geschlossene Schachtel mit einem kleinen Loch

Größe: px
Ab Seite anzeigen:

Download "geschlossene Schachtel mit einem kleinen Loch"

Transkript

1 Kameramodellierung

2 Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt auf der Bildebene Kamerazentrum: der ideale Schnittpunkt Kamerakonstante: Abstand vom Projektionszentrum zur Bildebene Bildebene

3 Lochkamera Eigenschaften der Abbildung geradentreu: Gerade werden auf Gerade abgebildet die Strahlen durch alle Punkte einer Geraden bilden eine Ebene nicht längentreu: Längen(verhältnisse) gehen verloren der Massstab ist umgekehrt proportional zur Entfernung nicht winkeltreu: Winkel zwischen Geraden ändern sich folgt aus den beiden anderen - warum?

4 Lochkamera Fluchtpunkt Fluchtpunkte parallele Gerade werden auf nicht parallele abgebildet die Bilder aller parallelen Geraden schneiden sich in einem Fluchtpunkt der Fluchtpunkt ist das Bild des (gemeinsamen) Fernpunkts paralleler Geraden jeder Raumrichtung entspricht genau ein Fluchtpunkt

5 Lochkamera Fluchtgeraden analog haben alle parallelen Ebenen im Raum jeweils eine gemeinsame Ferngerade die Abbildungsstrahlen durch eine Ferngerade bilden eine dieser Ebenen, und bilden die Ferngerade auf eine Fluchtgerade ab sind eine Gerade und eine Ebene parallel, so liegt der Fluchtpunkt der Geraden auf der Fluchtgeraden der Ebene

6 Perspektivprojektion Wahl des Kamerakoordinatensystems Loch (Brennpunkt) im Ursprung Bildebene normal zur z-achse (z -Achse = Hauptachse) Bildebene vor dem Brennpunkt die physikalisch korrekte Stellung ist äquivalent (Bildebene hinter dem Brennpunkt, Kamerakonstante -f)

7 Perspektivprojektion Abbildung Strahl durch Objektpunkt und Brennpunkt schneidet die Bildebene Bildpunkt aus ähnlichen Dreiecken (X, Y, Z) f X Z,fY Z,f 2D Koordinaten in der Bildebene (Brennpunkt im Ursprung) x = f X Z,fY Z

8 Projektionsmatrix projektive Darstellung in euklidischen Koordinaten ist die Projektion nicht-linear (division durch Z) in homogenen Koordinaten 2 f x = 40 f x = 2 f 4 Normalisierung 2 3 fx 4fY 5 Z f 3 5 I 0 X apple fx/z fy/z X Y fx 7 4Z 5 = 4fY 5 Z

9 Projektionsmatrix Innere Orientierung (Übergang auf Bildkoordinaten) Skalierung von Einheit des Weltkoordinatensystems in Pixel (Einheit des Bildkoordinatensystems) Pixelgrösse in Welteinheiten m x m y Pixel sind üblicherweise quadratisch, mx=my x = 2 4m x m y 3 2 f 5 4 f 3 5 I 0 X = 2 4c x c y 3 5 I 0 X pixel pixel / meter meter meter

10 Projektionsmatrix Innere Orientierung (Übergang auf Bildkoordinaten) Translation (Verschiebung) vom Hauptpunkt zum Ursprung des Bildkoordinatensystems 2 3 c x x H x = 4 c y y H 5 I 0 X Scherung des Bildkoordinatensystems x = yimg 2 3 c x s x H 4 c y y H 5 I 0 X = K I 0 X ycam x H x img x cam (X, Y, Z) c x X Z + sy Z + x H,c y Y Z + y H

11 Projektionsmatrix Äussere Orientierung Annahme bisher: Kamera liegt im Ursprung des 3D Weltkoordinatensystems, Blickrichtung ist die z-achse normalerweise nicht der Fall 3D-Punkt muss zuerst entsprechend verschoben und gedreht werden

12 Projektionsmatrix Äussere Orientierung Anwendung der entsprechenden Transformationen x = K I 0 RTX = K R RX 0 X x = PX x = PX projektives Gleichheitszeichen : das gleiche Objekt, d.h. gleich bis auf einen konstanten Faktor R = apple R 0 0 > T = Anmerkung: die Kameraposition in Weltkoordinaten ist der Nullraum der Projektionsmatrix PX 0 = X Y Z

