5). KALORIMETRISCHE MESSUNGEN: Bestimmung der Lösungswärme von Elektrolyten. Zum Bestehen müssen drei von sechs Fragen richtig beantwortet werden.

Größe: px
Ab Seite anzeigen:

Download "5). KALORIMETRISCHE MESSUNGEN: Bestimmung der Lösungswärme von Elektrolyten. Zum Bestehen müssen drei von sechs Fragen richtig beantwortet werden."

Transkript

1 1 5). KALORIMETRISCHE MESSUNGEN: Bestimmung der Lösungswärme von Elektrolyten Fragen zum Eingangskolloquium: Zum Bestehen müssen drei von sechs Fragen richtig beantwortet werden. 1. Was versteht man unter einem totalen Differential? 2. Wie sieht das totale Differential für die innere Energie und für die Enthalpie aus? 3. Was ist die innere Energie eines Systems? 4. Was ist die Enthalpie eines Systems? 5. Welche Größe erhält man wenn man die innere Energie nach der Temperatur bei konstantem Volumen ableitet? Wie kann man diesen Zusammenhang herleiten? 6. Welche Größe erhält man wenn man die Enthalpie nach der Temperatur bei konstantem Druck ableitet? Wie kann man diesen Zusammenhang herleiten? 7. Was unterscheidet eine Zustands- von einer Wegfunktion? Geben Sie jeweils Beispiele für beide Funktionen. 8. Was besagt der 1. Hauptsatz der Thermodynamik? Geben Sie zwei Beispiele für seine Anwendung? 9. Erklären Sie die Gemeinsamkeiten bzw. Unterschiede zwischen 'Arbeit' und 'Wärme', sowie zwischen 'Arbeit' und 'Energie'? 10. Leiten Sie die Formel für die Volumenarbeit eines idealen Gases bei einem isobaren Prozess her?

2 2 11. Erklären ob ein exothermer oder ein endothermer Prozess bei einer Solvatation, einer Dissoziation und beim Lösen eines Festkörpers jeweils abläuft und warum? 12. Zeichnen und erklären Sie den Verlauf einer Temperatur-Zeit-Kurve im Fall einer exothermen Reaktion? 13. Was sind die differentielle Lösungsenthalpie und die differentielle Verdünnungsenthalpie? 14. Wie ermittelt man die differentielle Lösungsenthalpie und die differentielle Verdünnungsenthalpie in diesem Versuch? (mit Zeichnung) 15. Wie bestimmen Sie den Fehler der Wärmekapazität? 16. Warum sind die 'Ranges' für Na 2 CO 3 und Na 2 CO 3 10 H 2 O verschieden? 17. Leiten Sie die Gleichung, die für die Auftragung gegen nötig ist, aus den molaren Enthalpien der Zustände vor bzw. nach dem Lösen des Salzes (Index 2) im Lösemittel (Index1) her. (Falls Ihnen das Material im Praktikumsskript nicht reicht, können Sie sich vor dem Vorgespräch bei mir melden. Ich stelle Ihnen gerne Kopien zur Verfügung: jure_malenica@web.de) Praktische Bedeutung Die Bestimmung von Reaktionswärmen erlaubt wichtige Einblicke in chemische Reaktionen und chemische Bindungsverhältnisse. So kann beispielsweise durch Ermittlung von Hyd-rierungswärmen die Mesomeriestabilisierung von Benzol mit Hilfe der Thermochemie nach-gewiesen werden.

