Singulärwertzerlegung
|
|
|
- Ingrid Meinhardt
- vor 8 Jahren
- Abrufe
Transkript
1 LMU München Centrum für Informations- und Sprachverarbeitung WS 10-11: HS Matrixmethoden im Textmining Dozent: Prof.Dr. Klaus U. Schulz Referat von: Erzsébet Galgóczy Singulärwertzerlegung 1 Einleitung Jede beliebige Matrix A kann in (sehr gut verarbeitbare) zwei orthogonale (sogar orthonormale) Matrizen U und V und eine diagonale Matrix Σ zerlegt werden. Anders als z.b. bei der QR-Dekomposition wird sowohl der Zeilenraum, als auch der Spaltenraum einer m n-matrix behandelt. Man findet orthonormale Basen v 1,..., v r 1 für den Zeilenraum und u 1,..., u r für den Spaltenraum. Figure 1: Die Basen U und V bewirken Drehungen und Spiegelungen. Die Diagonalmatrix Σ ist eine Streckmatrix. 1.1 Was heißt das? Nimmt man eine m n-matrix, so ist es nicht allzu schwer, im Zeilenraum aufeinander orthogonale Basisvektoren v i m d.h. eine orthonormale Basis V zu finden, etwa mit dem Gram-Schmidt-Verfahren. Es soll zusätzlich aber auch gelten, dass die Vektoren Av i ebenfalls orthogonal sind, d.h. jedes A i zeigt in die Richtung des jeweiligen Spaltenvektors u i, der eventuell mit einem Skalar σ i multipliziert werden muss. Mit anderen Worten: Wir suchen eine orthonormale Basis für A in R n, die in 1 r ist die Dimension/der Rang der Matrix, d.h. in R 3 gibt es v 1, v 2, v 3 etc. 1
2 eine ebenfalls orthonormale Basis in R m überführt wird. Es gilt also für alle v 1,...v r und u 1,..., u r in A: Av i = σ i u i, d.h. (Beispielschema mit m = n = 2): d.h. in Matrixform: AV = UΣ oder A = UΣV T Die Spaltenvektoren von V und U, v i und u i nennt man Singulärvektoren, die Elemente σ i der Diagonalmatrix Σ sind die Singulärwerte. 1.2 Warum geht es nicht mit weniger Faktoren? Außer in Spezialfällen ist es nirgends garantiert, dass die Multiplikation einer Matrix A mit einer orthogonalen Basis zu einem ebenfalls orthogonalen Ergebnis führt. Wenn man nur eine orthogonale Basis Q wählt, ist Σ = Q 1 AQ nicht diagonal 2! (Es sei denn, A ist zufällig symmetrisch, positiv, und definit, dann gilt A = QΣQ T = QΛQ T ). Die SVD soll für beliebige Matrizen gelten. In dem Sonderfall, falls A symmetrisch ist, kann man die Eigenvektoren der Matrix als Basen wählen. Bei nicht-symmetrischen Matrizen ist die Basis aus Eigenvektoren jedoch nicht orthonormal und man benötigt zwei verschiedene orthogonale Matrizen. 1.3 Schematische Darstellung einer SVD Die Matrix U wird noch in U 1 und U 2 partitioniert, wobei U 1 R m n, sodass die thin SVD A = U 1 ΣV T lautet. 2 Erinnerung: Da es sich um orthogonale Basen handelt, ist die Inverse stets gleich der transponierten Matrix. Q 1 = Q T 2