13 Projektionsmatrix Zusammenfassung Kollinearität (Abbildung mit Lochkamera) x = PX Freiheitsgrade 2 Matrixelemente - unbestimmter Massstab 5 innere Orientierung + 6 äussere Orientierung Perspektivprojektion ist nicht umkehrbar eine Dimension (Tiefe) geht verloren Rekonstruktion des Abbildungsstrahls x = KR X e = X 0 + KRX 0 apple X e (KR) x

14 Projektionsmatrix Zusammenfassung Kollinearitätsgleichungen in euklidischen Koordinaten x = p X + p 2 Y + p 3 Z + p 4 p 3 X + p 32 Y + p 33 Z + p 34 y = p 2X + p 22 Y + p 23 Z + p 24 p 3 X + p 32 Y + p 33 Z + p 34 ohne Scherung und Massstabsunterschied K = 2 3 c 0 x H 40 c y H x = c r (X X 0 )+r 2 (Y Y 0 )+r 3 (Z Z 0 ) r 3 (X X 0 )+r 32 (Y Y 0 )+r 33 (Z Z 0 ) + x H y = c r 2(X X 0 )+r 22 (Y Y 0 )+r 23 (Z Z 0 ) r 3 (X X 0 )+r 32 (Y Y 0 )+r 33 (Z Z 0 ) + y H

15 Innere Orientierung Modellierung reale Kameras Fertigungsgenauigkeit der Kamera ist niedriger als Messgenauigkeit der Hauptpunkt liegt nicht genau in der Bildmitte Objektiv keine ideale Linse (bei Film ist auch die Bildebene nicht ideal) nicht-lineare Projektionsverzerrungen Linsenverzeichnung der Strahlengang weicht von einer idealen Geraden ab die Abweichung hängt von der Position des Bildpunktes ab die Abbildung ist nicht mehr geradentreu Modellierung durch einen Korrekturterm: Perspektivprojektion + nicht-lineare Korrektur

16 Innere Orientierung Bemerkung: lineare Verzeichnungen lineare Anteile sind bereits in der Matrix K enthalten (z.b. unterschiedlicher Bildmassstab in x und y) auch ein linearer Fehler in radialer Richtung kann nicht von einer Veränderung der Brennweite unterschieden werden um die Brennweite zu bestimmen braucht es eine willkürliche Festlegung, bei welchem Radius die radiale Verzeichnung 0 ist Kamerakonstante ist eine virtuelle Rechengrösse Verzeichnung lbild Radius

17 Innere Orientierung Berücksichtigung der Verzeichnung die Abbildung ist nicht mehr perspektivisch, sondern allgemein apple x a y a = apple x y + apple x(x, y, q) y(x, y, q) in homogenen Koordinaten x(x, q) x a = 40 y(x, q) 5 x = H a (x) x 0 0 x a = H a (x)px = P a (x)x

18 Innere Orientierung Nutzung der allgemeinen Abbildungsgleichungen vom 3D Objektraum zum 2D Bildraum: Verzeichnung hängt vom idealen (verzeichnungsfreien) Bildpunkt ab, daher zweistufige Berechnung Schritt : Schritt 2: x = PX x a = H a (x) x vom 2D Bildraum zum 3D Objektraum: der verzeichnungsfreie Bildpunkt ist nicht zugänglich, daher iterative Berechnung x () = H a (x a ) x a x (t+) = H a (x (t) ) x a

19 Innere Orientierung Modellierung der Verzeichnung physikalische Modellierung Ziel: physikalischen Vorgänge zu modellieren Vorteil: versucht, die tatsächlichen Ursachen zu beschreiben Nachteil: Effekte sind komplex und schwer zu modellieren, oft überlappen sich mehrere physikalische Effekte phänomenologische Modellierung Ziel: die Effekte auf das Bild zu kompensieren Vorteil: Wahl des mathematisch günstigsten Modells Nachteil: Ursachen bleiben unbekannt

20 Innere Orientierung physikalisches Verzeichnungsmodell Beispiel: radialsymmetrische Verzeichnung x e = xe x e (q 2 r 2 + q 4 r 4 + q 6 r 6 ) r r = p (x x ) 2 +(y y ) 2 x ist das Symmetriezentrum (nahe der Bildmitte) y x a x x x H x

21 Innere Orientierung phänomenologisches Verzeichnungsmodell Beispiel: 0 orthogonale Polynome nach Ebner (ursprünglich 2, davon 2 für die Affinverzerrung des Bildkoordinatensystems) b: Normierung (maximale Bildkoordinate) qi: untereinander und zu den übrigen Orientierungsparametern (fast) orthogonal

