Singular Value Decomposition
|
|
|
- Harald Fürst
- vor 7 Jahren
- Abrufe
Transkript
1 Singular Value Decomposition (Singulärwertzerlegung) Seminar Robust Design Vitali Müller
2 2 Inhalt Was ist die SVD? Interpretationen Anwendungsmöglichkeiten Berechnung
3 3 Datenmatrix Experiment mit n Objekten und m Attributen ergibt n m-matrix Beispiel: Umfrage, 40 Teilnehmer beurteilen 10 Weine geben jeweils Note von 1 (schlecht) bis 10 (gut) W1 W2 W10 T T T T meist n>>m oft n , m 100 T T
4 4 Definition Zerlegung der n m-matrix A: A = USV T A = U S V T mit S n m-matrix mit absteigend geordneten Singulärwerten von A auf fder Diagonale, sonst 0 Spalten von U (n n) und V (m m) enthalten die Singulärvektoren von A und bilden Orthonormalbasen U und V sind also orthogonal (UU T = I, VV T = I)
5 5 Singulärwerte und -vektoren Singulärwerte: Wurzeln der Eigenwerte von A T A Singulärvektoren: Eigenvektoren von A T A (hier Spalten von U) Eigenvektoren von AA T (hier Spalten von V)
6 6 Thin SVD m+1-te bis n-te Spalte von U nicht von Bedeutung, da sie mit 0 multipliziert werden (U S) wenn Rang(A)=r, bleiben nur r Spalten von U und V übrig, da es dann nur r Singulärwerte ungleich 0 gibt diese verkürzte Schreibweise wird thin SVD genannt A = U S V T In der Praxis meistens m=r, da durch Messfehler Attribute fast nie ganz linear abhängig sind
7 7 Normalisierung Messwerte sollten realistische bzw. vergleichbare Größen aufweisen Beispiel: Gewicht und Größe bei Menschen korreliert aber: wenn das Gewicht in Gramm und die Größe in Kilometern angegeben wird, erscheint das Gewicht viel wichtiger ohne Vorkenntnisse
8 8 Normalisierung meist weiß man aber nicht, was realistisch ist Vorgehen deswegen: Annahme: alle Attribute sind gleich wichtig man skaliert alle Einträge (spaltenweise) auf eine ähnliche Größe z.b. indem man jeden Wert einer Spalte durch die Standardabweichung der Spalte dividiert außerdem Zentrierung der Werte vorteilhaft: durch Subtraktion des Mittelwerts einer Spalte von allen Einträgen dieser
9 9 Interpretationen der SVD Aufschlüsselung der Einflussfaktoren oder Prozesse hinter den Daten geometrische Interpretation: Objekte als geometrische Interpretation: Objekte als Elemente eines neuen Vektorraums
10 10 Einflussfaktoren Zeilen von V T (Spalten von V) können als Einflussfaktoren aufgefasst werden, die den Daten zugrunde liegen m (sie definieren neue Achsen im R ) Zeilen von U als Koordinaten der Objekte bzgl. dieser Achsen
11 11 Einflussfaktoren: Beispiel Betrachtung der ersten zwei neuen Dimensionen beim Weintest ergibt folgendes Bild Punkte entsprechen den Testpersonen (Objekten)
12 12 Einflussfaktoren: Beispiel Aber was bedeuten diese Dimensionen? füge künstliche Objekte mit extremen Werten hinzu: ( ) (jemand, der jeden Wein sehr gut findet)
13 13 Einflussfaktoren: Beispiel Aber was bedeuten diese Dimensionen? füge künstliche Objekte mit extremen Werten hinzu: (1 1 1) (jemand, der jeden Wein sehr schlecht findet)
14 14 Einflussfaktoren: Beispiel Weitere Möglichkeit für künstliche Objekte: jemand, der Rotwein sehr mag, aber Weißwein gar nicht: ( )
15 15 Einflussfaktoren: Beispiel Weitere Möglichkeit für künstliche Objekte: jemand, der Rotwein sehr mag, aber Weißwein gar nicht: ( ) und umgekehrt: ( )
16 16 Einflussfaktoren: Beispiel offensichtliche Ergebnisse: erste neue Dimension U1: Mögen von Wein überhaupt (links: mag Wein, rechts: mag keinen Wein) U2: Präferenz für Rotwein (oben) oder für Weißwein Folgerung aus der Dreiecksgestalt: je weniger jemand Wein mag, desto eher hat er eine Vorliebe für Rot- oder Weißwein so kann man bis zu 3 Dimensionen auf einmal graphisch untersuchen aber es ist oft nicht so leicht, Faktoren zu deuten
17 17 geometrische Interpretation Spalten von V T m bilden eine Orthonormalbasis des (da V orthogonal) Zeilen von U als Koordinaten bzgl. dieser Basis Einträge von S als Streckungsfaktoren für die einzelnen Achsen da die Singulärwerte in S absteigend: meiste Variation in der 1. Dimension
18 18 Drehung / Skalierung m-dimensionale Einheitskugel wird durch V T gedreht und durch S skaliert) passt dann über die Daten Vorteil der Normalisierung: Daten bilden schon in etwa eine Einheitskugel um 0 Drehung/Skalierung konzentriert sich nur auf die Verteilung der Objekte in die jeweiligen Richtungen
19 19 Drehung / Skalierung: Spezialfall Daten scheinen m-dimensional zu sein, sind aber nur eine r-dimensionale Mannigfaltigkeit erkennbar, da weniger neue Koordinaten gebraucht werden, um die Objekte zu beschreiben Beispiel: Datenpunkte liegen auf einer Geraden, es werden aber beide Koordinaten genutzt nach SVD: nur noch Ausbreitung entlang der ersten Dimensioni
20 20 Skalarprodukte, Korrelation man betrachtet die Datenpunkte als Vektoren relative Richtung zweier Vektoren und damit ihr Skalarprodukt geben Auskunft über ihre Korrelation: ungefähr die selbe Richtung bedeutet starke Korrelation und großes positives Skalarprodukt ungefähr entgegengesetzte Richtung: starke negative Korrelation und großes negatives Skalarprodukt Richtungen ungefähr orthogonal: schwache Korrelation und Skalarprodukt nahe bei 0
21 21 Skalarprodukte, Korrelation Objekte, die mit vielen anderen unkorreliert sind, haben kleine Skalarprodukte mit diesen aber: wegen n>>m gibt es nicht genug orthogonale Richtungen einzige Möglichkeit für ein kleines Skalarprodukt: eine Lage nah beim Ursprung, Objekte, die mit vielen anderen korreliert sind, zeigen in viele Richtungen, sind also kurz sie liegen also auch nah hbeim Ursprung Objekte, die nur mit einigen anderen korreliert sind: liegen meist weit vom Ursprung entfernt
22 22 Skalarprodukte, Korrelation Objekte, die mit fast keinen oder mit sehr vielen anderen korreliert sind, sind weniger interessant Sortierung nach Abstand vom Ursprung entspricht also der Sortierung nach Interesse für weitere Untersuchungen Im Beispiel würde man also zunächst die Objekte in der Nähe der Ecken des Dreiecks untersuchen
23 23 A als Summe überlagernder Prozesse A = USV T a i,j = u i,1 s 1,1 v j,1 + u i,2 s 2,2 v j,2 + + u i,m s m,m v j,m Einträge von A jeweils Summe von m Produkten A ergibt sich durch Überlagerung g einzelner Prozesse
24 24 Anwendungen der SVD Auswahl von Daten zur weiteren Analyse Datenkompression Untersuchung von Korrelationen zwischen Objekten und zwischen Attributen Clustering
25 25 Auswahl von Daten Im Wesentlichen 2 Gründe, Daten wegzulassen: man hält sie für Störungen (noise) man will die Prozesse dahinter nicht modellieren (z.b. weil sie vernachlässigbar sind)
26 26 Denoising: Beispiel 2 perfekt korrelierte Attribute SVD würde wirkliche Dimension der Daten erkennen durch Störungen auch noch nach SVD 2-dimensional Streuung in dieser Dimension aber nicht so groß, da keine wirkliche Struktur vorhanden
27 27 Denoising durch Störungen kann die Dimension eines Datensatzes deutlich höher erscheinen als sie in Wirklichkeit ist Größe der Singulärwerte gibt Auskunft über Streuung in der jeweiligen Dimension (Streckungsfaktoren) Singulärwerte absteigend geordnet, also beinhalten die letzten Dimensionen am ehesten Störungen man behält nur die ersten k Dimensionen und lässt den Rest weg
28 28 Denoising: Wahl von k eine der Möglichkeiten: Singulärwerte plotten (hier logarithmisch) nach einer Abflachung oder einem Knick suchen mögliche Entscheidung hier: k=2 (mit Abstand die größten Singulärwerte) k=4 (danach Absenkung) k=7 (so wie bei 4) subjektive Entscheidung!
29 29 Datenkompression man kann aber auch bewusst Daten weglassen, die keine Störungen sind, um Speicherplatz zu sparen da die ersten Dimensionen den größten Informationsgehalt haben, behält man diese
30 30 Datenkompression k Dimensionen behalten bedeutet dabei konkret: (k+1)-te bis m-te Spalte von U gleich 0 setzen U k Diagonaleinträge von S ab dem (k+1)-ten 0 setzen S k (man speichert nur die k ersten Singulärwerte) (k+1)-te bis m-te Zeile von V T gleich 0 setzen V k T A =U T k k S k V kt Approximation für A Rang von A k ist k A k ist sogar die beste Approximation für A mit Rang k bzgl. der Spektral- und der Frobeniusnorm
31 31 Datenkompression Speicherung von U k, V k und der ersten k Singulärwerte statt A nutzbar zum Sparen von Speicherplatz bei n n-matrix: U k und V k sind n k-matrizen 2nk Einträge gegenüber n² bei A Ersparnis bei k<n/2 um den Faktor n/2k Anwendung z.b. bei der Speicherung von Bildern: Bild als Matrix Einträge entsprechen Farben der einzelnen Pixel (als Zahlen kodiert)
32 32 Datenkompression bei Bildern Original (400x400) Approximation durch SVD mit k=200
33 33 Datenkompression bei Bildern Original (400x400) Approximation durch SVD mit k=150
34 34 Datenkompression bei Bildern Original (400x400) Approximation durch SVD mit k=100
35 35 Datenkompression bei Bildern Original (400x400) Approximation durch SVD mit k=50
36 36 Datenkompression bei Bildern Original (400x400) Approximation durch SVD mit k=5
37 37 Datenkompression bei Bildern Bilder wurden bearbeitet mit einer Matlab-Routine von utenti.lycos.it/matlab it/matlab Aufruf: out=imcompr( Input.bmp,Rang, Output.bmp'); mit Rang = Anzahl der zu benutzenden Singulärwerte
38 38 Korrelationsmatrizen Untersuchung von Beziehungen zwischen Objekten: Korrelationsmatrix i AA T zwischen Attributen: Korrelationsmatrix A T A
39 39 Korrelationsmatrizen Beispiel: , , ,4 3 6 A = AA T = ,1 02 0,2 06 0,6-0, ,21 Objekte 1 und 2 korreliert, 1 und 3 negativ korreliert, 4 itk ist kaum mit itden anderen Objkt Objekten korreliert Vergleich von A k A kt mit AA T hilft bei der Unterscheidung zwischen Beziehungen, die durch die ersten k Prozesse bedingt werden und denen, die durch die weggelassenen Prozesse verursacht werden
40 40 Clustering Ziel: Zusammenfassung von ähnlichen Objekten in Gruppen Möglichkeiten der Auffassung von Ähnlichkeit: Euklidische Distanz Kosinus-Ähnlichkeit: misst die Korrelation (Winkel) Untersuchung der Ähnlichkeit der Objekte nach Anwendung der SVD und Denoising (Zeilen von U) leichter als davor (Zeilen von A), da Dimension deutlich hkleiner im Folgenden zwei von vielen Clustering-Verfahren
41 41 Clustering k-means-algorithmus zufällige Auswahl von k Clusterzentren Zuordnung der Objekte zum jeweils nächsten in euklidischer Distanz Neuberechnung der Clusterzentren (z.b. Mittelwerte der Koordinaten in jeder Dimension) neue Zuordnung der Objekte usw. bis sich nichts mehr ändert
42 42 Clustering Anderer Ansatz : 45 -Kegel um Achsen bilden Cluster (1 oder 2 pro Achse) jedes Cluster enthält Vektoren, die mit einer bestimmten Achse am stärksten korrelieren Kosinus-Ähnlichkeit gegeben
43 43 Berechnung der SVD direkte Berechnung der Eigenwerte und vektoren von A T A numerisch nicht sinnvoll viele andere Algorithmen Komplexität der SVD im Allgemeinen: n²m+nm² da m meist viel kleiner als n kann man annehmen: O(n²m) in viele Softwarepakete integriert in Matlab: [U,S,V]=svd(A)
44 44 SVD Aktualisieren A bleibt gleich groß, aber einige Werte ändern sich: lässt sich proportional zu n neu berechnen, wenn die Änderungen klein sind A bekommt eine zusätzliche Zeile oder Spalte: (z.b. künstliches Objekt oder neues Experiment) man benutzt die Gleichung U=AVS -1,um die neue Zeile von U zu berechnen (Umformung von A = USV T mit V -1 =V T ) analog für V schnell zu berechnen, aber Orthogonalität geht verloren
45 45 Zusammenfassung wichtige Anwendungen der SVD: Analyse von großen Datenmengen direkt ( Interpretation als Einflussfaktoren) indirekt durch Verbesserung/Erleichterung anderer Verfahren: Clustering Korrelationsmatrizen Filterung von Störungen in den Daten (Denoising) Datenkompression (z.b. bei Bildern)
Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010
Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und
DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )
Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon
Vektorräume und Rang einer Matrix
Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung
Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?
1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2
Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:
Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise
Hauptkomponentenanalyse PCA
Hauptkoponentenanalyse PCA Die Hauptkoponentenanalyse (Principal Coponent Analysis, PCA) ist eine Methode zur linearen Transforation der Variablen, so dass: öglichst wenige neue Variablen die relevante
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
1.9 Eigenwerte und Eigenvektoren
.9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..
Lineare Algebra und Geometrie für Ingenieure
Lineare Algebra und Geometrie für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VER^G Inhaltsverzeichnis MENGEN 1 Grundbegriffe 13
Anwendungen der Linearen Algebra
Anwendungen der Linearen Algebra mit MATLAB Bearbeitet von Günter M. Gramlich 1. Auflage 4. Buch. 179 S. Hardcover ISBN 978 3 446 22655 5 Format (B x L): 14,5 x 21 cm Gewicht: 265 g Weitere Fachgebiete
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Principal Component Analysis (PCA)
Principal Component Analysis (PCA) Motivation: Klassifikation mit der PCA Berechnung der Hauptkomponenten Theoretische Hintergründe Anwendungsbeispiel: Klassifikation von Gesichtern Weiterführende Bemerkungen
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
4.4. Rang und Inversion einer Matrix
44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert
Die Lineare Algebra-Methode. Mahir Kilic
Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze
Vektorgeometrie - Teil 1
Vektorgeometrie - Teil 1 MNprofil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. März 2016 Inhaltsverzeichnis 1 Einführung & die analytische Darstellung der
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
6 Symmetrische Matrizen und quadratische Formen
Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische
MC-Serie 11: Eigenwerte
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung
2 Euklidische Vektorräume
Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,
Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011
Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h
Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64
1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung
Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,
4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung
4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax
WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch
Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Homogenität Assoziativgesetz A (B 1 + B 2 ) = A B 1 + A B 2 Distributivgesetz 1 (A 1 + A 2 ) B = A 1 B + A 2 B Distributivgesetz 2
1. Formatbedingungen der Matrixoperationen Die Addition (Subtraktion) A ± B verlangt gleiches Format der Operanden A und B. Das Ergebnis hat das Format der Operanden. Skalarmultiplikation λa: Es gibt keine
Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:
Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es
Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung
Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter
Jürgen Hausen Lineare Algebra I
Jürgen Hausen Lineare Algebra I 2. korrigierte Auflage Shaker Verlag Aachen 2009 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 5: Skalarprodukt 5.1 Inhalte Didaktik der Linearen
Faktorenanalyse. 1. Grundlegende Verfahren. Bacher, SoSe2007
Faktorenanalyse Bacher, SoSe2007 1. Grundlegende Verfahren explorative FA (EXFA): Für eine Menge von Variablen/Items werden zugrunde liegende gemeinsame (latente) Dimensionen/Faktoren gesucht, die Faktorstruktur
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
8 Lineare Abbildungen
80 8 Lineare Abbildungen In diesem Kapitel untersuchen wir lineare Abbildungen von R n nach R m wie zum Beispiel Spiegelungen, Drehungen, Streckungen und Orthogonalprojektionen in R 2 und R 3 Man nennt
Clustering Seminar für Statistik
Clustering Markus Kalisch 03.12.2014 1 Ziel von Clustering Finde Gruppen, sodas Elemente innerhalb der gleichen Gruppe möglichst ähnlich sind und Elemente von verschiedenen Gruppen möglichst verschieden
Statistik. Jan Müller
Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Multivariate Statistik
Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)
Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen
Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:
Mathematik 1, Teil B. Inhalt:
FH Emden-Leer Fachb. Technik, Abt. Elektrotechnik u. Informatik Prof. Dr. J. Wiebe www.et-inf.fho-emden.de/~wiebe Mathematik 1, Teil B Inhalt: 1.) Grundbegriffe der Mengenlehre 2.) Matrizen, Determinanten
Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls
Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
6. Faktorenanalyse (FA) von Tests
6. Faktorenanalyse (FA) von Tests 1 6. Faktorenanalyse (FA) von Tests 1 6.1. Grundzüge der FA nach der Haupkomponentenmethode (PCA) mit anschliessender VARIMAX-Rotation:... 2 6.2. Die Matrizen der FA...
2 Die Darstellung linearer Abbildungen durch Matrizen
2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )
Eine zweidimensionale Stichprobe
Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,
Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11
Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Vektoren und Matrizen
Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,
geschlossene Schachtel mit einem kleinen Loch
Kameramodellierung Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt
Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:
Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben
Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.
Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare
& sind die Vektorkomponenten von und sind die Vektorkoordinaten von. A x. a) Der Betrag eines Vektors
Einführu hnung Was ist ein Vektor? In Bereichen der Naturwissenschaften treten Größen auf, die nicht nur durch eine Zahlenangabe dargestellt werden können, wie Kraft oder Geschwindigkeit. Zur vollständigen
Kapitel IR:III (Fortsetzung)
Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
Oktaeder. Bernhard Möller. 22. Dezember 2010
Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben
00. Einiges zum Vektorraum R n
00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen
KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:
KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand
Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17
Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),
Bildverarbeitung Herbstsemester 2012. Kanten und Ecken
Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector
Grundlagen der Computer-Tomographie
Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
Vektoren. 2.1 Darstellung. Kapitel Subtraktion und Addition
Kapitel 2 Vektoren In diesem Kapitel werden wir im wesentlichen die verschiedenen Formen der Darstellung von Vektoren in MatLab sowie Verknüpfungen zwischen Vektoren betrachten. In letzterem Punkt ist
Erinnerung/Zusammenfassung zu Abbildungsmatrizen
Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin ([email protected]) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend
3.3 Klassifikation quadratischer Formen auf R n
3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen
Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,
Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
Kapitel 12. Lineare Abbildungen und Matrizen
Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt
OPERATIONS-RESEARCH (OR)
OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:
Lineare Algebra II 5. Übungsblatt
Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,
KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008
KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch
Einführung in die Vektor- und Matrizenrechnung. Matrizen
Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:
Statistische Methoden
Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante
Computer Vision SS 2011. Skript
Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie
Kapitel 17. Determinanten
Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n
Hans Walser, [20090509a] Wurzeln aus Matrizen
Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn
4.4 Orthogonalisierungsverfahren und die QR-Zerlegung
4.4 Orthogonalisierungsverfahren und die QR-Zerlegung Die Zerlegung einer regulären Matrix A R n n in die beiden Dreiecksmatrizen L und R basiert auf der Elimination mit Frobeniusmatrizen, d.h. R = FA,
Kartographische Visualisierung
Kartographische Visualisierung Kartenmodellierung Modellierung von Karten Ziel der Kartenmodellierung: Geodaten angemessen abbilden (repräsentieren) Informationen mit der Karte vermitteln (präsentieren).
Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)
Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff
Seminar zum Thema Künstliche Intelligenz:
Wolfgang Ginolas Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 Wolfgang Ginolas 1 Beispiel Was ist eine Clusteranalyse Ein einfacher Algorithmus 2 bei verschieden
Eigenwerte und Eigenvektoren
Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen
KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG
KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter
Formelsammlung Analytische Geometrie
Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
Engineering Design via Surrogate Modelling Sampling Plans
Engineering Design via Surrogate Modelling Sampling Plans Lisa Weber Universität Trier 01.06.2011 L. Weber (Universität Trier) Surrogate Models - Seminar Numerik 11 01.06.2011 1 / 34 Inhaltsverzeichnis
Seminararbeit für das SE Reine Mathematik- Graphentheorie
Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis
Jürgen Roth Didaktik der Linearen Algebra & Analytischen Geometrie
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 3: Modellieren & Angewandte Mathematik 3.1 Inhalte
Lehrskript Mathematik Q12 Analytische Geometrie
Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium
Lineare Abbildungen. Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls. d.h.
Lineare Abbildungen Es seien V und W Vektorräume über einem Körper K. Eine Abbildung f : V W heißt linear oder Homomorphismus, falls (1) u, v V : f( u + v) = f( u) + f( v). (2) v V α K : f(α v) = αf( v).
Schulinternes Curriculum Mathematik Sekundarstufe II/Lk. Stand: November 2011
Schulinternes Curriculum Mathematik Sekundarstufe II/Lk Stand: November 2011 Bemerkungen: - Die angegebenen Seitenzahlen beziehen sich auf das eingeführt Lehrwerk Lambacher-Schweizer Leistungskurs aus
Zusammenhänge zwischen metrischen Merkmalen
Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl
2 Geradengleichungen in Parameterform. Länge und Skalarprodukt
2 Geradengleichungen in Parameterform. Länge und Skalarprodukt Jörn Loviscach Versionsstand: 19. März 2011, 15:33 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:
