Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ. Z j = a 1j Y 1 + a 2j Y a mj Y m = a t j Y

Größe: px
Ab Seite anzeigen:

Download "Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ. Z j = a 1j Y 1 + a 2j Y a mj Y m = a t j Y"

Transkript

1 Herleitung der Hauptkomponenten: Y t = (Y 1,..., Y m ) Erwartung:µ Kovarianz:Σ Z j = a 1j Y 1 + a 2j Y a mj Y m = a t j Y a t j = (a 1j, a 2j,..., a mj ) Z 1, Z 2,...,Z m unkorreliert Varianzen fallen mit wachsendem Index j = 1,..., m a t j a j = m k=1 a 2 kj = 1. MV04f01

2 1. Hauptkomponente: Z 1 : Finde a 1 so, dass Nebenbedingung: Zielfunktion: Var(Z 1 ) = Var(a t 1Y ) a t 1 a 1 = 1 Maximum!! Var(a t 1 Y ) = at 1 Σa 1 Rückblick, Mathe: f(y 1,...,y m ) zu maximieren! λ, Lagrange Multiplikator, so dass in stationären Punkten y 0 gilt: Nebenbedingung g(y 1,...,y m ) = c f y i (y 0 ) λ g y i (y 0 ) = 0 i = 1,..., m L(y, λ) = f(y) λ[g(y) c] L y (y 0) = 0 MV04f02

3 L(a 1 ) = a t 1Σa 1 λ(a t 1a 1 1) (a t 1Σa 1 ) a 1 = 2Σa 1 L a 1 = 2Σa 1 2λa 1 = 0 (Σ λi)a 1 = 0 Dabei ist I = I m m die m-dimensionale Einheitsmatrix. Nach Theorem (Mathe) hat das homogene Gleichungssystem genau dann nichttriviale Lösungen a 1 0, wenn (Σ λi)a 1 = 0 det(σ λi) = 0 λ Eigenwert von Σ MV04f03

4 Eigenwerte Lösungen der Gleichung: det(σ λi) = 0 Gleichung ist Polynom n-ter Ordnung in λ, das m Nullstellen hat, die Eigenwerte λ 1, λ 2,..., λ m genannt werden. λ i c i Eigenvektor: Σc i = λ i c i Eigenvektoren gewöhnlich normiert, damit sie eindeutig sind: c t ic i = 1 MV04f04

5 Eigenschaften von Eigenwerten und Eigenvektoren a) m λ i = Spur(Σ) i=1 b) m λ i = det(σ) i=1 c) Σ reelle symmetrische Matrix, Eigenwerte und Eigenvektoren reell d) Σ positiv definit, alle Eigenwerte strikt positiv e) Σ positiv semidefinit, Rang(Σ) = p < m, p positive und m-p Eigenwerte =0 f) λ i λ j c i und c j orthonormiert MV04f04

6 g) m m-matrix C = (c 1,..., c m ) Eigenvektoren in den Spalten x = Cy C t C = I C t ΣC = Λ = λ λ λ m Dabei ist p = Rang(Σ) Aus C t ΣC = Λ folgt: x t Σx = y t C t ΣCy = y t Λy = λ 1 y λ p y 2 p Spektralzerlegung von Σ Σ = CΛC t = λ 1 c 1 c t λ pc p c t p MV04f04

7 Beispiel: Bestimmung der Eigenwerte und Eigenvektoren Σ = ( 1 1/2 1/2 1 ) det(σ λi) = det ( 1 λ 1/2 1/2 1 λ ) = (1 λ) 2 1/4 = λ 2 2λ + 3/4 Nullstellen: λ 1,2 = 1 ± 1 3/4, d.h. λ 1 = 3/2 und λ 2 = 1/2 Zu jedem Eigenwert λ i gehört ein Vektor c i, der Eigenvektor genannt wird, für den gilt: Σc i = λ i c i (Σ λ i I) c i = 0 Für λ 1 = 3/2 das Gleichungssystem (Σ 3/2I)c 1 = 0 zu lösen. MV04f04a

8 (Σ 3/2I)c 1 = 0 0.5c c 12 = 0 0.5c c 12 = 0 Das bedeutet c 11 = c 12, d.h jeder Vektor c t 1 = (c 11, c 11 ) ist eine Lösung. Für λ 2 = 1/2 ist das Gleichungssystem (Σ 1/2I)c 2 = 0 0.5c c 22 = 0 0.5c c 22 = 0 c 21 = c 22 Jeder Vektor c t 2 = (c 21, c 21 ) ist eine Lösung. Normierung: c t i c i = 1 c t 1 = (1/ 2, 1/ 2) c t 2 = (1/ 2, 1/ 2) MV04f04a