Bildverarbeitung: 3D-Geometrie. D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13

Bildverarbeitung: 3D-Geometrie. D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13 Bildverarbeitung: 3D-Geometrie D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse

Mehr

Projektion. Ebene geometrische Projektionen

Projektion. Ebene geometrische Projektionen Projektion - 1 - Ebene geometrische Projektionen Die ebenen geometrischen Projektionen sind dadurch charakterisiert, daß mit Projektionsstrahlen konstanter Richtung, d.h. entlang von Geraden, auf Ebenen

Mehr

Projektive Geometrie

Projektive Geometrie Projektive Geometrie Einleitung Was ist projektive Geometrie? eine alternative algebraische Repräsentation von geometrischen Objekten (Punkt, Gerade,...) und Transformationen (Translation, Rotation,...)

Mehr

Messungen im Objektkoordinatensystem aus Kamerabildern

Messungen im Objektkoordinatensystem aus Kamerabildern Einbildorientierung Orientierung Ziel der Photogrammetrie Messungen im Objektkoordinatensystem aus Kamerabildern Dazu müssen bekannt sein die Abbildungsgeometrie der Kameras, d.h. die Parameter der inneren

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Parallelprojektion. Das Projektionszentrum liegt im Unendlichen. Projektionsebene. Projektionsrichtung. Quader. Bild des Quaders

Parallelprojektion. Das Projektionszentrum liegt im Unendlichen. Projektionsebene. Projektionsrichtung. Quader. Bild des Quaders Parallelprojektion Das Projektionszentrum liegt im Unendlichen. Projektionsebene Projektionsrichtung Quader Bild des Quaders Zentralprojektion Auge und Kamera Sowohl das Sehen mit dem Auge als auch das

Mehr

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de

Mehr

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 5. Sichtsysteme in der Robotik....................307 Industrielle

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

Aufgabe 1: Koordinatensysteme

Aufgabe 1: Koordinatensysteme Übungen zu Struktur aus Bewegung Arbeitsgruppe Aktives Sehen Sommersemester 3 Prof. Dr-Ing. D. Paulus / S. Bouattour / M. Eisemann Beispiellösung für Übungsblatt Aufgabe : Koordinatensysteme Skizzieren

Mehr

Abbildung von Weltkoordinaten nach Bildkoordinaten

Abbildung von Weltkoordinaten nach Bildkoordinaten Abbildung von Weltkoordinaten nach Bildkoordinaten Werner Mayer 28. Februar 24 Zusammenfassung Dieses Dokument beschreibt die Abbildungsvorschrift von 3D-Punkten nach Pixelkoordinaten eines Bildes. Dabei

Mehr

Lineare Funktionen. Aufgabe 1. Sei f R 2 R definiert durch. x 1 + 3x Beweisen Sie ausführlich, dass f linear ist.

Lineare Funktionen. Aufgabe 1. Sei f R 2 R definiert durch. x 1 + 3x Beweisen Sie ausführlich, dass f linear ist. Lineare Funktionen Aufgabe. Sei f R R definiert durch x f = x x + 3x. Beweisen Sie ausführlich, dass f linear ist. Aufgabe. Die Funktionen (nicht erschrecken sind definiert durch + ( (R n R m (R n R m

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Epipolargeometrie Die Fundamentalmatrix Korrelation Schätzung der Fundamentalmatrix Homographie infolge einer Ebene Sonderfälle

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

3 Koordinatentransformationen

3 Koordinatentransformationen 8 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 3 Koordinatentransformationen Für die Darstellung von dreidimensionalen Objekten wird grundsätlich eine Reihe von Transformationen ausgeführt, die von den

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Technische Universität München Zentrum Mathematik Michael Strobel Geometriekalküle WS 217/18 http://www-m1.ma.tum.de/geometriekalkuelews1718 Lösungen zu Aufgabenblatt 7 (29. Februar 217) Aufgabe 1. Abstand

Mehr

-dimensionale Darstellungen

-dimensionale Darstellungen 1.9 2 1 2 -dimensionale Darstellungen Auf einer Fläche F (2 dimensional) wird eine Operation ausgeführt Zum Beispiel wir eine Verschiebung um den Vektor t durchgeführt. Gemeint ist der Körper, der überstrichen

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

Hans Delfs. Übungen zu Mathematik III für Medieninformatik

Hans Delfs. Übungen zu Mathematik III für Medieninformatik Hans Delfs Übungen zu Mathematik III für Medieninformatik 1 RÄUMLICHE DARSTELLUNGEN VON OBJEKTEN 1 1 Räumliche Darstellungen von Objekten Der Einheitswürfel ist der achsenparallele Würfel in A 3, der von

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

Computer Vision. Klaus Diepold Lehrstuhl für Datenverarbeitung. 23. Mai Bild 1: Abbildung mit dünnen Linsen.

