Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Größe: px
Ab Seite anzeigen:

Download "Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen"

Transkript

1 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1

2 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum (ist äquivalent) einer skalaren Zielfunktion J(Ԧr) (Fehler, Kosten, Risiko, ) unter Variation von unabhängigen Variablen r 1, r, r n = Ԧr Gesucht: Stationäre Punkte= Punkte, für die die Bedingung Ԧr J Ԧr = 0 erfüllt ist. Hilfreiche Vorstellung: Zielfunktion stellt ein Gebirge über den unabhängigen Ortskoordinaten dar, Suche nach einem Tal Oft keine exakte algebraische Lösung möglich numerische Verfahren (sehr viele Algorithmen verfügbar) Zusätzliche Erschwernis Es können auch Nebenbedingungen g j Ԧr = 0 vorgegeben sein, die zusätzlich erfüllt werden müssen Lagrange Multiplikatoren! Problemstellung Lagrange Multiplikatoren Minimiere die Zielfunktion J( Ԧr) Min J r 1, r, r 3, Min unter Einhaltung der Nebenbedingung(en) g i Ԧr = 0 g 1 r 1, r, r 3, = 0 g r 1, r, r 3, = 0 g 3 r 1, r, r 3, = 0 Lösung Zusammenfassen in eine einzige (Lagrange-) Funktion mithilfe der sogenannten Lagrange-Multiplikatoren λ i L Ԧr, λ i = J Ԧr + λ i g i (Ԧr) Min Minimumsuche über Ableiten nach allen Variablen r j, λ i (wobei die Ableitungen nach den λ i gerade wieder zu den Nebenbedingungen führen) zurück geführt auf eine einzige Optimierungsaufgabe N.b.: Die Lagrange-Multiplikatoren λ i müssen nicht ausgerechnet werden, bzw. können durch Einsetzen eliminiert werden ( undetermined multiplier ). i r L = 0 λ L = 0 L = 0 r 1 L = 0 r L = 0 λ 1 L = 0 λ

3 Lagrange Multiplikatoren Anschaulich Minimiere die Zielfunktion J(x, y) Min unter Einhaltung der Nebenbedingung g x, y = c J x, y beschreibt ein Gebirge über den Koordinaten x, y g x, y = c beschreibt einen Pfad in x, y Für einen Lösungspunkt muss gelten: Der Pfad g (x, y) = c liegt tangential zu einer Höhenlinie J(x, y) = const, sonst könnte man durch kleine Bewegung auf dem Pfad auch J ändern (z.b. vergrößern). Mathematisch: Die Gradienten von J und g müssen (anti-)parallele Vektoren sein J x, y = λ g x, y, mit J x, y = J x, J y g, g x, y = x, g y oder: L = J x, y + λ g x, y c und L = L x, L y, L λ = 0 Bildquelle: Wikipedia Noch komplizierter Karush-Kuhn-Tucker-Bedingungen (KKT) Verallgemeinerung der Methode der Lagrange-Multiplikatoren für Nebenbedingungen, die (auch) Ungleichungen enthalten Anschaulich: Gehe nicht auf dem Pfad, sondern bleibe im Bereich rechts/links daneben Erweiterte Problemstellung Minimiere die Zielfunktion J( Ԧr) Min J r 1, r, r 3, Min unter Einhaltung der Nebenbedingung(en) h k Ԧr 0 h 1 r 1, r, r 3, 0 h r 1, r, r 3, 0 h 3 r 1, r, r 3, 0 und ggf. auch noch g i Ԧr = 0 g 1 r 1, r, r 3, = 0 g r 1, r, r 3, = 0 g 3 r 1, r, r 3, = 0 Lösungsansatz Aufstellen einer verallgemeinerten Lagrange-Gleichung L Ԧr, λ i, α k = J Ԧr + λ i g i Ԧr + α k h k (Ԧr) Min mit den Lagrange-Multiplikatoren λ i und α k i k 3