9 Bestimmung der ersten Hauptkomponente: Var(Z 1 ) = Var(a t 1Y ) = a t 1Σa 1 Max!! L(a 1 ) = a t 1Σa 1 λ(a t 1a 1 1) L a 1 = 2Σa 1 2λa 1 = 0 (Σ λi)a 1 = 0 λ muss ein Eigenwert sein und a 1 ein Eigenvektor Var(a t 1Y ) = a t 1Σa 1 = a t 1λIa 1 = λa t 1Ia 1 = λa t 1a 1 = λ Maximum!! λ = λ 1 (1. Eigenwert) a 1 (1. Eigenvektor) MV04f05

10 2. Hauptkomponente: Z 2 = a t 2Y a t 2a 2 = 1 Cov(Z 2, Z 1 ) = Cov(a t 2 Y, at 1 Y ) = E[at 2 (Y µ)(y µ)t a 1 ] = a t 2 Σa 1 = 0 Σa 1 = λ 1 a 1 a t 2a 1 = 0 Var(Z 2 ) = a t 2Σa 2 Maximum unter Nebenbedingungen: a t 2a 2 = 1 a t 2a 1 = 0 L(a 2 ) = a t 2 Σa 2 λ(a t 2 a 2 1) δa t 2 a 1 L a 2 = 2(Σ λi)a 2 δa 1 = 0 von links mal a t 1 2a t 1Σa 2 2λ a t 1a 2 }{{} =0 δ a t 1a 1 }{{} =1 = 2a t 1Σa 2 δ = 0 MV04f06

11 2a t 1Σa 2 δ = 0 0 = Cov(Z 2, Z 1 ) = a t 2Σa 1 = a t 1Σa 2 a t 1Σa 2 = 0 δ = 0 L a 2 = 2(Σ λi)a 2 δa 1 = 0 (Σ λi)a 2 = 0 Damit eine nichttriviale Lösung existiert, muss λ ein Eigenwert sein. Var(Z 2 ) = a t 2Σa 2 = a t 2λIa 2 = λa t 2a 2 = λ soll maximiert werden. λ = λ 2 a 2 2. Eigenvektor 2. Hauptkomponente: Z 2 = a t 2 Y MV04f07

12 1. Hauptkomponente: Z 1 = a t 1Y, wobei a 1 der zu λ 1 gehörige Eigenvektor 2. Hauptkomponente: Z 2 = a t 2Y, wobei a 2 der zu λ 2 gehörige Eigenvektor 3. Hauptkomponente: Z 3 = a t 3 Y, wobei a 3 der zu λ 3 gehörige Eigenvektor usw. Die Eigenwerte sind der Größe nach zu ordnen. Bei identischen Eigenwerten ist darauf zu achten, dass die zugehörigen Eigenvektoren orthogonal sind. MV04f07a

13 A m m = [a 1,...,a m ] Spalten sind die Eigenvektoren Z = (Z 1, Z 2,..., Z m ) t = A t Y Var(Z) = Λ = Vektor der Hauptkomponenten λ λ λ m Var(Z) = Var(A t Y ) = A t ΣA Λ = A t ΣA Σ = AΛA t MV04f08 m Var(Z i ) = i=1 m λ i = Spur(Λ) i=1

14 Var(Z) = A t ΣA = Λ = λ λ λ m m Var(Z i ) = i=1 m λ i = Spur(Λ) i=1 Spur(Λ) = Spur(A t (ΣA)) = Spur((ΣA)A t ) m = Spur(Σ) = Var(Y i ) i=1 MV04f08

15 m m Var(Z i ) = Var(Y i ) i=1 i=1 m m Var(Z i ) = i=1 i=1 Anteil der i-ten Hauptkomponente an der Totalvariation: λ i λ i / m j=1 λ j Anteil der ersten p Hauptkomponenten an der Totalvariation: p / m λ j j=1 j=1 λ j MV04f09

16 cov(teil01.frame) Groesse Schuh Gewicht Groesse Schuh Gewicht eigen(cov(teil01.frame)) $values [1] $vectors Gewicht Schuh Groesse Groesse Schuh Gewicht MV04f10