Computer Vision. Klaus Diepold Lehrstuhl für Datenverarbeitung. 23. Mai Bild 1: Abbildung mit dünnen Linsen. Computer Vision Klaus Diepold Lehrstuhl für Datenverarbeitung 3. Mai 8 Bilderzeugung. Abbildung durch Linsen Durch Betrachtung von ähnlichen Dreiecken in Bild ergibt sich die Beziehung f = Z + z, die die

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.1 Koordinatentransformationen 2.2 Transformationen in der Ebene 2.3 Transformationen im Raum 3 Repräsentation und Modellierung von Objekten 4 Rasterung 5 Visibilität

Mehr

Modell einer Kamera ohne Verzeichnung

Modell einer Kamera ohne Verzeichnung 7.3.1 Sichtsysteme - Kamera-Kalibrierung - Lochkamera-Modell 64-424 Intelligente Roboter Modell einer Kamera ohne Verzeichnung Lochkameramodell mit und ohne radiale Linseverzeichnung J. Zhang 460 7.3.1

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

3. Analyse der Kamerabewegung Video - Inhaltsanalyse

3. Analyse der Kamerabewegung Video - Inhaltsanalyse 3. Analyse der Kamerabewegung Video - Inhaltsanalyse Stephan Kopf Bewegungen in Videos Objektbewegungen (object motion) Kameraoperationen bzw. Kamerabewegungen (camera motion) Semantische Informationen

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ

MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE. Marko HeRBERTZ MaTHEMATISCHE GRUNDLAGEN BUGA-AR TELESCOPE Marko HeRBERTZ Wiederholung: Objekt-, Welt- und Kamerakoordinaten Kugelkoordinaten in kartesische Mögliche Schwierigkeiten Kameralinse Lage der Festung Lagerichtige

Mehr

Advanced Computer Graphics Erweiterung zur 6. Übung

Advanced Computer Graphics Erweiterung zur 6. Übung Advanced Computer Graphics Erweiterung zur 6. Übung M.Sc. Tristan Nauber Advanced Computer Graphics: Übung 6 Model-View-Projection Transformationen Model-View-Projection Gegeben Gesucht y Modell Kamera

Mehr

Computergrafik Universität Osnabrück, Henning Wenke,

Computergrafik Universität Osnabrück, Henning Wenke, Computergrafik Universität Osnabrück, Henning Wenke, 2012-05-30 Korrektur: Kugelkoordinaten II r und θ konstant: Rand einer Kreisscheibe parallel zur xy Ebene z θ fest y θ konstant, r R : Kegel, ausgehend

Mehr

1 Abbildungen in der Ebene

1 Abbildungen in der Ebene 1 Inhalt 1 Abbildungen in der Ebene... 2 1.1 Verschiebung... 3 1.2 Spiegelung... 3 1.2.1 Achsenspiegelung... 3 1.3 Drehung... 4 1.3.1 Die Drehung... 4 1.4 Zentrische Streckung... 5 2 Funktionen... 7 2.1

Mehr

1 Analytische Geometrie

1 Analytische Geometrie Analytische Geometrie. Grundlagen, Begriffe, Schreibweisen Achsenkreuz Die Achsen heißen in dieser Darstellung x und -Achse. Punkte Punkte werden weiterhin mit großen, lateinischen Buchstaben bezeichnet

Mehr

Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden?

Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden? Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden? Weil bei einigen Aufgaben die Problemstellung einfacher wird, wenn wir Inversionen anwenden, die Aufgabenstellung

Mehr

2.2 Projektionen und Kameramodelle

2.2 Projektionen und Kameramodelle Graphikprog. GRUNDLEGENDE VERFAHREN UND TECHNIKEN. Projektionen und Kameramodelle Nachdem alle Objekte einer Szenerie mittels der besprochenen Transformationen im D-Weltkoordinatensystem platziert sind,

Mehr

3D-Model Reconstruction using Vanishing Points

3D-Model Reconstruction using Vanishing Points 3D-Model Reconstruction using Vanishing Points Seminar: Ausgewä hlte Themen zu "Bildverstehen und Mustererkennung" Dozenten: Prof. Dr. Xiaoyi Jiang, Dr. Da-Chuan Cheng, Steffen Wachenfeld, Kai Rothaus