3 3 Meßprinzip Vorrichtungen, die zur Messung von Wärmemengen dienen, bezeichnet man als KALORIMETER. Zwischen der dem Kalorimeter zugeführten Wärmemenge Q und der damit verknüpften Temperaturänderung T besteht die Beziehung: wobei c die Wärmekapazität des Kalorimeters ist. Ist c bekannt, so wird mittels des Kalorimeters die Messung von Wärmemengen auf eine Temperaturmessung zurückgeführt. Zur Bestimmung der Wärmekapazität c des Kalorimeters kann man verschiedene Wege einschlagen: 1) Man addiert die Wärmekapazitäten aller Kalorimeterbestandteile, die an der Temperaturänderung teilnehmen, wobei die Masse und die spezifische Wärme eines jeden Bestandteiles bekannt sein müssen. Weil vielfach Teile aus schlecht wärmeleitendem Material vorhanden sind, die nur zum Teil die ganze Temperaturerhöhung mitmachen, stößt dieses Verfahren auf Schwierigkeiten. 2) Man führt dem Kalorimeter eine bekannte Menge an chemischer Energie zu, indem man in diesem einen Prozeß ablaufen lässt, dessen Wärmetönung schon bekannt ist. Da es keine ideale thermische Isolation gibt, setzt ein Wärmeaustausch ein, sobald beim kalorimetrischen Arbeiten Temperaturdifferenzen zwischen dem Kalorimeter und seiner Umgebung auftreten. Diesen Wärmeaustausch kann man entweder rechnerisch berücksichtigen oder durch geeignete experimentelle Maßnahmen zu verhindern suchen. Letzteres lässt sich erreichen, indem ein das Kalorimeter von allen Seiten umgebender Mantel mit der gleichen Geschwindigkeit wie das Kalorimetergefäß aufgeheizt wird. Dies ist das Prinzip des "adiabatischen Kalorimeters".

4 4 3) Man führt dem Kalorimeter eine genau bekannte Wärmemenge vollständig zu und beobachtet die Temperaturerhöhung. Dies kann durch elektrische Beheizung geschehen. Zu diesem Zweck wird das Kalorimeter mit einem Heizwiderstand R versehen, der bekannt und unveränderlich sein muss. Legt man für die Zeit t eine konstante Spannung U an den Heizwiderstand, so ist die zugeführte Wärme Qel einfach zu berechnen: Q el = U 2 R Δt. (1) Da bei den meisten einfacheren Kalorimetern anisotherm gearbeitet wird, d.h. während des Versuchs zwischen Kalorimeter und Umgebung Temperaturdifferenzen auftreten, wird von der Möglichkeit Gebrauch gemacht, den Wärmeaustausch aufgrund der Meßdaten zu berechnen. Da die Wärmekapazität des Kalorimeters während des Versuchs konstant bleibt, herrscht stets Proportionalität zwischen den auftretenden Temperaturänderungen und den aufgenommenen bzw. abgegebenen Wärmemengen. Das Problem des Wärmeaustauschs reduziert sich somit auf die Beantwortung der Frage: Wie groß wäre der Temperaturanstieg des Kalorimeters gewesen, wenn kein Wärmeaustausch stattgefunden hätte? Das experimentelle Verfahren zur Berücksichtigung des Wärmeaustauschs besteht in der Aufnahme von Temperatur-Zeit-Kurven. Im Falle einer rasch ablaufenden exothermen Reaktion haben diese die in Abb.1 gezeigte Form. Der Messvorgang gliedert sich in drei Abschnitte: Die Vorperiode, die Hauptperiode und die Nachperiode. In jedem dieser drei Abschnitte hat die Temperatur-Zeit- Kurve eine andere Form. Die Vorperiode beginnt, wenn sich das Kalorimeter in messbereitem Zustand befindet und alle Kalorimeterbestandteile die gleiche Temperatur angenommen haben. Die Temperatur zeigt auch dann noch gewöhnlich geringfügige zeitliche Änderungen (der sogenannte "Gang" - die Temperaturänderungen pro Minute ist klein und annähernd konstant). Die