17 eigen(cov(teil01.frame)) $values [1] Eigenwerte: λ 1 = λ 2 = λ 3 = 2.01 $vectors Gewicht Schuh Groesse Groesse Schuh Gewicht Eigenvektoren: a t 1 = ( , , ) a t 2 = ( , , ) a t 3 = ( , , ) MV04f10a

18 Hauptkomponenten: HK1 = Groesse Schuh Gewicht HK2 = Groesse Schuh Gewicht HK3 = Groesse Schuh Gewicht In R: Eigenvektoren<-eigen(cov(teil01.frame))$vectors HK1<-as.matrix(teil01.frame)%*%Eigenvektoren[,1] HK2<-as.matrix(teil01.frame)%*%Eigenvektoren[,2] HK3<-as.matrix(teil01.frame)%*%Eigenvektoren[,3] Einfacher: as.matrix(teil01.frame)%*%eigenvektoren MV04f11

19 Die Kovarianzmatrix der Hauptkomponenten: cov(cbind(hk1,hk2,hk3)) [,1] [,2] [,3] [1,] e e e-15 [2,] e e e-14 [3,] e e e+00 In der Diagonalen stehen die Eigenwerte. Die Kovarianzen, Werte außerhalb der Diagonalen, sind nahezu Null. MV04f11a

20 Anteile an der Totalvariation: Eigenwerte<-eigen(cov(teil01.frame))$values Eigenwerte [1] print(round(eigenwerte/sum(eigenwerte)*100,digits=2)) [1] Die 1. Hauptkomponente Z 1 erklärt 89.8% der Variation, die 2. erklärt 9.53% der Variation. print(round(cumsum(eigenwerte)/sum(eigenwerte)*100,digits=2)) [1] Die beiden ersten Hauptkomponenten Z 1 und Z 2 erklären zusammen 99.32% der Variation. MV04f12

21 Verwendung der Korrelationsmatrix cor(teil01.frame) Groesse Schuh Gewicht Groesse Schuh Gewicht eigen(cor(teil01.frame)) $values [1] $vectors Gewicht Schuh Groesse Groesse Schuh Gewicht MV04f13

22 eigen(cor(teil01.frame)) $values [1] Eigenwerte: λ 1 = 2.61 λ 2 = 0.24 λ 3 = 0.15 $vectors Gewicht Schuh Groesse Groesse Schuh Gewicht Eigenvektoren: a t 1 = ( , , ) a t 2 = ( , , ) a t 3 = ( , , ) MV04f13a

23 Summe der Eigenwerte bei Verwendung der Korrelationsmatrix cor(teil01.frame) Groesse Schuh Gewicht Groesse Schuh Gewicht eigen(cor(teil01.frame)) $values [1] Summe der Diagonalelemente in der Korrelationsmatrix und damit auch die Summe der Eigenwerte ist 3! Der Beitrag der j-ten Hauptkomponente an der Totalvariation ist λ j /3. MV04f13b

24 Anteile an der Totalvariation eigen(cor(teil01.frame)) $values [1] Der Beitrag der j-ten Hauptkomponente an der Totalvariation ist λ j /3. Anteile in Prozent: eigen(cor(teil01.frame))$values*100/ Kumierte Anteile: cumsum(eigen(cor(teil01.frame))$values*100)/ Die 1. Hauptkomponente erklärt 87%, die zweite 8%, zusammen erklären sie 95% der Variation. MV04f13c

25 Berechnung der Hauptkomponenten bei Verwendung der Korrelationsmatrix Voraussetzung: Daten sind standardisiert, d.h. wir müssen durch die Standardabweichnungen dividieren! Standardabweichungen: sqrt(diag(cov(teil01.frame))) Groesse Schuh Gewicht stand<-sqrt(diag(cov(teil01.frame))) > diag(1/stand) [,1] [,2] [,3] [1,] [2,] [3,] MV04f13d

26 Standardisierung der Datenmatrix: K = 1/s /s /s m X = XK ist die standardisierte Datenmatrix. In R: teil01stand.frame<-as.matrix(teil01.frame)%*%diag(1/stand) > cov(teil01stand.frame) [,1] [,2] [,3] [1,] [2,] [3,] MV04f14

27 Berechnung der Hauptkomponenten in R: teil01stand.frame%*%eigen(cor(teil01.frame))$vectors HK1 HK2 HK MV04f15

28 Mittelwertkorrektur: Z = A t Y Z = A t (Y µ) Datenmatrix so verändern: (X 1µ t ) > mitte<-mean(teil01.frame) > mitte Groesse Schuh Gewicht > eins<-rep(1,nrow(teil01.frame)) > eins [1] [38] [75] [112] [149] [186] [223]