Mehr

Kalibrierung. HJ Przybilla

Kalibrierung. HJ Przybilla Kalibrierung Die Kalibrierung von Aufnahmesystemen dient der Bestimmung des geometrischen Kameramodells, beschrieben durch die Parameter der inneren Orientierung. Kamerakonstante Lage des Bildhauptpunktes

Mehr

Von der brennenden Kerze über die Zentralkollineation zur Gruppe der projektiven Abbildungen

Von der brennenden Kerze über die Zentralkollineation zur Gruppe der projektiven Abbildungen Von der brennenden Kerze über die Zentralkollineation zur Gruppe der projektiven Abbildungen Sebastian Kitz, Wuppertal I Zentralprojektion Eine brennende Kerze kann in guter Näherung als punktförmige Lichtquelle

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 5 Punkte Ebenen im Raum Dualismus im Raum Die unendlich ferne Ebene Parametrische Darstellung (Span) Die Gerade im Raum -

Mehr

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht Übersicht Allgemeine Übersicht, Licht, Wellen- vs. Teilchenmodell, thermische Strahler, strahlungsoptische (radiometrische) vs. lichttechnische (fotometrische) Größen Beschreibung radiometrische, fotometrische

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SS 2011 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dr. Slobodan Ilic Numerisches Programmieren, Übungen 4. Übungsblatt: Gauß-Elimination,

Mehr

Physik PHB3/4 (Schwingungen, Wellen, Optik)

Physik PHB3/4 (Schwingungen, Wellen, Optik) 04_GeomOptikAbbildung1_BA.doc - 1/5 Optische Abbildungen Abbildung im mathematischen Sinn: Von einem Gegenstandspunkt ausgehende Strahlen werden in einem Bildpunkt vereinigt. Ideale optische Abbildungen

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

2 Die Kamera. 2.1 Ideale Lochkamera Lineares Kameramodell

2 Die Kamera. 2.1 Ideale Lochkamera Lineares Kameramodell 2 Die Kamera 2.1 Ideale Lochkamera 2.1.1 Lineares Kameramodell Gegeben sei die spezielle Kameraanordnung in Bild 2.1.1. Das Loch der Lochkamera, d.h. das Projektionszentrum befindet sich am Ort C im Zentrum

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

'Visual Hull' mit Hilfe von Spiegeln

'Visual Hull' mit Hilfe von Spiegeln 'Visual Hull' mit Hilfe von Spiegeln hwww.dip.ee.uct.ac.za/~kforbes/doublemirror/doublemirror.html Dreidimensionales Computersehen Dr.-Ing. Simon Winkelbach www.rob.cs.tu-bs.de/teaching/courses/cs 1 Zur

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

a 1 a = 1 f HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) f = f 1 f 2 f 1 H 2 H 1 H =e f H = e f f 2 Grundlagen:

a 1 a = 1 f HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) f = f 1 f 2 f 1 H 2 H 1 H =e f H = e f f 2 Grundlagen: HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) Grundlagen: Stellt man aus einzelnen Linsen ein mehrstufiges System zusammen, so kann man seine Gesamtwirkung wieder durch seine Brennweite und die Lage der Hauptpunkte

Mehr

Inhalte. Photogram. Aufnahmesysteme. HS BO Lab. für Photogrammetrie: Metrische Kameras und Innere Orientierung 1

Inhalte. Photogram. Aufnahmesysteme. HS BO Lab. für Photogrammetrie: Metrische Kameras und Innere Orientierung 1 Inhalte Photogram. Aufnahmesysteme Metrische Kameras (Definition der Inneren Orientierung) Analoge Messkameras Fotografische Aspekte Digitalisierung analoger Bilder Digitale Messkameras HS BO Lab. für

Mehr

Transformation - 3. Für "übliche" Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche

Transformation - 3. Für übliche Anwendungen in der Geometrie ist es sinnvoll, bei Transformationen eine gleiche Transformation - 3 Wiederholung und spezielle Angaben im Zusammenhang mit Kreis-Berechnungen 1. Problemstellung Im Zusammenhang mit der Berechnung von Schnittflächen kann es sinnvoll sein, die Berechnung

Mehr

Inhalte. Mathematische Grundlagen. Koordinatensysteme Ebene und räumliche Koordinatentransformationen Zentralperspektive

