbeitung

Mathematische Methoden der graphischen Datenverarbeitung Teil I: Aufgaben der Bildverarbeitung: Komprimierung (compression); Mathematische Methoden der graphischen Datenverarbeitung PD Dr.(USA) Maria Charina Originalbild, 30Kbt Komprimiertes Bild, 7Kbt Teil

Mehr

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg Image Compression Vorlesung FH-Hagenberg SEM Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz 1 Inhalte Redundanz Error-Free Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg

Image Compression. Kompression. Beseitigung der unnötigen Daten... Redundanz. Vorlesung FH-Hagenberg SEM. Backfrieder-Hagenberg. Backfrieder-Hagenberg Image Compression Vorlesung FH-Hagenberg SEM Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz 1 Inhalte Redundanz Channel Encoding Error-Free Compression Hufmann Coding Runlength

Mehr

Image Compression. Vorlesung FH-Hagenberg DSB

Image Compression. Vorlesung FH-Hagenberg DSB Image Compression Vorlesung FH-Hagenberg DSB Kompression Encoder Decoder Beseitigung der unnötigen Daten... Redundanz Inhalte Redundanz Loss-less Compression Hufmann Coding Runlength Coding Lossy Compression

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner Proseminar Datenkomprimierung Dr. U. Tamm JPEG - Kompression WS 2002/03 Torsten Zichner Inhaltsangabe: 1. Einleitung 2. JPEG Kompression 2.1. Konvertierung des Bildes in ein geeignetes Farbmodell 2.2.

Mehr

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1 Bildkompression InTh, 25, JPEG, Hak, Rur, 1 Referenzen [1] D Salomon, Data Compression, Springer, 24 [2] Prof Dr A Steffen, Kurs SU, ZHW, 1999-24 [3] G Wallace, The JPEG Still Picture Compression Standard,

Mehr

Diskrete Cosinustransformation (DCT)

Diskrete Cosinustransformation (DCT) Fachbereich Medieninformatik Hochschule Harz Diskrete Cosinustransformation (DCT) Referat Björn Wöldecke 10954 Abgabe: 15.01.2007 Inhaltsverzeichnis Einleitung / Vorwort... 1. Methoden zur Datenreduktion...

Mehr

Grundlagen der Signalverarbeitung und Robo7k

Grundlagen der Signalverarbeitung und Robo7k MIN- Fakultät Fachbereich Informa7k Arbeitsbereich SAV/BV (KOGS) Grundlagen der Signalverarbeitung und Robo7k Teil 1: Grundlagen der Signalverarbeitung Appendix: Prüfungsvorbereitung H. Siegfried SAehl

Mehr

Singulärwertzerlegung

Singulärwertzerlegung LMU München Centrum für Informations- und Sprachverarbeitung WS 10-11: 13.12.2010 HS Matrixmethoden im Textmining Dozent: Prof.Dr. Klaus U. Schulz Referat von: Erzsébet Galgóczy Singulärwertzerlegung 1

Mehr

JPEG Kompression technische Realisierung

JPEG Kompression technische Realisierung Experimentalphysik V 20. Januar 2005 Schema der JPEG Kompression Farbraumkonvertierung RGB YCbCr Subsampling der Farbkomponenten Cb, Cr Zerlegung in Blöcke 8 8 2D Kosinustransformation (DCT) Quantisierung

Mehr

Mustererkennung. Merkmalsreduktion. R. Neubecker, WS 2016 / Übersicht

Mustererkennung. Merkmalsreduktion. R. Neubecker, WS 2016 / Übersicht Mustererkennung Merkmalsreduktion R. Neubecker, WS 2016 / 2017 Übersicht 2 Merkmale Principal Component Analysis: Konzept Mathematische Formulierung Anwendung Eigengesichter 1 Merkmale 3 (Zu) Viele Merkmale

Mehr

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Bilddatenformate BMP Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Format: Raster Farben: 1 Bit (s/w), 4 Bit (16 Farben), 8 Bit (256 Farben), 24 Bit (16,7 Mio. Farben) Kompression: Keine (meist) oder