29 Mittelwertkorrektur in R: teil01.frame-eins%*%t(mitte) Groesse Schuh Gewicht

30 Berechnung der Hauptkomponenten in R: (as.matrix(teil01.frame) - eins%*%t(mitte))%*%eigenvektoren Gewicht Schuh Groesse MV04f16

31 R-Funktion prcomp prcomp(teil01.frame) Standard deviations: Rotation: PC1 PC2 PC3 Groesse Schuh Gewicht

32 prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE, tol = NULL) aus<-prcomp(teil01.frame) # Ausgabe in aus gespeichert > aus$sdev # Standardabweichungen = Wurzel(Eigenwerte) [1] aus$rotation # Eigenvektoren PC1 PC2 PC3 Groesse Schuh Gewicht

33 aus$x # Hauptkomponenten PC1 PC2 PC MV04f17

34 R-Funktion princomp Usage: princomp(x, cor = FALSE, scores = TRUE, covmat = NULL, subset = rep(true, nrow(as.matrix(x)))) princomp(teil01.frame) Call: princomp(x = teil01.frame) Standard deviations: Comp.1 Comp.2 Comp variables and 226 observations. MV04f18

35 Elemente der Ausgabeliste von princomp: princomp returns a list with class "princomp"containing the following components: sdev: the standard deviations of the principal components. loadings: the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors). center: the means that were subtracted. scale: the scalings applied to each variable. n.obs: the number of observations. scores: if scores = TRUE, the scores of the supplied data on the principal components. call: the matched call. MV04f19

Die Rücktransformation: Z = A t (Y µ) = Y = AZ + µ

Die Rücktransformation: Z = A t (Y µ) = Y = AZ + µ Die Rücktransformation: Z = A t (Y µ) = Y = AZ + µ Kleine Eigenwerte oder Eigenwerte gleich Null: k Eigenwerte Null = Rang(Σ) = m k Eigenwerte fast Null = Hauptkomponenten beinahe konstant Beschränkung

Mehr

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte, 90 min Klausur, Analyse mehrdimensionaler Daten, WS 2010/2011, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 21.02.2011 Klausur zur Vorlesung Analyse mehrdimensionaler Daten, Lösungen WS 2010/2011; 6 Kreditpunkte,

Mehr

Prof. Dr. Fred Böker

Prof. Dr. Fred Böker Statistik III WS 2004/2005; 8. Übungsblatt: Lösungen 1 Prof. Dr. Fred Böker 07.12.2004 Lösungen zum 8. Übungsblatt Aufgabe 1 Die Zufallsvariablen X 1 X 2 besitzen eine gemeinsame bivariate Normalverteilung

Mehr

5.Tutorium Multivariate Verfahren

5.Tutorium Multivariate Verfahren 5.Tutorium Multivariate Verfahren - Hauptkomponentenanalyse - Nicole Schüller: 27.06.2016 und 04.07.2016 Hannah Busen: 28.06.2016 und 05.07.2016 Institut für Statistik, LMU München 1 / 18 Gliederung 1

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Kapitel 4. Hauptkomponentenanalyse. 4.1 Einführung. 4.2 Herleitung der Hauptkomponenten

Kapitel 4. Hauptkomponentenanalyse. 4.1 Einführung. 4.2 Herleitung der Hauptkomponenten Kapitel 4 Hauptkomponentenanalyse 4. Einführung Die Hauptkomponentenanalyse ist eine variablenorientierte Methode, die, wie die Faktorenanalyse auch, versucht, die Originalvariablen durch eine kleinere

Mehr

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen

Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen Kapitel 9 Anhang aus Statistik-III-Skript: p-dimensionale Zufallsvariablen 9 Definitionen, Eigenschaften Wir betrachten jetzt p Zufallsvariablen X, X 2,, X p Alle Definitionen, Notationen und Eigenschaften

Mehr

1 (2π) m/2 det (Σ) exp 1 ]

1 (2π) m/2 det (Σ) exp 1 ] Multivariate Normalverteilung: m=1: Y N(µ; σ 2 ) Erwartungswert: µ Varianz: σ 2 f Y (y) = f Y1 Y 2...Y m (y 1,y 2,...,y m ) = [ 1 exp 1 ] 2πσ 2 2 (y µ)2 /σ 2 Σ: m m-matrix, symmetrisch, positiv definit.