Inhalte. Mathematische Grundlagen. Koordinatensysteme Ebene und räumliche Koordinatentransformationen Zentralperspektive Inhalte Mathematische Grundlagen Koordinatensysteme Ebene und räumliche Koordinatentransformationen Zentralperspektive HS BO Lab. für Photogrammetrie: Koordinatensysteme Koordinatensysteme Ein kartesisches

Mehr

Teilskript zur LV "Optik 1" Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1

Teilskript zur LV Optik 1 Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1 Teilskript zur LV "Optik " sphärischer Linsen Seite Objekt (optisch) Gesamtheit von Objektpunkten, von denen jeweils ein Bündel von Lichtstrahlen ausgeht Wahrnehmen eines Objektes Ermittlung der Ausgangspunkte

Mehr

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya

Lineare Transformationen und Determinanten. 10-E Ma 1 Lubov Vassilevskaya Lineare Transformationen und Determinanten 10-E Ma 1 Lubov Vassilevskaya Lineare Transformation cc Definition: V und W sind zwei Vektorräume. Eine Funktion T nennt man eine lineare Transformation von V

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Ortskurvenerkennung. Christian Liedl, WS06/07 TUM

Ortskurvenerkennung. Christian Liedl, WS06/07 TUM Ortskurvenerkennung Christian Liedl, WS06/07 TUM Überblick Was sind Ortskurven Beispiele spezieller Ortskurven Kurvenerkennung Voraussetzung Erster Ansatz Modellierung Beispiel: Identifikation Ortskurve

Mehr

Astro Stammtisch Peine

Astro Stammtisch Peine Astro Stammtisch Peine ANDREAS SÖHN OPTIK FÜR DIE ASTRONOMIE ANDREAS SÖHN: OPTIK FÜR DIE ASTRONOMIE < 1 Grundsätzliches Was ist Optik? Die Optik beschäftigt sich mit den Eigenschaften des (sichtbaren)

Mehr

Kamerakalibrierung. Messen in Videobildern, Leobots-Projekt Version 1.0. Matthias Jauernig, 03INB, HTWK Leipzig

Kamerakalibrierung. Messen in Videobildern, Leobots-Projekt Version 1.0. Matthias Jauernig, 03INB, HTWK Leipzig Kamerakalibrierung Messen in Videobildern, Leobots-Projekt 2006 Version 1.0 Matthias Jauernig, 03INB, HTWK Leipzig Copyright (c) 2006, Matthias Jauernig Kamerakalibrierung, Matthias Jauernig 3 Begriffe

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Einleitende Bemerkungen: Gl. für Kreis: Gl. für Elllipse: (gestauchter Kreis) Gl. für Kugel: Gl. für Elllipsoid: (gestauchter Kugel) Diese

Mehr

Versuch C: Auflösungsvermögen Einleitung

Versuch C: Auflösungsvermögen Einleitung Versuch C: svermögen Einleitung Das AV wird üblicherweise in Linienpaaren pro mm (Lp/mm) angegeben und ist diejenige Anzahl von Linienpaaren, bei der ein normalsichtiges Auge keinen Kontrastunterschied

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die

Mehr

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt: Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:

Mehr

Geometriekalküle. Rechnen mit projektiver Geometrie. Michael Schmid. 3. März Berufliche Oberschule Rosenheim

Geometriekalküle. Rechnen mit projektiver Geometrie. Michael Schmid. 3. März Berufliche Oberschule Rosenheim Geometriekalküle Rechnen mit projektiver Geometrie Michael Schmid Berufliche Oberschule Rosenheim 3. März 2016 Michael Schmid (BOS Rosenheim) Geometriekalküle 3. März 2016 1 / 34 1 Axiomatische Grundlagen

Mehr

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt

Lineare Abbildungen. De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt Lineare Abbildungen Lineare Abbildungen De nition Seien V, W Vektorräume. Eine Abbildung f : V! W heißt linear, wenn gilt (L. ) f ist homogen; d.h. f( ~v) = f(~v) für alle 2 R, ~v 2 V, (L. ) f ist additiv;

Mehr

Definition, Abbildungsmatrix, Spiegelung, Projektion

Definition, Abbildungsmatrix, Spiegelung, Projektion Bau und Gestaltung, Mathematik 2, T. Borer Aufgaben 5-2/ Aufgaben 5 Lineare Abbildungen Definition, Abbildungsmatrix, Spiegelung, Projektion Lernziele - beurteilen können, ob eine gegebene Abbildung linear

Mehr

Structure from motion mit einem starrgekoppelten Kamerasystem

Structure from motion mit einem starrgekoppelten Kamerasystem Christian-Albrechts-Universität zu Kiel Institut für Informatik Diplomarbeit zum Thema Structure from motion mit einem starrgekoppelten Kamerasystem vorgelegt von Marcus Böttcher Kiel, Mai 2007 Christian-Albrechts-Universität

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

8 Kreisgeometrie in der Zeichenebene

8 Kreisgeometrie in der Zeichenebene 8 Kreisgeometrie in der Zeichenebene 8.1 Inversion am Kreis 8.1.1 Definition Ein Kreis k ist die Menge aller Punkte, die von einem festen Punkt M, dem Mittelpunkt des Kreises, festen Abstand r haben. Dabei

Mehr

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya

Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben. 1 E1 Ma 1 Lubov Vassilevskaya Lineare Transformationen, Teil 1 Lösungen zu den Aufgaben 1 E1 Lineare Transformationen: cc Aufgaben 1, 2 Aufgabe 1: Wenden Sie die Transformation T auf den Punkt P und auf den Vektor OP an. Beschreiben

Mehr

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek

Legt man die vom Betrachter aus gesehen vor den, wird die spätere Konstruktion kleiner als die Risse. Legt man die hinter das Objekt, wird die perspek Gegeben ist ein und ein. Der wird auf eine gezeichnet, der unterhalb von dieser in einiger Entfernung und mittig. Parallel zur wird der eingezeichnet. Dieser befindet sich in Augenhöhe. Üblicherweise wird

Mehr

Prof. Dr. B. Lang Prof. Dr. J. Biermann. Kameragestützte Volumenbestimmung von Hühnereiern im Stall. Fakultät Ingenieurwissenschaften und Informatik

Prof. Dr. B. Lang Prof. Dr. J. Biermann. Kameragestützte Volumenbestimmung von Hühnereiern im Stall. Fakultät Ingenieurwissenschaften und Informatik Prof. Dr. B. Lang Prof. Dr. J. Biermann Kameragestützte Volumenbestimmung von Hühnereiern im Stall 1 Aufgabenstellung Big Dutchman EggCam Ei-Aufnahme (verzerrt) Arbeitsschritte Aufnahme und Detektion von

Mehr

Projektive Geometrie in der Bildanalyse Dipl. Ing. (FH) Gerrit Bo lk

Projektive Geometrie in der Bildanalyse Dipl. Ing. (FH) Gerrit Bo lk Projektive Geometrie in der Bildanalyse Dipl. Ing. (FH) Gerrit Bo lk Übersicht 1. Notation / Das Kameramodell 2. Homogene Punkte und Transformationen 3. Bestimmen der Modellparameter mit 3D Punkten 4.

Mehr

Orientierung. HJ Przybilla

Orientierung. HJ Przybilla Orientierung Der Begriff der Orientierung wird in der Photogrammetrie vielfach genutzt. Er beschreibt dabei die geometrischen Zusammenhänge im und um das Messbild. Innere Orientierung Äußere Orientierung

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

3 Abbildungen in der Ebene

3 Abbildungen in der Ebene 18 3 Abbildungen in der Ebene Wir behandeln in diesem Kapitel Abbildungen von Punkten der Ebene auf Punkte. Ziel dieser Betrachtung ist, Funktionsgraphen mit diesen Abbildungen (punktweise) abzubilden

Mehr

Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3

Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3 Zusättzlliiche Übungen zu lliinearren Funkttiionen Aufgabe Zeichnen Sie die Geraden mit den Gleichungen: a) y = x + ; b) y + x = ; c) f(x) = x ; d) x - x + e) + =. Was fällt bei der Gerade e) auf? Aufgabe

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

6 Metrische Klassifikation der Quadriken

6 Metrische Klassifikation der Quadriken 6 Metrische Klassifikation der Quadriken A Wiederholung von Kap V, 5 Sei A = (a ij ) eine symmetrische n n Matrix. n x 1 q(x) := x t Ax = a ij x i x j, x =. i,j=1 ist dann ein quadratisches Polynom in

Mehr

Stereo Vision Anwendungen 2 / Sommersemester 2010 Fakultät Technik und Informatik Department Informatik Gregory Föll

Stereo Vision Anwendungen 2 / Sommersemester 2010 Fakultät Technik und Informatik Department Informatik Gregory Föll Anwendungen 2 / Sommersemester 2010 Fakultät Technik und Informatik Department Informatik Übersicht Rückblick 3D-Bildaufnahme Kamerakalibrierung Triangulation durch Active Vision Korrespondenzproblem /

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Proseminar über multimediale Lineare Algebra und Analytische Geometrie Wintersemester 2008/2009