4 Karush-Kuhn-Tucker-Bedingungen (KKT) Fallunterscheidung Der gesuchte stationäre Punkt ( Ԧr 0 mit r J Ԧr 0 = 0) liegt a) im Bereich h k Ԧr 0 < 0 : Nebenbedingung inaktiv, kann ignoriert werden α k = 0 b) auf h k Ԧr 0 = 0 : Nebenbedingung aktiv in jedem Fall gilt α k h k = 0 Richtung Die Richtung der Gradienten ist entscheidend (müssen aus dem Gebiet h k 0 herausweisen) Vorzeichen der Lagrange-Multiplikatoren wird festgelegt für Maximierungsprobleme (L Max): λ k, α k 0 für Minimierungsprobleme (L Min): λ k, α k 0 Lösung Minimums-Suche wieder über partielles Ableiten und = 0 setzen (wie bei Lagrange) Zusätzlich: die KKT-Bedingungen (α k 0 und α k h k Ԧx 0 = 0) müssen erfüllt sein Eigenwerte und Eigenvektoren 4

5 Eigenwerte Eigenwerte und Eigenvektoren Definition: u ist Eigenvektor der Matrix A zum Eigenwert λ, wenn gilt A u = λ u Berechnung: Eigenwerte sind Lösung der charakterist. Gleichung det A λ1 = 0 Anzahl Eigenwerte λ i 0 = Rang der Matrix A Dimension der Matrix Länge der Eigenvektoren u ist unbestimmt (sinnvoll: Normierung auf u = 1) Zu einem ("entarteten") Eigenwert λ i können auch mehrere Eigenvektoren gehören Eigenschaften: Spur A = λ i det A = A = ς λ i Besondere Eigenschaften für reelle, symmetrische Matrizen: Eigenwerte sind reell Eigenvektoren sind zueinander orthogonal: u t 1 für i = j i u j = δ ij = { 0 für i j Normalverteilung 5

6 Normalverteilungen Normalverteilung Gaußsche Glockenkurve, sehr weit verbreitet, auch aus theoretischen Erwägungen bedeutsam (Zentraler Grenzwertsatz: Summe einer großen Anzahl von Zufallsvariablen ist annähernd normalverteilt). Univariate Normalverteilung Eine unabhängige Variable x Normalverteilung N μ, σ = 1 π σ exp [ 1 x μ ] σ ist vollständig definiert durch Mittelwert μ = E(x) und Varianz σ = E x μ Multivariate Normalverteilung Normalverteilungen Normalverteilung im N-dimensionalen Raum Ԧx 1 N Ԧμ, K = π N K exp [ 1 Ԧx Ԧμ t K 1 Ԧx Ԧμ ] Mittelwert Ԧμ = N-dimensionaler Vektor Ԧμ = E( Ԧx) Kovarianzmatrix K = NxN Matrix der (Ko-) Varianzen K = mit σ ij = E x i μ i x j μ j Eigenschaften der Kovarianzmatrix σ 11 σ 1 σ 1 σ K ist symmetrisch, d.h. σ ij = σ ji Diagonalelement σ ii ist die Varianz des i-ten Merkmals σ ij, i j ist die Kovarianz zwischen i-ten und j-tem Merkmal ( Korrelation) Wenn die Zufallsvariablen / Merkmale x i und x j statistisch unabhängig sind: Kovarianzen verschwinden σ ij = 0 für i j N Ԧμ, K = Produkt der n 1D Normalverteilungen Notation: K = Determinante, K 1 = Inverse 6

7 Normalverteilungen Eigenschaften der (multivariaten) Normalverteilung Der größte Wert von liegt bei Ԧx = Ԧμ (Zentrum, Schwerpunkt) Die Form der Verteilung wird von der Kovarianzmatrix K bestimmt. Punkte mit gleichem Wert N Ԧμ, K = const formen Hyperellipsoide. Die Hauptachsen der Ellipsoide liegen parallel zu den Eigenvektoren von K, Länge der Halbachsen = zugehörigen Eigenwerte von K. K = σ 0 0 σ K = σ σ K = σ 11 σ 1 σ 1 σ 7

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator

Mustererkennung. Bayes-Klassifikator. R. Neubecker, WS 2016 / Bayes-Klassifikator Mustererkennung Bayes-Klassifikator R. Neubecker, WS 2016 / 2017 Bayes-Klassifikator 2 Kontext Ziel: Optimaler Klassifikator ( = minimaler Klassifikationsfehler), basierend auf Wahrscheinlichkeitsverteilungen

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min Klausur, Analyse mehrdimensionaler Daten, WS 2010/2011, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 21.02.2011 Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte,

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil Dr. Christof Luchsinger Übungsblatt zur Vorlesung Statistische Methoden - freiwilliger Teil Rechnen mit Matrizen, Multivariate Normalverteilung Herausgabe des Übungsblattes: Woche 0, Abgabe der Lösungen:

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

Die n-dimensionale Normalverteilung

Die n-dimensionale Normalverteilung U. Mortensen Die n-dimensionale Normalverteilung Es wird zunächst die -dimensionale Normalverteilung betrachtet. Die zufälligen Veränderlichen X und Y seien normalverteilt. Gesucht ist die gemeinsame Verteilung

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

2.1 Gemeinsame-, Rand- und bedingte Verteilungen

2.1 Gemeinsame-, Rand- und bedingte Verteilungen Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Kuhn-Tucker-Bedingung

Kuhn-Tucker-Bedingung Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann

Mehr

Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ. Z j = a 1j Y 1 + a 2j Y a mj Y m = a t j Y

Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ. Z j = a 1j Y 1 + a 2j Y a mj Y m = a t j Y Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ Z j = a 1j Y 1 + a 2j Y 2 +... + a mj Y m = a t j Y a t j = (a 1j, a 2j,..., a mj ) Z 1, Z 2,...,Z m unkorreliert Varianzen

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf )

Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf ) Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 65 (das agraökonomische Schaf ) Sascha Kurz Jörg Rambau 25 November 2009 2 66 Die Karush-Kuhn-Tucker-Methode Die Erkenntnisse

Mehr

2.Tutorium Multivariate Verfahren

2.Tutorium Multivariate Verfahren 2.Tutorium Multivariate Verfahren - Multivariate Verteilungen - Hannah Busen: 27.04.2015 und 04.05.2015 Nicole Schüller: 28.04.2015 und 05.05.2015 Institut für Statistik, LMU München 1 / 21 Gliederung

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen Kapitel 9 Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen 9 Definitionen, Eigenschaften Wir betrachten jetzt p Zufallsvariablen X, X 2,, X p Alle Definitionen, Notationen und Eigenschaften

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn Optimierung Vorlesung 5 Optimierung mit Nebenbedingungen 1 Minimierung mit Gleichheitsrestriktionen Gegeben: Funktion,,,, : Ziel:,,, Unrestringierter Fall: Notwendige Bedingung für lokales Minimum keine

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

Verteilungen mehrerer Variablen

Verteilungen mehrerer Variablen Kapitel 3 Verteilungen mehrerer Variablen 3. Eigenschaften von Verteilungen mehrerer Variablen Im allgemeinen muss man Wahrscheinlichkeiten für mehrere Variable, die häufig auch voneinander abhängen, gleichzeitig

Mehr

Statistik - Fehlerrechnung - Auswertung von Messungen

Statistik - Fehlerrechnung - Auswertung von Messungen Statistik - Fehlerrechnung - Auswertung von Messungen TEIL II Vorbereitungskurs F-Praktikum B (Physik), RWTH Aachen Thomas Hebbeker Eindimensionaler Fall: Parameterbestimmung - Beispiele [Übung] Mehrdimensionaler

Mehr

Statistics, Data Analysis, and Simulation SS 2017

Statistics, Data Analysis, and Simulation SS 2017 Statistics, Data Analysis, and Simulation SS 2017 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, 4. Mai 2017 Dr. Michael O. Distler

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Multivariate Verteilungen

Multivariate Verteilungen Multivariate Verteilungen Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j sind abhängig

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Wirtschaftsmathematik II

Wirtschaftsmathematik II WMS: Wirtschaftsmathematik 2 :: WS 2009/10 Wirtschaftsmathematik II Reinhard Ullrich http://homepage.univie.ac.at/reinhard.ullrich Basierend auf Folien von Dr. Ivana Ljubic October 11, 2009 1 Funktionen

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr.

Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof. Dr. Grundlagen der Ökonometrie (für Wirtschaftsmathematikstudenten und mathematisch orientierte Volkswirtschaftsstudenten) Prof Dr Enno Mammen 0 Exkurs: Orthogonaltransformationen, Projektionen im R n In diesem

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker II

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker II Universität des Saarlandes Fakultät für Mathematik und Informatik Sommersemester 2004 Prof. Dr. Joachim Weickert Dr. Bernhard Burgeth Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für

Mehr

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

2 Multivariate Normalverteilung

2 Multivariate Normalverteilung 2 Multivariate Normalverteilung 2. Multivariate Normalverteilung Definition 2.. Normalverteilung Eine univariat normalverteilte Zufallsvariable X besitzt ie Dichte ) (x µ)2 f (x) = exp ( x R. 2π σ 2σ 2

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Quadratische Formen. und. Symmetrische Matrizen

Quadratische Formen. und. Symmetrische Matrizen Quadratische Formen und Symmetrische Matrizen 1 Ouverture: Lineare Funktionen von R n nach R 1 2 Beispiel: n = 2 l : (x 1, x 2 ) T 0.8x 1 + 0.6x 2 = < x, g > mit g := (0.8, 0.6) T. Wo liegen alle x = (x

Mehr

1 Beispiele multivariater Datensätze... 3

1 Beispiele multivariater Datensätze... 3 Inhaltsverzeichnis Teil I Grundlagen 1 Beispiele multivariater Datensätze... 3 2 Elementare Behandlung der Daten... 15 2.1 Beschreibung und Darstellung univariater Datensätze... 15 2.1.1 Beschreibung und

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Die multivariate Statistik behandelt statistische Eigenschaften und Zusammenhänge mehrerer Variablen, im Gegensatz zu univariaten Statistik, die in der Regel nur eine Variable untersucht.

Mehr

5.Tutorium Multivariate Verfahren

5.Tutorium Multivariate Verfahren 5.Tutorium Multivariate Verfahren - Hauptkomponentenanalyse - Nicole Schüller: 27.06.2016 und 04.07.2016 Hannah Busen: 28.06.2016 und 05.07.2016 Institut für Statistik, LMU München 1 / 18 Gliederung 1

Mehr

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ. Eigenwert, Eigenvektor In der Regel hat bei einer linearen Abbildung das Bild eines Vektors eine andere Richtung als das Original r. Bei der Untersuchung der geometrischen Eigenschaften von linearen Abbildungen

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Mathematik I Prüfung Frühlingssemester 2014

Mathematik I Prüfung Frühlingssemester 2014 Mathematik I Prüfung Frühlingssemester 2014 Prof. Dr. Enrico De Giorgi 23. Juni 2014 Mathematik II: Prüfung Frühlingssemester 2014 1 Teil I: Offene Fragen (50 Punkte) Allgemeine Anweisungen für offene

Mehr

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser

Mehr

Mathematik für Biologen

Mathematik für Biologen Dirk Horstmann Mathematik für Biologen 2. überarbeitete und ergänzte Auflage & Springer Spektrum 1 Einstieg und grafische Darstellungen von Messdaten 1 1.1 Grafische Darstellung von Daten und unterschiedliche

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg. Übungsaufgaben 13. Übung: Woche vom 23. 1.-27. 1. 2017 (Lin.Alg. II): Heft Ü 3: 1.1.3; 1.1.7 (a,b); 1.1.8; 1.1.11; 3.4.3 (b); 1.3.3 (c); 1.2.3 (b,d); Hinweis 1: 3. Test (Integration, analyt. Geom.) ist

Mehr

1.5 Mehrdimensionale Verteilungen

1.5 Mehrdimensionale Verteilungen Poisson eine gute Näherung, da np = 0 und 500p = 5 00 = n. Wir erhalten somit als Näherung Exakte Rechnung ergibt P(2 X 0) = k=2 0 k=2 π (k) = 0,26424. 0 ( ) 00 P(2 X 0) = 0,0 k 0,99 00 k = 0,264238. k.4.2.4

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 23.5.2013 1 von 48 Gliederung 1 Geometrie linearer Modelle: Hyperebenen Einführung von Schölkopf/Smola 2 Lagrange-Optimierung

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

4. Verteilungen von Funktionen von Zufallsvariablen

4. Verteilungen von Funktionen von Zufallsvariablen 4. Verteilungen von Funktionen von Zufallsvariablen Allgemeine Problemstellung: Gegeben sei die gemeinsame Verteilung der ZV en X 1,..., X n (d.h. bekannt seien f X1,...,X n bzw. F X1,...,X n ) Wir betrachten

Mehr

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2.

Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Abhängigkeitsmaße Seien X 1 und X 2 zwei Zufallsvariablen. Es gibt einige skalare Maße für die Abhängigkeit zwischen X 1 und X 2. Lineare Korrelation Annahme: var(x 1 ),var(x 2 ) (0, ). Der Koeffizient

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n.

Richie Gottschalk Lineare Algebra I Seite 1. a) Welche der folgenden Ringe sind kommutativ? Es gibt genau einen Unterraum W von V mit dim(w ) = n. Richie Gottschalk Lineare Algebra I Seite Aufgabe Im Folgenden sind K immer ein Körper und V ein K-Vektorraum. a) Welche der folgenden Ringe sind kommutativ? K[x] K[x] ist per se ein kommutativer Polynomring.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Sätze PLUS Es gilt für A, B R n n : det(ab) = det A det B (Determinantenmultiplikationssatz)

Mehr

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren

1 Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren Erwartungswert und Kovarianzmatrix von Zufallsvektoren. Definition Ist X X,...,X p ein p-dimensionaler Zufallsvektor mit E X j < für alle j, so heißt

Mehr

oder A = (a ij ), A =

oder A = (a ij ), A = Matrizen 1 Worum geht es in diesem Modul? Definition und Typ einer Matrix Spezielle Matrizen Rechenoperationen mit Matrizen Rang einer Matrix Rechengesetze Erwartungswert, Varianz und Kovarianz bei mehrdimensionalen

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Lineare Algebra - Übungen 7 WS 2017/18

Lineare Algebra - Übungen 7 WS 2017/18 Prof. Dr. A. Maas Institut für Physik N A W I G R A Z Lineare Algebra - Übungen 7 WS 017/18 Aufgabe P0: Paulimatrizen Präsenzaufgaben 14. Dezember 017 Berechnen Sie für die Paulimatrizen σ 1 = ( ) 0 1,

Mehr

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist:

2. Ein Zufallsvektor X IR d ist multivariat normal verteilt dann und nur dann wenn seine charakteristische Funktion folgendermaßen gegeben ist: Multivariate elliptische Verteilungen a) Die multivariate Normalverteilung Definition 2 Der Zufallsvektor (X 1, X 2,..., X d ) T hat eine multivariate Normalverteilung (oder eine multivariate Gauss sche

Mehr

UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München

UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München IngolfTerveer Mathematik- Formeln Wirtschaftswissenschaften UVK Verlagsgesellschaft mbh Konstanz mit UVK/Lucius München Inhalt 1 Grundlegende Begriffe 11 1.1 Zahlbereiche 11 1.1.1 Reelle Zahlen 11 1.1.2

Mehr

Multivariate Verteilungen und Copulas

Multivariate Verteilungen und Copulas Multivariate Verteilungen und Copulas Zufallsvektoren und Modellierung der Abhängigkeiten Ziel: Modellierung der Veränderungen der Risikofaktoren X n = (X n,1, X n,2,..., X n,d ) Annahme: X n,i und X n,j

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Analysis II 14. Übungsblatt

Analysis II 14. Übungsblatt Jun.-Prof. PD Dr. D. Mugnolo Wintersemester 01/13 F. Stoffers 04. Februar 013 Analysis II 14. Übungsblatt 1. Aufgabe (8 Punkte Man beweise: Die Gleichung z 3 + z + xy = 1 besitzt für jedes (x, y R genau

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit

3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit 3. Gemeinsame und bedingte Verteilung, stochastische Unabhängigkeit Lernziele dieses Kapitels: Mehrdimensionale Zufallsvariablen (Zufallsvektoren) (Verteilung, Kenngrößen) Abhängigkeitsstrukturen Multivariate

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Gliederung 1 : Einführung 2 Differenzieren 2 3 Deskriptive 4 Wahrscheinlichkeitstheorie

Mehr

Serie 12: Eigenwerte und Eigenvektoren

Serie 12: Eigenwerte und Eigenvektoren D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende

Mehr