Mehr

5 JPEG. 5.1 Bayer Filter. 5.2 Überblick. 5.3 Diskrete Cosinus-Transformation. 5.4 Bildmodell. 5.5 Codierung. 5.6 Übertragungsmodi

5 JPEG. 5.1 Bayer Filter. 5.2 Überblick. 5.3 Diskrete Cosinus-Transformation. 5.4 Bildmodell. 5.5 Codierung. 5.6 Übertragungsmodi 5 JPEG Bayer Filter: G01 R02 G03 R04 G05 R06 G07 R08 5.1 Bayer Filter B09 G10 B11 G12 B13 G14 B15 G16 B17 R18 G19 R20 G21 R22 G23 G24 5.2 Überblick B25 B26 B27 G28 B29 G30 B31 G32 5.3 Diskrete Cosinus-Transformation

Mehr

compressed domain image retrieval

compressed domain image retrieval Compressed domain image retrieval Christian Ott Seminar Inhaltsbasierte Bildsuche - Universität reiburg - 4. ebruar 25 4. ebruar 25, C.Ott Seite 1 Übersicht 1. Einleitung 2. JPEG 3. Merkmalsextraktion

Mehr

Verlustbehaftete Kompression. Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden)

Verlustbehaftete Kompression. Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden) Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch verlustfreier Modus vorhanden)

Mehr

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression Digitale Bildverarbeitung Bildkompression Einleitung Datenmenge für ein unkomprimiertes Bild Verwendungszweck des Bildes Bild soll weiterverarbeitet werden Bild soll archiviert werden Bild soll per E-Mail

Mehr

Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011

Einführung Aufgabe 3 - MPEG. Tobias Reinsch 2011 Einführung Aufgabe 3 - MPEG Tobias Reinsch 2011 Allgemeines Aufgabe 3 - MPEG Ziel der Aufgabe Kennenlernen der Bildkodierungsverfahren des MPEG Standards Praktische Umsetzung dieser Techniken mit Java

Mehr

'LJLWDOH%LOGHUXQG'DWHLIRUPDWH

'LJLWDOH%LOGHUXQG'DWHLIRUPDWH 'LJLWDOH%LOGHUXQG'DWHLIRUPDWH Seminar: Simulation und Bildanalyse mit Java 07.07.2003 Seite 1 von 25 hehuvlfkw 1. Digitalisierung 2. Bilddateiformate 3. verlustfreie Datenkompression 4. JPEG Kompression

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Kompressionsverfahren

Kompressionsverfahren Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Verlustlose Kompressionsalgorithmen RLC Huffman Adaptive Huffman Kodierung Arithmetische

Mehr

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell Inhaltsbasierte Bildsuche J.P.E.G = Joint Photographic Expert Group Informatica Feminale Universität Bremen, Aug. 2005 Maja Temerinac Albert-Ludwigs-Universität Freiburg J.P.E.G. Standard Standard zur

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Video-Kompression Zusammenfassung http://www.nanocosmos.de/lietz/mtv 2009 1 Motivation: Video-Kompression Unkomprimierte Datenmengen sind zu groß! TV: 20 MB/s = 72 GB/h (720x576x2x25)

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min Klausur, Analyse mehrdimensionaler Daten, WS 2010/2011, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 21.02.2011 Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte,

Mehr

JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012

JPEG. Seminar: Kompressionsalgorithmen. Ruslan Ragimov. 5. September 2012 JPEG Seminar: Kompressionsalgorithmen Ruslan Ragimov 5. September 2012 Zusammenfassung Die allgemeinen verlustfreien Verfahren zur Datenkompression können gute Kompressionsraten für verschiedene Dateitypen

Mehr

oder A = (a ij ), A =

oder A = (a ij ), A = Matrizen 1 Worum geht es in diesem Modul? Definition und Typ einer Matrix Spezielle Matrizen Rechenoperationen mit Matrizen Rang einer Matrix Rechengesetze Erwartungswert, Varianz und Kovarianz bei mehrdimensionalen

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 JPEG - Kompression Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 Inhaltsverzeichnis 1 Entwicklung von JPEG 2 1.1 Was heisst und was ist JPEG?................... 2

Mehr

DCT: Diskrete Kosinus-Transformation

DCT: Diskrete Kosinus-Transformation DCT: Diskrete Kosinus-Transformation Kosinusfunktionen für die 1D DCT: zunehmende Frequenz entsprechende Abtastpunkte (Salomon) DCT: 8x8 2D-Transformation DCT: IDCT: effiziente Implementierung? Vorberechnung

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Informationen zur Klausur Termin: 21. Februar 2013,

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin

JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin Referat KIM Alex Titze Angewandte Informatik FHTW-Berlin 76900504811 Einleitung JPEG Geschichte & Überblick Komprimierungsablauf Farbformat DCT (Diskrete Cosinus Transformation) Quantisierung Koeffizientenkodierung

Mehr

Optimalcodierung. Thema: Optimalcodierung. Ziele

Optimalcodierung. Thema: Optimalcodierung. Ziele Optimalcodierung Ziele Diese rechnerischen und experimentellen Übungen dienen der Vertiefung der Kenntnisse im Bereich der Optimalcodierung, mit der die Zeichen diskreter Quellen codiert werden können.

Mehr

Lossy Bildkompression: Techniken und Bildqualität

Lossy Bildkompression: Techniken und Bildqualität Lossy Bildkompression: Techniken und Bildqualität Brigitte Forster Zentrum Mathematik, Technische Universität München, und Institut für Biomathematik und Biometrie, Helmholtz-Zentrum München Konsensuskonferenz:

Mehr

Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003

Hauptklausur zur Vorlesung Bildverarbeitung WS 2002/2003 Name:........................................ Vorname:..................................... Matrikelnummer:.............................. Bitte Studiengang ankreuzen: Computervisualistik Informatik Hauptklausur

Mehr

Universität Trier. Fachbereich IV. Wintersemester 2004/2005. Wavelets made easy. Kapitel 2 Mehrdimensionale Wavelets und Anwendungen

Universität Trier. Fachbereich IV. Wintersemester 2004/2005. Wavelets made easy. Kapitel 2 Mehrdimensionale Wavelets und Anwendungen Universität Trier Fachbereich IV Wintersemester 2004/2005 Wavelets made easy Kapitel 2 Mehrdimensionale Wavelets und Anwendungen Thomas Queckbörner 16.11.2004 Übersicht des Kapitels: 1. Einführung 2. Zweidimensionale

Mehr

Einführung Medienforscher Aufgabe 3 - MPEG. Tobias Reinsch 2011

Einführung Medienforscher Aufgabe 3 - MPEG. Tobias Reinsch 2011 Einführung Medienforscher Tobias Reinsch 2011 Allgemeines Ziel der Aufgabe Kennenlernen der Bildkodierungsverfahren des MPEG Standards Praktische Umsetzung dieser Techniken mit Java Bearbeitungszeitraum:

Mehr

Eike Müller. Kompression-Algorithmen für Bilder. 3. Juli 2013

Eike Müller. Kompression-Algorithmen für Bilder. 3. Juli 2013 Eike Müller Kompression-Algorithmen für Bilder 3. Juli 23 Inhaltsverzeichnis Huffman-Kodierung 2. Präfixfreie Codes................................. 2.2 Huffman Code.................................. 3.3

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Informationen zur Klausur Termin: 21. Februar 2013,

Mehr

Der JPEG-Standard. Der JPEG-Standard. Der JPEG-Standard. Der JPEG-Standard. Lineare Quantisierung

Der JPEG-Standard. Der JPEG-Standard. Der JPEG-Standard. Der JPEG-Standard. Lineare Quantisierung 09.05.006 8x8 DCT Berechnungsvorschrift (horiz. Frequenz) k D DCTKoeffizienten X [l, k ] = Ck Cl x[n, m] /, für i = 0 Ci = /, für i > 0 l=3 l= l=5 D DCT Basisfunktionen Normierungsfaktoren Direkte D 8-DCT

Mehr

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :

Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 5. Juli 2011 Zunächst: PCA (Hauptkomponentenanalyse) ist eine mathematische Prozedur, die eine Anzahl von (möglicherweise korrelierten) Variablen

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 25/26 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Graphische Datenverarbeitung

Graphische Datenverarbeitung Graphische Datenverarbeitung Bildkompression & Dateiformate Prof. Dr. Elke Hergenröther Gründe für eine Kompression Unkomprimierte Rasterbilder benötigen: viel Speicherplatz hohe Bandbreite zur Übertragung

Mehr

Theoretische Grundlagen der Informatik. Vorlesung am 31. Januar INSTITUT FÜR THEORETISCHE INFORMATIK

Theoretische Grundlagen der Informatik. Vorlesung am 31. Januar INSTITUT FÜR THEORETISCHE INFORMATIK Theoretische Grundlagen der Informatik 3..29 Torsten Ueckerdt - Theoretische Grundlagen der Informatik KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu Thema dieses Kapitels Informationstheorie

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Das Ziel einer Transformationscodierung ist, die Korrelation zwischen den Pixeln zu

Das Ziel einer Transformationscodierung ist, die Korrelation zwischen den Pixeln zu 4. Methoden zur Bildcodierung der JPEG-Standard Das Ziel einer Transformationscodierung ist, die Korrelation zwischen den Pixeln zu reduzieren. Man transformiert und dhat mit den transformierten Entwicklungskoeffizienten

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Bildkompression am Beispiel JPEG

Bildkompression am Beispiel JPEG Bildkompression am Beispiel JPEG Medientechnologie IL Andreas Unterweger Vertiefung Medieninformatik Studiengang ITS FH Salzburg Sommersemester 2014 Andreas Unterweger (FH Salzburg) Bildkompression am

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Latent Semantic Analysis. Christian Ebert & Fritz Hamm. Lineare Algebra IV: Diagonalisierungen. Latent Semantic. Analysis/Indexing. 12.

Latent Semantic Analysis. Christian Ebert & Fritz Hamm. Lineare Algebra IV: Diagonalisierungen. Latent Semantic. Analysis/Indexing. 12. 12. Januar 2012 Eigenwerte & Diagonalisierungen I Sei V ein K-Vektorraum und A ein Endomorphismus/eine n n Matrix über K {R, C} Erinnerung 1 Gilt A x = λ x, x 0 V, λ K, heißt λ Eigenwert und x Eigenvektor

Mehr

Klausurähnliche Aufgaben

Klausurähnliche Aufgaben Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder.

ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder. Kapitel 9 Pixeldateiformate Es gibt diverse Formate, in denen die generierten Grafiken abgespeichert werden können Stellvertretend soll hier nur auf 2 Formate eingegangen werden; eines, bei dem die Pixel

Mehr

Grafikformate: JPG - PNG

Grafikformate: JPG - PNG Grafikformate: JPG - PNG JPG JPG ist die Kurzform von JPEG (Joint Photographic Experts Group) Das Dateiformat nennt sich eigentlich JFIF (JPEG File Interchange Format) Spezifikation Bezeichnungen JPEG

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 28/29 Übungsaufgaben Serie 4: Lineare Unabhängigkeit, Matrizen, Determinanten, LGS Prüfen Sie, ob die folgenden

Mehr

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Name: Matrikel-Nr.:

Mehr

Einführungsvortrag zum Proseminar Datenkompression im Wintersemester 2003/2004

Einführungsvortrag zum Proseminar Datenkompression im Wintersemester 2003/2004 Einführungsvortrag zum Proseminar Datenkompression im Wintersemester 2003/2004 Dr. Ralf Schlüter Lehrstuhl für Informatik VI RWTH Aachen 52056 Aachen schlueter@cs.rwth-aachen.de Ralf Schlüter Einführungsvortrag