Proseminar über multimediale Lineare Algebra und Analytische Geometrie Wintersemester 2008/2009 Proseminar über multimediale Lineare Algebra und Analytische Geometrie Wintersemester 008/009 Aufgabe 6: Projektion einer Kreisbahn im R in die (x,y)-ebene Seminarleitung: Dr. M. Kaplan Ausarbeitung: Günther

Mehr

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten "Zwischenwert"

Kreis - Übungen. 1) Die y-achse ist am Punkt A eine Tangente an den Kreis. Mit dem noch nicht bekannten Zwischenwert Kreis - Übungen Wenn die "Kreisgleichung" gesucht ist, sind der Mittelpunkt und der Radius anzugeben. Es ist möglich, dass mehrere Kreise eine Aufgabenstellung erfüllen. 1) Ein Kreis berührt die y-achse

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Einführung in das mathematische Arbeiten

Einführung in das mathematische Arbeiten Name Matrikelnummer Studienkennzahl Prüfung zu Einführung in das mathematische Arbeiten Wintersemester 8/9, LVN am 9. Juni 9, -stündig Beispiel Ein Polynom fx = x 4 + ax + bx + cx + d, a, b, c, d R, hat

Mehr

Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen

Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen Entwicklung einer robusten Methode zur Berechnung von Stereokorrespondenzen Seminar - Wintersemester 2010/2011 Fakultät Technik und Informatik Department Informatik Gregory Föll Übersicht Rückblick Stereo

Mehr

Kapitel 4: Schattenberechnung

Kapitel 4: Schattenberechnung Kapitel 4: Schattenberechnung 1 Überblick: Schattenberechnung Motivation Schattenvolumen Shadow Maps Projektive Schatten 2 Motivation Wesentlich für die Wahrnehmung einer 3D-Szene Eigentlich ein globaler

Mehr

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. ISBN (Buch): Leseprobe Michael Knorrenschild Vorkurs Mathematik Ein Übungsbuch für Fachhochschulen ISBN (Buch): 978-3-446-43798-2 ISBN (E-Book): 978-3-446-43628-2 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43798-2

Mehr

Projektive Geometrie 2

Projektive Geometrie 2 Technische Universität München Fakultät für Mathematik Klausur Projektive Geometrie 2 Modul M3204 7. ugust 2017, 11 12 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung ufgabe 1. Diagramme mit Kegelschnitten

Mehr

Kamerakalibrierung. Kamerakalibrierung. Effekt von Linsenverzeichnungen. Effekt von Linsenverzeichnungen

Kamerakalibrierung. Kamerakalibrierung. Effekt von Linsenverzeichnungen. Effekt von Linsenverzeichnungen Kamerakalibrierung Kamerakalibrierung Kamerakalibrierung ist unerläßlich, um genaue Messungen von Objekten durchzuühren erlaubt die Korrektur von Verzeichnungen, die von den Objektiven verursacht werden

Mehr

3.1.1 Anes Koordinatensystem im Raum

3.1.1 Anes Koordinatensystem im Raum 3 Einführung von Koordinaten 3. Ane Koordinaten 3.. Anes Koordinatensystem im Raum Tafelskizze Im dreidimensionalen euklidischen Anschauungsraum E 3 wählen wir einen Punkt O, den Koordinatenursprung und

Mehr

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen

Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Abiturprüfung Mathematik 202 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen klaus_messner@web.de www.elearning-freiburg.de Pflichtteil 202 2 Aufgabe : Bilden Sie die erste Ableitung

Mehr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr

Technische Universität München Fakultät für Mathematik. Klausur. Geometriekalküle. Modul MA März 2018, 16:00 17:00 Uhr Technische Universität München Fakultät für Mathematik Klausur Geometriekalküle Modul MA2203 1. März 2018, 16:00 17:00 Uhr Prof. Dr. Dr. Jürgen Richter-Gebert Musterlösung Aufgabe 1. Kegelschnitt mit Parameter

Mehr

Texturen. Texturen. 1. Vorbemerkungen. 2. 2D-Texturen

Texturen. Texturen. 1. Vorbemerkungen. 2. 2D-Texturen 1. Vorbemerkungen 2. 2D- 2.1 Texturabbildungen 2.2 Arten von 2.2.1 Diskrete 2.2.2 Prozedurale 2.3 Rasterung 2.3.1 Texturieren von Dreiecken 2.3.2 Texturieren von parametrisierten Flächen 2.3.3 Texturieren

Mehr