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen

Mathematische Werkzeuge R. Neubecker, WS 2018 / 2019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 018 / 019 Optimierung Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen 1 Optimierung Optimierungsprobleme Suche nach dem Maximum oder Minimum

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

2.1 Gemeinsame-, Rand- und bedingte Verteilungen

2.1 Gemeinsame-, Rand- und bedingte Verteilungen Kapitel Multivariate Verteilungen 1 Gemeinsame-, Rand- und bedingte Verteilungen Wir hatten in unserer Datenmatrix m Spalten, dh m Variablen Demnach brauchen wir jetzt die wichtigsten Begriffe für die

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Lineare Algebra und Datenwissenschaften in Ingenieur- und Informatikstudiengängen

Lineare Algebra und Datenwissenschaften in Ingenieur- und Informatikstudiengängen Lineare Algebra und Datenwissenschaften in Ingenieur- und Informatikstudiengängen Heiko Knospe Technische Hochschule Köln heiko.knospe@th-koeln.de 6. September 26 / 2 Einleitung Das Management und die

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen

Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Statistische Analyseverfahren Abschnitt 2: Zufallsvektoren und mehrdimensionale Verteilungen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober 2018 Prof. Dr. Hans-Jörg

Mehr

6.1 Definition der multivariaten Normalverteilung

6.1 Definition der multivariaten Normalverteilung Kapitel 6 Die multivariate Normalverteilung Wir hatten die multivariate Normalverteilung bereits in Abschnitt 2.3 kurz eingeführt. Wir werden sie jetzt etwas gründlicher behandeln, da die Schätzung ihrer

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

oder A = (a ij ), A =

oder A = (a ij ), A = Matrizen 1 Worum geht es in diesem Modul? Definition und Typ einer Matrix Spezielle Matrizen Rechenoperationen mit Matrizen Rang einer Matrix Rechengesetze Erwartungswert, Varianz und Kovarianz bei mehrdimensionalen

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit

5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Musterlösung 13. (A ± I)x = 0 Ax ± x = 0 Ax = ±x Ax = λx D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung 13 1. Die Matrix A±I ist singulär falls es einen Vektor x 0 gibt der die Gleichung (A±I)x = 0 erfüllt, d.h. wenn A ± I als

Mehr

Exkurs: Eigenwertproblem

Exkurs: Eigenwertproblem 1 von 7 29.11.2008 16:09 Exkurs: Eigenwertproblem Bei der Faktorenanalyse tritt das Eigenwertproblem auf. Man spricht von einem Eigenwertproblem wenn das Produkt zwischen einer Matrix und einem Vektor

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Erster Akt: Begriffe und Beispiele

Erster Akt: Begriffe und Beispiele Eigenvektoren 1 Erster Akt: Begriffe und Beispiele 2 Sei L : A A eine lineare Abbildung von einem Vektorraum A in sich sich selbst. (Man denke an z. B. an A = R 2.) 3 Ein Vektor a A, a 0, heißt ein Eigenvektor

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Lineare Algebra I Kapitel 8 12. Juni 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von

1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von 1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik I+II Frühlingsemester 219 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 46 8. Lineare Algebra: 5. Eigenwerte und

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Für das Allgemeine lineare Gleichungssystem mit n linearen Gleichungen und n Unbekannten

Für das Allgemeine lineare Gleichungssystem mit n linearen Gleichungen und n Unbekannten Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 008 6. Januar.009 Kapitel 6 Leontieff Modell, Lineare

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

Multivariate Verteilungen. Gerhard Tutz LMU München

Multivariate Verteilungen. Gerhard Tutz LMU München Multivariate Verteilungen Gerhard Tutz LMU München INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Multivariate Normalverteilung 3 Wishart Verteilung 7 3 Hotellings T Verteilung 11 4 Wilks Λ 14 INHALTSVERZEICHNIS

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung

Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Zurück Stand 4.. 6 Eigenwerte/Eigenvektoren/Eigenräume/Diagonalisierung Im Allgemeinen werden Vektoren durch Multiplikation mit einer Matrix gestreckt und um einen bestimmten Winkel gedreht. Es gibt jedoch

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

1 Multivariate Zufallsvariablen

1 Multivariate Zufallsvariablen 1 Multivariate Zufallsvariablen 1.1 Multivariate Verteilungen Definition 1.1. Zufallsvariable, Zufallsvektor (ZV) Sei Ω die Ergebnismenge eines Zufallsexperiments. Eine (univariate oder eindimensionale)