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition (Singulärwertzerlegung) Seminar Robust Design Vitali Müller 2 Inhalt Was ist die SVD? Interpretationen Anwendungsmöglichkeiten Berechnung 3 Datenmatrix Experiment mit n Objekten

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Prüfung Lineare Algebra , B := ( ), C := 1 1 0

Prüfung Lineare Algebra , B := ( ), C := 1 1 0 1. Es seien 1 0 2 0 0 1 3 0 A :=, B := ( 1 2 3 4 ), C := 1 1 0 0 1 0. 0 0 0 1 0 0 1 0 0 0 0 Welche der folgenden Aussagen ist richtig? A. A und C haben Stufenform, B nicht. B. A und B haben Stufenform,

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 7 (SS 2011) Abgabetermin: Donnerstag, 2. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Eigenvektoren

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF

TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS. Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF TECHNISCHE UNIVERSITÄT MÜNCHEN FERIENKURS Lineare Algebra FLORIAN NIEDERREITER & AILEEN WOLF 07.03.2016-11.03.2016 Inhaltsverzeichnis Inhaltsverzeichnis 1 Darstellungsmatrizen 2 2 Diagonalisierbarkeit

Mehr

Invertierung, Separierbarkeit

Invertierung, Separierbarkeit Invertierung, Separierbarkeit DCT Gleichung: (Typ 2) Coder: N 1 y(k )= n=0 x(n) cos( π N K (n+05)) K=0,, N-1 Dh wir haben N Gleichungen, eine für jedes k, also auch N Summen Weiterhin: N Eingangswerte

Mehr

Datenkompressionsverfahren für mobile Endgeräte

Datenkompressionsverfahren für mobile Endgeräte Datenkompressionsverfahren für mobile Endgeräte Dr.-Ing. Michael Thierschmann IfKom-Forum 2002 15. März 2002 Übersicht Firmenprofil Grundlagen der Datenkompression Kompressionsverfahren Kodierungstechniken

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

6. Licht, Farbe und Bilder

6. Licht, Farbe und Bilder 6. Licht, Farbe und Bilder 6.1 Licht und Farbe: Physikalische und physiologische Aspekte 6.2 Farbmodelle 6.3 Raster-Bilddatenformate 6.4 Verlustbehaftete Kompression bei Bildern 6.5 Weiterentwicklungen

Mehr

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg Vortrag am 25. Januar 200 Werner von Siemens Gymnasium Magdeburg Zeitansatz: 5h (inklusive Programmieraufgaben) Datenkompression Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Mehr

Lineare Approximation

Lineare Approximation Lineare Approximation Yasemin Hafizogullari 9. Januar 2009 Yasemin Hafizogullari () Lineare Approximation 9. Januar 2009 1 / 49 Übersicht 1 Erster Abschnitt: Lineare Approximation in beliebiger orthonormal

Mehr

Übung zur Vorlesung. Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider

Übung zur Vorlesung. Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider Übung zur Vorlesung Digitale Medien Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider Wintersemester 2015/16 JPEG Kompression 2 JPEG Kompression Konvertierung von 8x8 Bildblöcken in

Mehr

Gliederung: 1) Einleitung 2) Oberflächenvergleich 3) Objekterkennung

Gliederung: 1) Einleitung 2) Oberflächenvergleich 3) Objekterkennung Using Spin Images for Efficient Object Recogition in Cluttered 3D Scenes (Effiziente Objekterkennung von ungeordneten 3D Szenen mithilfe von Spin Images) Gliederung: 1) Einleitung 2) Oberflächenvergleich

Mehr

Einführung Proseminar Datenkompression Wintersemester 2017/2018

Einführung Proseminar Datenkompression Wintersemester 2017/2018 Einführung Proseminar Datenkompression Wintersemester 2017/2018 Dr. Ralf Schlüter Lehrstuhl für Informatik 6 RWTH Aachen 52056 Aachen mailto:schlueter@cs.rwth-aachen.de R. Schlüter: Proseminar Datenkompression

Mehr