3 2 Interpolation: Eigenwerte und Eigenvektoren Eine symmetrische, positive, definite Matrix A hat orthogonale Eigenvektoren und positive Eigenwerte λ. 2.1 Was sind Eigenvektoren und Eigenwerte? Wenn man einen beliebigen Vektor mit einer Matrix A multipliziert, so ändert er in der Regel seine Richtung. Bestimmte Vektoren x, die Eigenvektoren zeigen jedoch in dieselbe Richtung wie ihr Produkt Ax mit der Matrix. Es gilt also Ax = λx, wobei λ ein sogenannter Eigenwert ist. Wenn man einen Vektor mit A multipliziert, wird dabei also jeder Eigenvektor mit seinem Eigenvert multipliziert. Für alle Eigenwerte λ gilt: λ ist Eigenwert von A gdw. det(λi n A) = 0, also A λi singulär ist (im trivialen Fall, dass der Eigenwert = 0 ist, liegt der Eigenvektor im Nullraum). Um die Eigenvektoren bei gegebenen Eigenwerten zu erhalten, gilt es, die Gleichung Ax = λx, d.h. aufgelöst (A λi)x = 0 für jedes λ zu lösen 3. Weiterhin gilt: Das Produkt der n Eigenwerte ist gleich der Determinante von A. 2.2 Beispiel einer Eigenwert-Berechnung [ ] 1 2 Sei A = die Beispielmatrix. Da sie singulär ist, ist die Determinante = Dadurch ist auch eine der Eigenwerte (2 2-Matrizen haben i.d.r. zwei Eigenwerte) Null. Für die Berechnung des zweiten Eigenwertes wird zunächst λi = ( ) λ 0 [ ] 0 λ von A 1 λ 2 abgezogen: A λi = 2 4 λ Dann berechnet man die [ Determinante ] dieser Matrix (Für 2 2-Matrizen lautet 1 λ 2 die Formel ad bc): det = (1 λ)(4 λ) (2)(2) = λ 2 4 λ 2 5λ; λ 1 = 0, λ 2 = 5 3 Für kleine Matrizen können Eigenwerte auch per trial and error festgestellt werden. 3
4 3 Berechnung der SVD einer Matrix [ ] 2 2 Sei A = eine Matrix. Wir suchen Vektoren v 1 1 1, v 2 im Zeilenraum, R 2 und u 1, u 2 im Spaltenraum, R 2 und zwei skalare Werte in einer Diagonalmatrix, σ 1 > 0, σ 2 > 0. Figure 2: Bei der Singulärwertzerlegung wählt man Basen mit Av i = σ 1 u i Um nun zuerst V zu berechnen, berechnet man die symmetrische Matrix [ ] 5 3 A T A = (V Σ T U T )(UΣV T ) = 3 5 [ ] [ ] 1 1 mit den aufeinander senkrecht stehenden Eigenvektoren und. Diese werden auf Einheitsvektoren normalisiert: v 1 = 1 1 [ ] [ ] 1/ 2 1/ 1/ 2, v 2 = 2 1/. 2 Die Eigenwerte sind 8 und 2. Für AA T wären es die gleichen, aber die Reihenfolge der Eigenwerte muss beachtet werden, d.h. der erste Eigenvektor wäre hier (1,0). U kann durch Kürzen von AA T gefunden werden, da AA T = (UΣV T )(V Σ T U T ), oder durch Multiplikation von A mit v 1 und v 1, da diese in der gleichen Richtung wie u 1 und u 2 liegen. Av 1 = [ ] [ ] 1/ 2 1/ = 2 [ ] 2/ 2 d.h. der Einheitsvektor ist u 0 1 = 4 [ ] 1 0
5 Av 1 = [ ] [ ] 2 2 1/ / 2 = [ 0 2 ] d.h. der Einheitsvektor ist u 2 = Da Av 1 = 2 2u 1 ist, ist der erste Singulärwert σ 1 = 2 2. Quadriert gibt das 8 einen Eigenwert von A T A. Analog gilt: σ 2 = 2, und σ2 2 = 2, der zweite Eigenwert von A T A. Die vollständige Singulärwertzerlegung von A ist also UΣV T bestimmt: [ ] [ ] [ ] [ ] = 1/ 2 1/ / 2 1/ 2 4 Ergebnis Mit der Singulärwertzerlegung werden orthogonale Basen für die 4 fundamentalen Unterräume einer beliebigen Matrix gefunden. v 1,..., v r : orthonormale Basis für den Zeilenraum (Dimension r) u 1,..., u r : orthonormale Basis für den Spaltenraum (Dimension r) [ ] 0 1 v r+1,..., v n : orthonormale Basis für den Nullraum von A, d.h. Kern von A (Dimension n r) u r+1,..., u m : orthonormale Basis für den Nullraum von A T, d.h. Kern von A T (Dimension m r) 5 Anwendungen In der Praxis findet man die Singulärwertzerlegung oft bei diversen approximativen Verfahren: Kompression etc. 5.1 Matrix-Approximation Wenn A eine Matrix mit niedrigem Rang und einem leichten Rauschen N ist, d.h. A = A 0 + N, wobei N im Vergleich zu A 0 sehr klein ist, wird die Anzahl der großen Singulärwerte oft als den numerischen Rang einer Matrix bezeichnet. Wenn man den korrekten Rang von A 0 feststellen kann, entweder durch Schätzung oder durch Untersuchung der Singulärwerte, kann man das Rauschen entfernen, indem man sich A durch eine Matrix mit dem korrekten Rang annähert. D.h. wenn man die k größten Singulärwerte auswählt, und die ihnen entsprechenden Singulärvektoren aus U und V, erhält man die k-rangige Approximation zur Matrix mit der geringsten Error-Rate. Diese Norm ist die Frobenius-Norm. 5.2 Beispiel einer Anwendung: Bildkompression Das Pixelraster eines digitalen Bildes ist im Grunde eine Matrix, wo jedes Pixel einen Eintrag in der Matrix repräsentiert und einen Wert trägt. Für ein 512x256- Bild hat man 512 = 2 9 Pixel in jeder Zeile und 256 = 2 8 Pixel in jeder Spalte, d.h. eine Matrix mit 2 17 Einträgen. 5
6 Beim Komprimieren geht es darum, die Anzahl der Einträge zu verringern, ohne die Bildqualität groß zu verschlechtern. Natürlich kann man das Raster einfach vergröbern, z.b. Quadrate von jeweils 4 Pixeln zu einem Durchschnitts-Farb-Wert zusammenfassen. Dieses Verfahren führt aber schnell zu schlechten Ergebnissen. Wenn man aber Singulärwertzerlegung anwendet, ist es in idealen Fällen möglich, die Matrix auf Rang 1 zu reduzieren (oder, für bessere Ergebnisse, z.b. 5 Rang-1- Matrizen), was zu einer sehr guten Kompressionsrate führt. Konkret heißt dies: Die beste Approximation zu der Originalmatrix A ist die Matrix σ 1 u 1 v1 T, d.h. der größte Singulärwert σ 1 und die dazu korrespondierenden Singulärvektoren u 1 und v 1. Quellen Eldén, Lars (2007). Matrix Methods in Data Mining and Pattern Recognition. Siam, Philadelphia. Strang, Gilbert (2003). Lineare Algebra. Springer, Berlin. 6
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
Lineare Algebra - alles was man wissen muß
Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger
A Matrix-Algebra. A.1 Definition und elementare Operationen
A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.
Seminararbeit für das SE Reine Mathematik- Graphentheorie
Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis
Einführung in die Vektor- und Matrizenrechnung. Matrizen
Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:
Numerische Behandlung des Eigenwertproblems
Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011
Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h
6 Symmetrische Matrizen und quadratische Formen
Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische
Computer Vision SS 2011. Skript
Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen
Kapitel 15. Lösung linearer Gleichungssysteme
Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren
Statistische Methoden
Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante
KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:
KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand
Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 15 0 6 1. 15 12 x + 3 y 3 z = 15 12 3 3. 15 2 x 3 y = 4 2 3 0.
Beispiel zur Lösung eines Gleichungssystems : 6 y + z = 5 0 6 5 2 x + 3 y 3 z = 5 2 3 3 5 2 x 3 y = 4 2 3 0 4 z2 /3 z : 3 2 x 3 y = 4 2 3 0 4 4 x + y z = 5 4 5 6 y + z = 5 0 6 5 z2 + 2 z 2 x 3 y = 4 2
Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf
Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks
Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen
Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R
LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow
LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9
Hauptkomponentenanalyse PCA
Hauptkoponentenanalyse PCA Die Hauptkoponentenanalyse (Principal Coponent Analysis, PCA) ist eine Methode zur linearen Transforation der Variablen, so dass: öglichst wenige neue Variablen die relevante
Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17
Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),
Risikomessung und Value at Risk Wintersemester 2013/14
Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Günter M. Gramlich. Mathematik-Studienhilfen. Eine Einführung. Lineare Algebra. 2., aktualisierte Auflage
Günter M. Gramlich Mathematik-Studienhilfen Lineare Algebra Eine Einführung 2., aktualisierte Auflage Günter M. Gramlich Lineare Algebra Mathematik - Studienhilfen Herausgegeben von Prof. Dr. Bernd Engelmann
Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter
Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser
Kapitel IR:III (Fortsetzung)
Kapitel IR:III (Fortsetzung) III. Retrieval-Modelle Modelle und Prozesse im IR Klassische Retrieval-Modelle Bool sches Modell Vektorraummodell Retrieval-Modelle mit verborgenen Variablen Algebraisches
Approximation von Tensoren
Approximation von Tensoren Katrin Almon Geboren am 08.08.1987 in Konstanz Barbara Fuchs Geboren am 26.05.1988 in Bad Honnef 1. September 2010 Bachelorarbeit Mathematik Betreuer: Prof. Dr. Mario Bebendorf
6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte
Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n
2 Die Darstellung linearer Abbildungen durch Matrizen
2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )
Mathematik III für Ingenieure
Mathematik III für Ingenieure im Bachelor-Studiengang Maschinenbau Vorlesung Wintersemester 21/211 B. Schuster aktualisert am 27. Januar 211 Inhalt I. Eigenwerte und Eigenvektoren 1 1. Komplexe Matrizen
Berechnung von Eigenwerten und Eigenvektoren
Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.
Leitfaden Lineare Algebra: Determinanten
Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv
(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu
Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die
Lineare Algebra und analytische Geometrie II (Unterrichtsfach)
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SS 0 Blatt.06.0 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Abgabe: Dienstag, 0. Juli 0, bis 4:00
KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren
KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0
Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung
Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik [email protected] v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen
Hans Walser, [20090509a] Wurzeln aus Matrizen
Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn
Bildverarbeitung Herbstsemester 2012. Kanten und Ecken
Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector
u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.
Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Übungen zum Ferienkurs Lineare Algebra WS 14/15
Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)
Wie Google Webseiten bewertet. François Bry
Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google
Lösung des Kleinste-Quadrate-Problems
Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: [email protected].
Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und
11 Normalformen von Matrizen
11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell
Einführung in MATLAB
Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB
Erinnerung/Zusammenfassung zu Abbildungsmatrizen
Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin ([email protected]) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend
7. Numerik mit MATLAB
Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1,
Lineare Algebra und Computer Grafik
Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare
Skript zur Vorlesung Höhere Mathematik für Bachelorstudiengänge. Prof. Dr. R. Herzog. gehalten im SS2013 Technische Universität Chemnitz
Skript zur Vorlesung Höhere Mathematik für Bachelorstudiengänge Prof. Dr. R. Herzog gehalten im SS2013 Technische Universität Chemnitz Auszug aus den Studienordnungen zu den Ausbildungszielen der mit dieser
Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab
Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
ÜBERBLICK ÜBER DAS KURS-ANGEBOT
ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer
Einführung in die Tensorrechnung
1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer
Inhaltsverzeichnis 1 Lineare Gleichungssysteme I
Inhaltsverzeichnis 1 Lineare Gleichungssysteme I 3 1.1 Mengen und Abbildungen....................................... 3 1.1.1 Mengen und ihre Operationen.............................. 3 1.1.2 Summen- und
Elemente der Analysis II
Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel
Mathematischer Vorkurs für Physiker WS 2009/10
TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,
5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung
5. Vorlesung Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung Seite 120 The Ranking Problem Eingabe: D: Dokumentkollektion Q: Anfrageraum
7 Lineare Abbildungen und Lineare Gleichungssysteme
7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:
Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg
Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade
Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS
Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage
Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).
Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A
Multivariate Analyse: FS 2012. Ergänzungen zur Mitschrift der Vorlesung über Multivariate Datenanalyse von Prof. A. Barbour
Multivariate Analyse: FS 2012 Ergänzungen zur Mitschrift der Vorlesung über Multivariate Datenanalyse von Prof. A. Barbour by PD Dr. Daniel Mandallaz Chair of Land Use Engineering Department of Environmental
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
ax 2 + bx + c = 0, (4.1)
Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die
4. Übungsblatt Matrikelnr.: 6423043
Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613
Einführung in die Kodierungstheorie
Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht
Lineare Gleichungssysteme I (Matrixgleichungen)
Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst
Was ist MATLAB? Typische Anwendungen
Computational Physics 1, Seminar 01 Seite 1 Was ist MATLAB? numerisches Berechnungs- und Simulationswerkzeug integriert Berechnung, Visualisierung und Programmierung gleichzeitig höhere Programmiersprache
Numerisches Programmieren
Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches
Ausgleichungsrechnung I
Ausgleichungsrechnung I oder Die Anwendung statistischer Methoden in Vermessungswesen und GIS Gerhard Navratil mit Beiträgen von Martin Staudinger Institute for Geoinformation Technical University Vienna
Fotografie * Informatik * Mathematik * Computer-Algebra * Handreichung für Lehrer
BIKUBISCHE INTERPOLATION AM BEISPIEL DER DIGITALEN BILDBEARBEITUNG - AUFGABENSTELLUNG FÜR SCHÜLER Problem Bei Veränderung der Größe eines Digitalbildes sind entweder zuviel Pixel (Verkleinerung) oder zuwenig
Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik. Lineare Algebra. zusammengestellt von
Ausgewählte Aufgaben zum Grundbereich des Staatsexamens in Mathematik Lineare Algebra zusammengestellt von Sabine Giese, Josef Heringlehner, Birgit Mielke, Hans Mielke und Ralph-Hardo Schulz 98 Aufgaben,
Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08
CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Statistik II Universität Ulm Abteilung Stochastik Vorlesungsskript Prof Dr Volker Schmidt Stand: Wintersemester 2007/08 Ulm, im Februar 2008 INHALTSVERZEICHNIS 2
2 Darstellung von Zahlen und Zeichen
2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f
Zur Numerik großdimensionaler Eigenwertprobleme. Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau
Zur Numerik großdimensionaler Eigenwertprobleme Werner Vogt Technische Universität Ilmenau Institut für Mathematik Postfach 100565 98684 Ilmenau Ilmenau, den 8.11.2004 1 Einführung 1 Zusammenfassung Der
Entwurf robuster Regelungen
Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler
Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.
Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der
Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth
Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung Mathematik Klausuraufgaben zur Mathematik - von Wolfgang Langguth Aufgabenstellungen
Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete
Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg
Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.
Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.
Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel
2.1 Codes: einige Grundbegriffe
Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen
Mathematik für Ökonomen
Springer-Lehrbuch Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab Bearbeitet von Wolfgang Kohn, Riza Öztürk 1. Auflage 2012. Taschenbuch. xv, 377 S. Paperback
S. Bouattour, D. Paulus 21. Mai 2003
Einführung in GNU Octave S. Bouattour, D. Paulus 21. Mai 2003 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Was ist Octave?........................................ 2 1.2 Installation..........................................
Modellierung, Simulation, Optimierung Diskretisierung 1
Modellierung, Simulation, Optimierung Diskretisierung Prof. Michael Resch Dr. Martin Bernreuther, Dr. Natalia Currle-Linde, Dr. Martin Hecht, Uwe Küster, Dr. Oliver Mangold, Melanie Mochmann, Christoph
Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band 2, 2.Aufl. (Version 2010), Kapitel 5
Lösungsvorschläge zu ausgewählten Übungsaufgaben aus Storch/Wiebe: Lehrbuch der Mathematik Band,.Aufl. Version, Kapitel 5 Bilinear-und Sesquilinearformen Abschnitt.A, Aufg., p. 6.6. : Man bestimme die
Digitale Bildverarbeitung Einheit 8 Lineare Filterung
Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, wie lineare
Segmentierung von Faserstrukturen in tomographischen Aufnahmen. Workshop Analyse der Mikrostruktur von Faserverbundwerkstoffen in Volumenbildern
Segmentierung von Faserstrukturen in tomographischen Aufnahmen Workshop Analyse der Mikrostruktur von Faserverbundwerkstoffen in Volumenbildern Oliver Wirjadi Frankfurt, 7.03.007 Bildquelle: Institut für