Mehr

Klausurähnliche Aufgaben

Klausurähnliche Aufgaben Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Einführung in die Hauptkomponentenanalyse

Einführung in die Hauptkomponentenanalyse Einführung in die Hauptkomponentenanalyse Florian Steinke 6. Juni 009 Vorbereitung: Einige Aspekte der multivariaten Gaußverteilung Definition.. Die -D Gaußverteilung für x R ist ( p(x exp (x µ σ. ( Notation:

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen

Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Vorkurs Mathematik Übungen zu linearen Gleichungssystemen Lineare Gleichungssysteme lösen Aufgabe. Lösen sie jeweils das LGS A x = b mit ( ( a A =, b = b A =, b = 6 Aufgabe. Berechnen Sie für die folgenden

Mehr

Übungen zu Multivariate Verfahren WS 2009/10 1. Aufgabe 1 Betrachten Sie die folgenden beiden Vektoren und Matrizen

Übungen zu Multivariate Verfahren WS 2009/10 1. Aufgabe 1 Betrachten Sie die folgenden beiden Vektoren und Matrizen Übungen zu Multivariate Verfahren WS 2009/10 1 Prof. Dr. Fred Böker und Jing Dai Aufgabe 1 Betrachten Sie die folgenden beiden Vektoren und Matrizen 1 2 2 0 1 2 1 a = 2, b = 1, C = 1 4 0, E = 4 1 2 3 2

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

Lösungsskizze zur Wiederholungsserie

Lösungsskizze zur Wiederholungsserie Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation

Mehr

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich:

Lösung zu Serie [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: Lineare Algebra D-MATH, HS 04 Prof. Richard Pink Lösung zu Serie. [Aufgabe] Faktorisieren Sie die folgenden Polynome so weit wie möglich: a) F (X) := X 5 X in R[X] und C[X]. b) F (X) := X 4 +X 3 +X in

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz SS 5 4.5.5 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt

Mehr

Zusammenfassung zum Thema Vektor- und Matrizenrechnung

Zusammenfassung zum Thema Vektor- und Matrizenrechnung Zusammenfassung zum Thema Vektor- und Matrizenrechnung Mathematischer Vorkurs für Physiker und Naturwissenschaftler WS 2014/2015 Grundbegriffe der Linearen Algebra Viele physikalische Größen (Geschwindigkeit,

Mehr

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN

13. ABBILDUNGEN EUKLIDISCHEN VEKTORRÄUMEN 13. ABBILDUNGEN in EUKLIDISCHEN VEKTORRÄUMEN 1 Orthogonale Abbildungen im R 2 und R 3. Eine orthogonale Abbildung ist eine lineare Abbildung, die Längen und Orthogonalität erhält. Die zugehörige Matrix

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper)

bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) bzw. eine obere Dreiecksmatrix die Gestalt (U: upper) U = u 11 u 12 u 1n 1 u nn 0 u 22 u 2n 1 u 2n 0......... 0 0 u n 1n 1 u n 1n 0 0 0 u nn Eine nicht notwendig quadratische Matrix A = (a ij ) heißt obere

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil

Übungsblatt 11 zur Vorlesung Statistische Methoden - freiwilliger Teil Dr. Christof Luchsinger Übungsblatt zur Vorlesung Statistische Methoden - freiwilliger Teil Rechnen mit Matrizen, Multivariate Normalverteilung Herausgabe des Übungsblattes: Woche 0, Abgabe der Lösungen:

Mehr

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T

9 Faktorenanalyse. Wir gehen zunächst von dem folgenden Modell aus (Modell der Hauptkomponentenanalyse): Z = F L T 9 Faktorenanalyse Ziel der Faktorenanalyse ist es, die Anzahl der Variablen auf wenige voneinander unabhängige Faktoren zu reduzieren und dabei möglichst viel an Information zu erhalten. Hier wird davon

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

= [Entw. nach S1 ] 2 det = [Z2 Z 2 Z 1 ] 2 det = [Entw. nach Z1 ] 5 det = [Z1 Z 1 +Z 3 ] 5 det

= [Entw. nach S1 ] 2 det = [Z2 Z 2 Z 1 ] 2 det = [Entw. nach Z1 ] 5 det = [Z1 Z 1 +Z 3 ] 5 det Aufgabe 1 Wir wissen, dass sich die Determinante einer Matrix nicht verändert, wenn wir das Vielfache einer Spalte zu einer anderen Spalte bzw. das Vielfache einer Zeile zu einer anderen Zeile addieren.

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr