7. Numerik mit MATLAB
|
|
|
- Lukas Maurer
- vor 10 Jahren
- Abrufe
Transkript
1 Start Inhalt Numerik mit MATLAB 1(24) 7. Numerik mit MATLAB 7.1 Lineare Algebra Normen. Matrixzerlegungen. Gleichungssysteme. 7.2 Lineare Ausgleichsrechnung qr, svd, pinv, \. 7.3 Interpolation interp1, interp2, spline. 7.4 Polynome Auswertung, NST, Ableitung u.a. Fortsetzung Inhalt Kap. 7 nächste Folie
2 Start Inhalt Numerik mit MATLAB 2(24) 7.5 Nullstellen fzero. 7.6 Optimierung fminsearch, fminbnd. 7.7 Numerische Integration quad und Verwandte. 7.8 Anfangswertaufgaben Die ode...-routinen.
3 Start Inhalt Numerik mit MATLAB 3(24) Normen, Konditionszahl Vektornorm x p norm(x,p) p 1, p = ±inf (Standard: p=2) Matrixnorm A p norm(a,p) p = 1, 2, inf, fro (Standard: p=2) Konditionszahl cond p (A) cond(a,p) außerdem oft nützlich größter bzw. kleinster Eintrag jeder Spalte von A max(a), min(a) Summe bzw. Produkt jeder Spalte von A sum(a), prod(a)
4 Start Inhalt Numerik mit MATLAB 4(24) Matrix Analysis Rang einer Matrix rank(a) Spur einer Matrix trace(a) = sum(diag(a)) Determinante einer Matrix det(a) Orthonormalbasis des Nullraums von A null(a) Orthonormalbasis des Bildraums von A orth(a)
5 Start Inhalt Numerik mit MATLAB 5(24) Inverse und Zerlegungen (1) Inverse A 1 von A inv(a) LU-Zerlegung L U = P A Q [L,U] = lu(a) [L,U,P] = lu(a) [L,U,P,Q] = lu(a) Cholesky-Zerlegung R T R = A R = chol(a) QR-Zerlegung Q R = A [Q,R] = qr(a) [Q,R] = qr(a,0)
6 Start Inhalt Numerik mit MATLAB 6(24) Inverse und Zerlegungen (2), Eigenwerte Singulärwertzelegung U S V T = A [U,S,V] = svd(a) [U,S,V] = svd(a,0) Moore-Penrose-Pseudoinverse A pinv(a) Eigenwerte und Eigenvektoren für Ax = λx oder Ax = λbx d = eig(a,b) [V,D] = eig(a) [V,D] = eig(a,b)
7 Start Inhalt Numerik mit MATLAB 7(24) Lösung linearer Gleichungssyteme (1) Der Backslash Operator \ (left division) Zur Lösung eines linearen Gleichungssystems Ax = B wird die sogenannte Linksdivision benutzt: x = A\B Bemerkungen: - Das Ergebnis entspricht x = inv(a) B, wird aber anders (effektiver) berechnet. - Besitzt Ax = B keine Lösung oder ist A nicht quadratisch, ist A\B die Lösung des zugehörigen Ausgleichsproblems.
8 Start Inhalt Numerik mit MATLAB 8(24) Lösung linearer Gleichungssyteme (2) Verwendung von linsolve X = linsolve(a,b) löst AX = B mittels LU-Faktorisierung und Pivotisierung, falls A quadratisch ist, ansonsten mittels QR-Faktorisierung mit Spaltenpivotisierung. X = linsolve(a,b,opts) löst AX = B oder A T X = B mit einem geeigneten Algorithmus, der passend zu den in opts spezifizierten Eigenschaften der Matrix A gewählt wird. Details sind der Online-Hilfe zu entnehmen.
9 Start Inhalt 9(24) Lineare Ausgleichsrechnung (1) Lösen eines linearen Ausgleichsproblems b Ax 2 min mit A R m n, b R n, i.a. m > n. Normalengleichung (numerisch nicht empfehlenswert) x = (A *A)\(A *b); QR-Faktorisierung [Q,R] = qr(a); c = Q *b; n = size(a,2); x = R(1:n,1:n)\c(1:n); kürzer: [Q,R] = qr(a,0); x = R\Q *b; noch kürzer: x = A\b;
10 Start Inhalt 10(24) Lineare Ausgleichsrechnung (2) Singulärwertzerlegung und Pseudoinverse [U,S,V] = svd(a); bzw. ökonomische Variante: [U,S,V] = svd(a,0); x = V*(S\U *b); bzw. mit Aufruf der Pseudoinversen x = pinv(a)*b;
11 Start Inhalt 11(24) Interpolation (1) 1D Interpolation: interp1 Grundvariante: yi = interp1(x,y,xi) x - Stützstellenvektor y - Funktion (von x) oder Vektor gleicher Länge wie x xi - Interpolationsstelle(n) Erweiterungen: yi = interp1(x,y,xi,method) yi = interp1(x,y,xi,method, extrap ) pp = interp1(x,y,method, pp ) wobei method eine der folgenden Zeichenketten ist: nearest, linear, cubic, spline
12 Start Inhalt 12(24) Interpolation (2) 1D Interpolation: interp1 Spezialfälle: extrap für Extrapolation verwenden wenn häufiges (nicht gleichzeitiges) Interpolieren nötig ist: pp = interp1(x,y,method, pp ); yi = ppval(pp,xi); äquivalent mit yi = interp1(x,y,xi,method, extrap ); kubische Spline Interpolation statt interp1(x,y,xi, spline ) Aufruf von yi = spline(x,y,xi) oder pp = spline(x,y); yi = ppval(pp,xi);
13 Start Inhalt 13(24) Interpolation (3) 2D Interpolation: interp2 Voraussetzung: 2D Stützstellen auf kartesischem Gitter Grundvariante: zi = interp2(x,y,z,xi,yi,method) mit method = nearest linear spline cubic liefert Interpolationswerte zi an den Stellen (xi,yi) basierend auf den Daten X, Y, Z, wobei X, Y ein gleichmäßiges Gitter bilden müssen, zum Beispiel erzeugt durch [X,Y] = meshgrid(...); Z = func (X,Y).
14 Start Inhalt 14(24) Interpolation (4) Bemerkungen: Zur Interpolation über gestreuten Daten kann die Funktion TriScatteredInterp verwendet werden. Für weitergehende Splineinterpolation gibt es die zusätzliche SPLINE TOOLBOX.
15 Start Inhalt 15(24) Polynome (1) Ein Polynom p(x) = a n x n + a n 1 x n a 1 x + a 0 wird durch den Vektor p = [ a_n... a_1 a_0]; repräsentiert. Auswahl von Funktionen zur Arbeit mit Polynomen. roots - Nullstellenbestimmung p1=[1 2 1]; roots(p1) ans = -1-1
16 Start Inhalt 16(24) Polynome (2) conv, deconv - Multiplikation und Division von Polynomen p1=[1 2 1]; p3 = [1 1]; p4 = [1-1]; w = conv(p3,p4) ==> [1 0-1] v = deconv(p1,p3) ==> [1 1] v = deconv(p1,p4) ==> [1 3] [v,r] = deconv(p1,p4) ==> [1 3] [0 0 4] poly - Erzeugung spezieller Polynome poly(a) ==> charakteristisches Polynom der Matrix A poly(r) ==> p(x) = (x r 1 )(x r 2 )... (x r n ) Bsp.: r = [1 2 3]; p = poly(r); ==> [ ]
17 Start Inhalt 17(24) Polynome (3) polyder - Bestimmung der Ableitung eines Polynoms oder der Ableitung des Produktes bzw. des Quotienten zweier Polynome p1=[1 2 1]; p3 = [1 1]; p4 = [1-1]; polyder(p1) ==> [2 2] polyder(p3,p4) ==> [2 0] [q,d] = polyder(p1,p3) ==> q = [1 2 1] d = [1 2 1] polyval - Polynomauswertung p1=[1 2 1]; y = polyval(p1,[ ]) ==> y = [ ] polyfit - Bestimmung der polynomialen Ausgleichskurve vom Grad n zur Datenmenge (x i, y i ), i = 1,..., m p = polyfit(x,y,n);
18 Start Inhalt 18(24) Nullstelle von f (x) fzero - Nullstelle einer Funktion einer Veränderlichen x = fzero(fun,x0) Ist x0 skalar, wird eine Nullstelle von fun(x) in der Nähe von x0 gesucht. Ist x0 = [a b] mit fun(a)*fun(b) < 0, wird eine Nullstelle im Intervall [a b] gesucht. Beispiel: f (x) = x 2 + 2x 8 = (x 2)(x + 4) fun=@(x) x^2 + 2*x - 8; fzero(fun,2.5) ==> 2 fzero(fun, -3) ==> -4 fzero(fun,[1 3]) ==> 2 zero(fun,[-5 3]) ==>??? Error using ==> fzero at 293
19 Start Inhalt 19(24) Optimierung Minimum einer Funktion f (x) fminbnd - Minimum einer Funktion einer Veränderlichen auf einem Intervall x = fminbnd(fun,x1,x2,options) fminsearch - Minimum einer Funktion mehrerer Veränderlicher x = fminsearch(fun,x0,options) Für weitergehende Optimierungsaufgaben gibt es die zusätzliche OPTIMIZATION TOOLBOX. (Tipp: fsolve zur Lösung nichtlinearer Gleichungssysteme.)
20 Start Inhalt 20(24) Numerische Integration Numerische Approximation für b f (x) dx a quad - Basisvariante q = quad(fun,a,b) oder quad(fun,a,b,tol) fun sin(x.^2); quad(fun,0,pi) ==> quad(fun,0,pi,1.e-2) ==> quad(fun,0,pi,1.e-8) ==> quadl, quadv, quadgk Anwendungsbereiche siehe Online Hilfe Für mehrdimensionale Integrale (Kubatur): dblquad, quad2d, triplequad
21 Start Inhalt 21(24) Anfangswertaufgaben (1) Näherungsweise Lösung von Anfangswertaufgaben y (t) = f (t, y), y(t 0 ) = y 0 wobei y(t) und f (t, y) Vektoren sein können. Beispiel einer AWA für eine skalare Funktion y(t) y (t) = 2ty, y(0) = 1, t [0, 1.2] func 2*t*y ; ode23(func,[0 1.2],1) % oder [T,Y] = ode23(func,[0 1.2],1); Bem.: Erster Aufruf plottet sofort die Lösung, kein Zugriff auf Lösungsdaten T,Y. Im zweiten Beispiel stehen T,Y zur Weiterverarbeitung zur Verfügung, aber kein unmittelbarer Plot.
22 Start Inhalt 22(24) Anfangswertaufgaben (2) Lösungsroutinen für Anfangswertaufgaben für nichtsteife Differentialgleichungen ode23, ode45, ode113 für steife Differentialgleichungen ode15s, ode23s, ode23t, ode23tb für implizit gegebene Differentialgleichungen ode15i Aufruf: [t,y] = ode...(odefun,tspan,y0,options) options kann entfallen, fehlt [t,y] = wird die Lösung der AWA sofort geplottet.
23 Start Inhalt 23(24) Anfangswertaufgaben (3) Ergänzende Funktionen zur Arbeit mit Lösungsroutinen für Anfangswertaufgaben deval - Auswertung der Lösung einer AWA sol = ode23(func,[0 1.2],1); x = linspace(0,1.2,100); y = deval(sol,x,1); plot(x,y) odextend - Erweiterung der Lösung einer AWA
24 Start Inhalt 24(24) Anfangswertaufgaben (4) Ergänzende Funktionen zur Arbeit mit Lösungsroutinen für Anfangswertaufgaben odeget - Abfrage von Optionen für die ode...-routinen allgemein opt = = odeget(options, name ) Beispiel Abfrage relative Toleranz odeget(options, RelTol ) odeset - Setzen von Optionen für die ode...-routinen allgemein options = odeset( name1,value1, name2,value2,...) Beispiel Setzen der rel. Toleranz und einer Output-Funktion options = odeset( RelTol,1.e-5, OutputFcn,odeplot)
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Modulabschlussklausur Analysis II
Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen
Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).
Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A
Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b
Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und
Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik
Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :
Charakteristikenmethode im Beispiel
Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.
Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems
Numerische Verfahren und Grundlagen der Analysis
Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011
Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h
Kapitel 15. Lösung linearer Gleichungssysteme
Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel
Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften
Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den
Umgekehrte Kurvendiskussion
Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen
(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu
Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die
DIFFERENTIALGLEICHUNGEN
DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Excel Pivot-Tabellen 2010 effektiv
7.2 Berechnete Felder Falls in der Datenquelle die Zahlen nicht in der Form vorliegen wie Sie diese benötigen, können Sie die gewünschten Ergebnisse mit Formeln berechnen. Dazu erzeugen Sie ein berechnetes
Funktionen (linear, quadratisch)
Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.
Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.
Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren
Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt
Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:
Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung
Taylorentwicklung der k ten Dimension
Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN
ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Installation des Add-Ins für Lineare Algebra in Microsoft Excel
Installation des Add-Ins für Lineare Algebra in Microsoft Excel Matrix 2.2 by The Foxes Team http://digilander.libero.it/foxes/ Download der Matrix 2.2 Im Browser die Seite http://digilander.libero.it/foxes/download.htm
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.
13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)
5 Eigenwerte und die Jordansche Normalform
Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Vorkurs Mathematik Übungen zu Polynomgleichungen
Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen
Aufgaben zur Flächenberechnung mit der Integralrechung
ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph
Vorkurs Mathematik Übungen zu Differentialgleichungen
Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
Zuammenfassung: Reelle Funktionen
Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,
3.1. Die komplexen Zahlen
3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen
Zusammenhänge zwischen metrischen Merkmalen
Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl
( ) als den Punkt mit der gleichen x-koordinate wie A und der
ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der
Einführung in MATLAB
Kapitel 4 Einführung in MATLAB 41 Allgemeines MATLAB ist eine kommerzielle mathematische Software zur Lösung mathematischer Probleme und zur graphischen Darstellung der Ergebnisse Die Verfahren in MATLAB
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)
Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse
Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Wintersemester 2014/15 Aufgaben I-1. Es seien die folgenden Mengen A = {5,7,9}, B = {5,6,7} und C = {1,3,5,7,9} gegeben.
GF(2 2 ) Beispiel eines Erweiterungskörpers (1)
GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr
nessbase Projekte Über Projekte I
nessbase Projekte Über Projekte I nessbase Projekte ist eine Erweiterung für nessbase, die es ermöglicht, eine Projekt Verwaltung zu führen. Diese Erweiterung besteht aus der Formular Datei und Externals,
Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler
Wintersemester 2005/06 20.2.2006 Prof. Dr. Jörg Rambau Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz ([email protected]) Mathematikgebäude Raum 715 Christoph Kustosz ([email protected]) W-Rechnung und Statistik
Simplex-Umformung für Dummies
Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit
SMS-Versand in MACS Einrichtung des SMS-Versand Verwendung des SMS-Versandes Der SMS-Versand Empfängerfeld Empfänger-Rufnummer Inhalt der SMS
SMS-Versand in MACS Einrichtung des SMS-Versand Verwendung des SMS-Versandes Der SMS-Versand Empfängerfeld Empfänger-Rufnummer Inhalt der SMS Datenfelder Sende-Optionen Text kürzen Zum späteren Zeitpunkt
Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B
Bedienungsanleitung für das Tektronix Oszilloskop TDS 2002B 1.0 Darstellen von Spannungsverläufen periodischer Signale Um das Gerät in Betrieb zu nehmen, schalten Sie es zunächst mit dem Netzschalter,
Lineare Gleichungssysteme I (Matrixgleichungen)
Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den
Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster
Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.
1 Singulärwertzerlegung und Pseudoinverse
Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese
Stabilität mittels Ljapunov Funktion
Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt
Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004
Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu
Extrema von Funktionen in zwei Variablen
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33
Ü b u n g s b l a t t 11
Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Interpolation, numerische Integration, Eigenwerte
Neunte Vorlesung, 29. Mai 2008, Inhalt Interpolation, numerische Integration, Eigenwerte Polynomiale Interpolation (Lagrange, Newton, Neville) Splines und weitere Interpolationsverfahren numerische Integration
Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne
Inhalt Versuchsplanung Faktorielle Versuchspläne Dr. Tobias Kiesling Allgemeine faktorielle Versuchspläne Faktorielle Versuchspläne mit zwei Faktoren Erweiterungen Zweiwertige
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg
Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion
Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung
- 1 - Aufgabe 6 Excel 2013 (Fortgeschrittene) Musterlösung 1. Die Tabelle mit den Werten und Gewichten der Gegenstände, sowie die Spalte mit der Anzahl ist vorgegeben und braucht nur eingegeben zu werden
7 Die Determinante einer Matrix
7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =
3. LINEARE GLEICHUNGSSYSTEME
176 3. LINEARE GLEICHUNGSSYSTEME 90 Vitamin-C-Gehalt verschiedener Säfte 18,0 mg 35,0 mg 12,5 mg 1. a) 100 ml + 50 ml + 50 ml = 41,75 mg 100 ml 100 ml 100 ml b) : Menge an Kirschsaft in ml y: Menge an
Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz
Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel
11.3 Komplexe Potenzreihen und weitere komplexe Funktionen
.3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt
KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:
KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand
Der Zwei-Quadrate-Satz von Fermat
Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat
Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW
Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6
9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83
9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.
Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines
OPERATIONS-RESEARCH (OR)
OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:
1.9 Eigenwerte und Eigenvektoren
.9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..
AUF LETZTER SEITE DIESER ANLEITUNG!!!
BELEG DATENABGLEICH: Der Beleg-Datenabgleich wird innerhalb des geöffneten Steuerfalls über ELSTER-Belegdaten abgleichen gestartet. Es werden Ihnen alle verfügbaren Belege zum Steuerfall im ersten Bildschirm
Wie Google Webseiten bewertet. François Bry
Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google
www.mathe-aufgaben.com
Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie
Grundbegriffe der Informatik
Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen
Übung 4: Einführung in die Programmierung mit MATLAB
Übung 4: Einführung in die Programmierung mit MATLAB AUFGABE 1 Was bewirkt der Strichpunkt? - Der Strichpunkt (Semikola) unterdrück die Anzeige der (Zwischen-) Resultate. Welche Rolle spielt ans? - Wenn
Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff
Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer
Approximation durch Taylorpolynome
TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni
Neuer Releasestand Finanzbuchhaltung DAM-EDV E.1.22. Inhaltsverzeichnis. 1. Neuerungen Schnittstelle Telebanking mit IBAN und BIC...
Neuer Releasestand Finanzbuchhaltung DAM-EDV E.1.22 Inhaltsverzeichnis 1. Neuerungen Schnittstelle Telebanking mit IBAN und BIC... 2 1a. Programm 257: Auflösen Vorschlag Telebanking... 2 1b. Programm 254:
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de
www.be-forever.de EINE PLATTFORM
Online-Shop-Portal www.be-forever.de EINE PLATTFORM für Ihre Online-Aktivitäten Vertriebspartner-Shop Online-Shop Basic Online-Shop Pro Vertriebspartner-Shop Bisher gab es den Online-Shop, in dem Sie Ihre