5 5 Hauptperiode setzt mit der Auslösung des wärmeliefernden Vorgangs ein und dauert so lange, bis dieser zu Ende ist und sich die entwickelte Wärme gleichmäßig verteilt hat. Man erkennt dies daran, daß die Temperatur nach anfänglich raschem Anstieg nur noch kleine und regelmäßige Änderungen zeigt. Es beginnt dann die Nachperiode, die so lange dauert, bis man den nun kleinen Gang einwand-frei festgestellt hat. Abb. 1: Temperatur-Zeit-Kurve Aufgaben Reale Mischphasen unterscheiden sich von idealen Mischphasen dadurch, dass sich Volumen, innere Energie und Enthalpie nicht additiv aus den Werten der reinen Komponenten zusammensetzen. Bei der Herstellung realer Mischungen kann man kalorische Effekte beobachten. Mischt man eine Menge n A eines reinen Stoffes A mit einer Menge n B des reinen Stoffes B, so wird die molare Enthalpie der Mischung nicht einfach gleich der Summe der Enthalpien der

6 6 reinen Stoffe sein. Die Differenz zwischen der mittleren molaren Enthalpie und der Summe der Produkte aus Molenbruch und molaren Enthalpien der reinen Komponenten wird als mittlere molare Mischungsenthalpie bezeichnet. Lösungen sind unsymmetrische Mischungen, d.h. von einer Komponente ist eine erheblich größere Menge vorhanden (Lösungsmittel) als von der anderen Komponente (gelöster Stoff). Außerdem unterliegt der gelöste Stoff einem Wechsel seines Aggregarzustandes (festes Salz gelöstes Salz), weshalb die Notwendigkeit besteht, Lösungen und Mischungen thermodynamisch unterschiedlich zu behandeln. Als Folge des Lösens eines Stoffes entstehen Wechselwirkungen zwischen gelöstem Stoff und Lösungsmittel, die sich in Volumeneffekten und Wärmeeffekten (Lösungsenthalpien) äussern können. Ursachen für diese Lösungseffekte sind: Beim Lösen eines Festkörpers wird das Feststoffgitter aufgelöst. Eine der Schmelzenthalpie entsprechende Wärmemenge muss aus der Umgebung aufgenommen werden ( endotherm) der gelöste Stoff geht mit den Lösungsmittelmolekülen Bindungen ein (Solvatation, Solvationsenthalpie exotherm) beim Auflösten eines Elektrolyten (z.b. Wasser) kommt es zur Dissoziation und entsprechend dem Dissoziationsgrad (Konzentrationsabhängigkeit) zu einer Dissoziationsenthalpie ( endotherm) Die genannten Effekte können nebeneinander auftreten und sich überlagern. Eine Trennung ist meist nicht möglich. Ist die Solvatationsenergie größer als die Gitterenergie, so ist der Lösungsvorgang exotherm. Wenn die Gitterenergie die Solvatationsenergie überwiegt, verläuft der Lösungsvorgang endotherm.

7 7 Theoretische Grundlagen zum Lösevorgang Bei realen Mischungen (in unserem Fall Lösen eines Salzes in destillierten Wasser) addieren sich im Unterschied zu idealen Mischungen, thermodynamische Größen des Gesamtsystems nicht aus denen der reinen Komponenten, wie zum Beispiel die innere Energie, Enthalpie oder Volumen. Deswegen kann man bei realen Mischungen kalorische Effekte beobachten. Betrachten wir ein Zweikomponentensystem (Wasser + Salz) mit den Stoffmengen n 1 (Stoffmenge des Lösungsmittel Wasser) und n 2 (Stoffmenge des gelösten Salzes) so ist die Enthalpie des Gesamtsystems vor dem Mischen gleich den molaren Enthalpien der reinen (*) Stoffe Und nach dem Mischvorgang sind die Enthalpien der reinen Stoffe durch und ersetzt Somit erhält man für den Mischvorgang eine, die entweder frei wird oder verbraucht wird Da Lösungen unsymetrische Mischungen sind, das heißt von einer Komponente ist ein sehr viel größerer Anteil vorhanden (Lösungsmittel n 1 ) als von der

8 8 andern. Da das Lösen eines Salzes in Wasser einer Aggregatzustandsänderung entspricht, von Feststoff in flüssige Form, sind Lösungsvorgänge von Mischvorgängen in thermodynamischer Hinsicht zu unterscheiden (wird später erläutert)! Beim Lösen finden Wechselwirkungen zwischen Lösemittel und Gelöstem statt, die sich durch Wärmeeffekte bzw. Volumeneffekte äußern. Diese Effekte werden durch die Gitterenergie des Salzes (endotherm), die Solvatationsenergie (exotherm) und der Dissoziationsenergie beeinflusst. Ob das Lösen eines Salzes exotherm oder endotherm verläuft hängt von dem Verhältnis von Gitterenergie zur Solvatationsenergie ab. Ist die Gitterenergie größer als die Solvatationsenergie ist der Lösevorgang endotherm, falls umgekehrt ist das Lösen exotherm. Da beim Lösen des Salzes in Wasser eine Aggregatzustandsänderung sattfindet, muss die Enthalpieänderung beim Lösevorgang unterschiedlich sein zum Mischvorgang. Index 1 = Lösemittel (Wasser) Index 2 = gelöster Stoff

9 9 Zusammengesetzt ergibt sich die Gleichung (2) Mit Teilt man die erhaltene Gleichung durch n 2 erhält man (3) Aus dieser Darstellung (3) ergibt sich die integrale Lösungsenthalpie, die eine Aussage über die Änderung der Wärmemenge bei Zugabe von einem mol des zu lösenden Stoffes n 2 zum Lösungsmittel macht. Die differentielle Verdünnungsenthalpie ergibt sich aus Differentiation von Gleichung (2) nach n 1, die angibt wie groß die Enthalpieänderung einer Lösung bei Zugabe von einem mol n 1 ist, wenn n 2 konstant bleibt.

10 10 (4) Die differentielle Lösungsenthalpie ergibt sich aus Differentiation von Gleichung (2) nach n 2, die angibt wie groß die Enthalpieänderung einer Lösung bei Zugabe von einem mol n 2 ist, wenn n 1 konstant bleibt (5) Setzt man die Gleichungen (4) und (5) in Gleichung (3) ein (6) und trägt, die indirekt gemessen wird, gegen auf, erhält man einen graphischen Zusammenhang zwischen integraler Lösungsenthalpie, differentieller Verdünnungsenthalpie und differentieller Lösungsenthalpie! (Abb. 2)

11 11 Abb.2 Auftragung von gegen Somit kann die differentielle Verdünnungsenthalpie (Steigung der Tangente) durch Anlegen einer Tangente in jedem Punkt bestimmt werden der dazugehörige Achsenabschnitt ist die differentielle Lösungsenthalpie. Bei Werten von erhält man die erste Lösungsenthalpie, die einen Enthalpiewert für eine unendlich stark verdünnte Lösung liefert. Bei einem minimalen Verhältnis von bricht die Kurve ab, dieser Wert entspricht der letzten Lösungsenthalpie, die sogenannte Löslichkeitsgrenze des Salzes. Bei diesem Wert ist die Lösung gesättigt. Durchführung Das Kalorimeter besteht aus einem Dewargefäß, einem Thermistor-Messfühler, einem Magnetrührer, einem Heizwiderstand mit R=114 Ohm zur elektrischen Eichung und einer Einlaufrohre (s. Abb. 2), die einen der Reaktionspartner

12 12 aufnimmt. Die Temperaturänderungen werden mit Hilfe eines Computers registriert. Eine Temperaturänderung von 1 K entspricht hierbei einer Spannungsänderung von 10 mv. Abb. 3: Aufbau des Kalorimeters 1-Magnetrührer, 2-Thermistorfühler, 3-Heizwiderstand, 4-Dewargefäß, 5- Einlaufrohre, 6-Deckel, 7-Digitalvoltmeter, 8-stabilisierte Spannungsquelle, 9-Ballastwiderstand, 10-Umschalter, 11-Ereignismarkierung, 12-Eingang Thermistorsignal, 13-temperaturproportionale Ausgangsspannung, 14- einstellbare Kompensationsspannungsquelle, 15-Multimeter, 16-Computer In das gereinigte und getrocknete Kalorimetergefäß werden 300 ml Wasser eingefüllt. Zum Einfüllen der Salze wird ein Trichter in die Deckelbohrung gesteckt. Zunächst wird das Kalorimeter elektrisch geeicht. Die entsprechende Menge des Salzes wird in ein Wägeschiffchen eingewogen und durch die Deckelbohrung quantitativ in das Kalorimeter überführt. Die entstehende Temperaturerhöhung oder -erniedrigung wird mit dem Computer aufgezeichnet. Durch die Zugabe von Salz ändert sich die Wärmekapazität des Kalorimeters ständig. Für eine exakte Auswertung wäre es deshalb nötig, nach jeder Zugabe

13 13 von Salz eine erneute elektrische Eichung vorzunehmen. Da dieses aus zeitlichen Gründen im Praktikum nicht machbar ist, wird, wenn die gesamte Menge Salz zugegeben wurde, das Kalorimeter nochmals elektrisch geeicht. Da sich die Gesamtwärmekapazität der Meßapparatur aus den einzelnen Bestandteilen additiv zusammensetzt, kann man nun näherungsweise die Wärmekapazität des Kalorimeters in Abhängigkeit von der zugegebenen Menge Salz ermitteln. Dazu trägt man die beiden Wärmekapazitäten in Abhängigkeit von der Salzmenge in ein Koordinatensystem ein und kann über die sich ergebene Gerade die Wärmekapazität des Kalorimeters nach der Zugabe der Salzmengen bestimmen. Vor dem Einfüllen der Salze wird ein Gang von 5-7 min. abgewartet. Die Nachperiode wird ebenfalls 5-7 min. abgewartet. Auswertung 1) Bestimmen Sie die Wärmekapazitäten des Kalorimeters! 2) Aus der entsprechenden Temperaturänderung wird die entstehende Lösungswärme /Lösungsentalphie errechnet. 3) Aus der Auftragung der integralen Lösungswärme ΔH/n 2 gegen n 1 / n 2 wird die erste Lösungswärme bestimmt. 4) Von dieselber Abbildung bestimmen Sie die differentiellen Lösungs- und Verdünnungsenthalpien bei n 2 = 110 mmol für Na2CO 3. 5) Unter der Annahme, dass der Unterschied in der Wärmetönung von Na2CO3 10 H20 und wasserfreiem Na2CO3 bei hoher Verdünnung durch die verschieden starke Hydratationsenergie bedingt ist, berechne man die Energie, die bei der Anlagerung von 10 Wassermolekülen frei wird. 6) Welchen systematischen Fehler begeht man hier bei der Bestimmung der Lösungswärmen? Wie könnte man diesen Fehler beseitigen.

14 14 Die Punkte 1 bis 3 der Auswertung sind für beide Salze durchzuführen. Versuchsdurchführung Überzeugen Sie sich bitte davon, dass die Gerätestecker eingesteckt sind, und das Gerät eingeschaltet werden kann, bzw. ist. Sprechen Sie sonst bitte den Assistenten an. 1) Computer einschalten, inklusive aller Geräte (zwei Stromleisten). 2) 300 ml Wasser in das Kalorimetergefäß einfüllen und Laborboy mit Kalorimetergefäß hochdrehen. 3) Rührer einschalten und auf ca. 600 Umdrehungen/min einregulieren. 4) Drehschalter des Multimeters VOLTCRAFT PLUS VC auf Messbereich mv einstellen. 5) Taste MAXMIN gedrückt halten bis SEND im Display des Multimeters erscheint. 6) Programm Kalorimeter auf dem Desktop starten. 7) Taste F9 drücken um das Multimeter mit dem PC zu verbinden. 8) Kompensieren Sie den größten Teil der "überflüssigen Spannung". Das Display des Multimeters soll ungefähr Null zeigen. 9) Elektrische Eichung durchführen: 10) Messung mit dem roten Button Messung starten/anhalten starten. 11) Optional ist der Messbereich des Diagramms einstellbar a. Rechte Maustaste b. Range auswählen 12) Vorperiode ca. 3-7 min abwarten. 13) Heizung einschalten (rechter Kippschalter an der Spannungsquelle; nicht mit dem Netzschalter verwechseln! Der Stecker muss zuvor eingesteckt werden). Spannung (in Volt!) notieren.

15 15 14) Bis zu Spannungsänderung von ca. 10 mv heizen, dann Heizung ausschalten und ca. 3-7 min. lang Nachperiode abwarten. Stecker wieder ziehen, bzw. ausstecken, da die Heizung sonst durchbrennt! 15) Messung mit dem roten Button Messung starten/anhalten beenden. 16) Aufzeichnung des Diagramms mit dem Stop-Button anhalten 17) Daten exportieren (Diskette oder USB stick mitbringen): a. Mauszeiger irgendwo auf die Tabelle positionieren b. Rechte Maustaste drücken c. Exportieren anwählen d. Speichern als Text-files (*.txt) oder Dat-files (*.dat) 18) Um neue Messung zu starten Tabelle löschen, mit dem Button Tabelle löschen. 19) Die Messungen werden zuerst mit wasserfreiem Na 2 CO 3 durchgeführt: 20) Kompensieren Sie den größten Teil der "überflüssigen Spannung". Das Display des Multimeters soll ungefähr Null zeigen. 21) Schritte 10 bis 12 wiederholen. 22) Entsprechende Menge Salz (siehe Tabelle) möglichst quantitativ durch den Trichter einfüllen und Temperaturänderung verfolgen (Salze nicht lange an der Luft stehen lassen!). 23) Nachperiode ca. 3-7 min abwarten. 24) Schritte 15 bis 18 wiederholen. 25) Schritte 20 bis 24 für die andere Menge Salz wiederholen. 26) Nach Zugabe der gesamten Salzmenge elektrische Eichung wiederholen. Vor Beginn der Messreihe mit Na 2 CO 3 10 H 2 O muss das Kalorimetergefäß gereinigt werden. Die Salzlösung wird in den Ausguss gegossen, das Gefäß mit Wasser ausgespült und anschließend getrocknet (mit Zellstoff ausreiben). Anschließend mit Schritt 2 fortfahren. 27) Zum Beenden des Programms, alle geöffneten Fenster schließen.

16 16 28) Der Computer, das Multimeter (Drehschalter auf OFF einstellen) und alle Geräte (zwei Stromleisten) ausschalten. Bei Fragen den Assistenten fragen. Folgende Mengen des entsprechenden Salzes werden zugegeben (warum sind die Ranges für Na 2 CO 3 und Na 2 CO 3 10 H 2 O verschieden?) Zugabe an Salz Range (Na2CO3) Range (Na2CO3 10 H2O) 1 g 0 5 mv -5 0 mv 0.5 g 0 5 mv -5 0 mv 0.5 g 0 5 mv -5 0 mv 2 g 0 5 mv -5 0 mv 3 g 0 10 mv mv 3 g 0 10 mv mv 3 g 0 10 mv mv 9 g 0 20 mv mv 9 g 0 20 mv mv Fehlergrößen Pipette: V = 0.12 ml pro 100 ml Spannung: U = 0.01 V Temperatur: ( T reaktion ) = 0.01 K ( T Ver. ) = 0.01 K ( T elektr. ) = 0.01 K Nach Beendigung des Versuches

17 17 Kalorimetergefäß und Trichter reinigen Temperaturfühler mit dest. Wasser abspülen und trocknen Alle Geräte abschalten, bei Fragen den Assistenten fragen, und Übergabe des Platzes an den/die Assistenten. Messplatz reinigen und aufräumen Übergabe des Platzes an den/die Assistenten. Abb. 4: Kompensationsspannungsgeber

4. KALORIMETRISCHE MESSUNGEN: Bestimmung der Neutralisationswärme

4. KALORIMETRISCHE MESSUNGEN: Bestimmung der Neutralisationswärme 1 4. KALORIMETRISCHE MESSUNGEN: Bestimmung der Neutralisationswärme Fragen zum Eingangskolloquium: Zum Bestehen müssen vier von sechs Fragen richtig beantwortet werden. 1. Was versteht man unter ein totales

Mehr

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test

PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice

Mehr

T5 - Hydratations- und Neutralisationsenthalpie

T5 - Hydratations- und Neutralisationsenthalpie T5 - Hydratations- und Neutralisationsenthalpie Aufgaben: 1. Messung der molaren integralen Lösungsenthalpie von Natriumhydrogenphosphat Na 2 HPO 4, Natriumhydrogenphosphat-dihydrat Na 2 HPO 4 2H 2 O,

Mehr

PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test

PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Neutralisationswärme wird dieses Vorgespräch durch einen

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 6 Kalorimetrie Aufgabe: Mittels eines Flüssigkeitskalorimeters ist a) die Neutralisationsenthalpie von säure b) die ösungsenthalpie

Mehr

Protokoll zum Versuch 3.1

Protokoll zum Versuch 3.1 Grundpraktikum Physikalische Chemie Studiengang: Chemie-Ingenieurwesen Technische Universität München SS 2003 Protokoll zum Versuch 3.1 Kalorimetrie Gruppe 3 Kim Langbein Oliver Gobin 11 April 2003 Inhaltsverzeichnis

Mehr

ADIABATISCHE KALORIMETRIE

ADIABATISCHE KALORIMETRIE VERSUCH 6 ADIABATISCHE KALORIMETRIE Thema Kalorimetrische Bestimmung von Lösungs- und Neutralisationswärmen Grundlagen Literatur 1. Hauptsatz der Thermodynamik adiabatische Kalorimetrie Lösungs-, Neutralisations-,

Mehr

Lösungswärme von Salzen

Lösungswärme von Salzen Lösungswärme von Salzen In diesem Versuch wird die Lösungswärme von zwei Salzen, Calciumchlorid und Calciumchlorid-Hexahydrat ermittelt. Dabei wird die Temperaturänderung beim Lösen des Salzes kalorimetrisch

Mehr

TD 3: Neutralisationswärme

TD 3: Neutralisationswärme TD 3: Neutralisationswärme Theoretische Einleitung Chemische Umsetzungen sind stets von einer Energieänderung begleitet, wobei der umgesetzte Energiebetrag entweder vom System aufgenommen (endotherme Reaktion)

Mehr

Dissoziationsgrad und Gefrierpunkterniedrigung (DIS) Gruppe 8 Simone Lingitz, Sebastian Jakob

Dissoziationsgrad und Gefrierpunkterniedrigung (DIS) Gruppe 8 Simone Lingitz, Sebastian Jakob Dissoziationsgrad und Gefrierpunkterniedrigung (DIS) Gruppe Simone Lingitz, Sebastian Jakob . Versuch. Versuchsaufbau Durch die Bestimmung der Gefrierpunktserniedrigung beim Lösen von KNO bzw. NaNO in

Mehr

Gefahrenstoffe. Styroporkalorimeter, Magnetrührer, digitales Thermometer, Stativ und Stativmaterial

Gefahrenstoffe. Styroporkalorimeter, Magnetrührer, digitales Thermometer, Stativ und Stativmaterial 1.1 V 3 Lösungswärme von Salzen Dieser Versuch zeigt dass beim Lösen von Salzen Wärme freigesetzt wird. Es soll jeweils die emperaturdifferenz beim Lösen verschiedener Salze bestimmt werden und anschließend

Mehr

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure

1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure 1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure In diesem Versuch soll der Satz von Hess (die umgesetzte Wärmemenge ist bei einer chemischen Reaktion unabhängig vom Weg)

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

Reaktionsenthalpie der Hydratbildung von Salzen

Reaktionsenthalpie der Hydratbildung von Salzen Übungen in physikalischer Chemie für B.Sc.-Studierende Versuch Nr.: S12 Version 2015 Kurzbezeichnung: Hydratation Reaktionsenthalpie der Hydratbildung von Salzen Aufgabenstellung Molare Lösungsenthalpien

Mehr

Reaktionsenthalpie der Hydratbildung von Salzen

Reaktionsenthalpie der Hydratbildung von Salzen Übungen in physikalischer Chemie für B.Sc.-Studierende Versuch Nr.: S12 Version 2016 Kurzbezeichnung: Hydratbildung Reaktionsenthalpie der Hydratbildung von Salzen Aufgabenstellung Die molaren Lösungsenthalpien

Mehr

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung

Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung Physikalisches Anfaengerpraktikum Dissoziationsgrad und Gefrierpunkterniedrigung Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe ) Montag, 1. Februar 00 1. Versuchsaufbau Um den Dissoziationsgrad

Mehr

Reaktionsenthalpie der Hydratbildung von Salzen

Reaktionsenthalpie der Hydratbildung von Salzen Übungen in physikalischer Chemie für B.Sc.-Studierende Versuch Nr.: S12 Version 2019 (060319) Kurzbezeichnung: Hydratbildung Reaktionsenthalpie der Hydratbildung von Salzen Aufgabenstellung Die molaren

Mehr

Kalorimetrische Messungen. Die Bestimmung von Enthalpieänderungen in Lösungen Praktikum physikalische Chemie für Pharmaziestudenten

Kalorimetrische Messungen. Die Bestimmung von Enthalpieänderungen in Lösungen Praktikum physikalische Chemie für Pharmaziestudenten Kalorimetrische Messungen. Die Bestimmung von Enthalpieänderungen in Lösungen Praktikum physikalische Chemie für Pharmaziestudenten zusammengestellt von Soma Vesztergom 1.) Kurzbeschreibung Mit Hilfe eines

Mehr

3. Berechnung der molaren Verbrennungsenthalpie. 4. Berechnung der Standardreaktionsenthalpie für die Hydrierung von Phthalsäureanhydrid

3. Berechnung der molaren Verbrennungsenthalpie. 4. Berechnung der Standardreaktionsenthalpie für die Hydrierung von Phthalsäureanhydrid Verbrennungswärme Aufgaben: 1. Ermittlung der Wärmekapazität des Kalorimeters durch Verbrennen einer Eichsubstanz. 2. Bestimmung der spezifischen Verbrennungswärmen von Phthalsäureanhydrid und Tetrahydrophthalsäureanhydrid.

Mehr

Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate

Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate Zeitbedarf für die Versuchsdurchführung: ca. 10 Min. Geräte: Magnetrührer mit Magnetrührstäbchen Thermometer (min. 0,5 C Genauigkeit)

Mehr

Physikalische Chemie Praktikum. Mischphasenthermodynamik: Gefrierpunktserniedrigung Molmassenbestimmung

Physikalische Chemie Praktikum. Mischphasenthermodynamik: Gefrierpunktserniedrigung Molmassenbestimmung Hochschule Emden / Leer Physikalische Chemie Praktikum Mischphasenthermodynamik: Gefrierpunktserniedrigung Molmassenbestimmung Vers.Nr. 17 Sept. 2015 Allgemeine Grundlagen a) Reine Stoffe Bei reinen Stoffen

Mehr

Physikalische Chemie Praktikum. Thermodynamik: Verbrennungsenthalpie einer organischen Substanz

Physikalische Chemie Praktikum. Thermodynamik: Verbrennungsenthalpie einer organischen Substanz Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 18 Nov. 2016 Thermodynamik: Verbrennungsenthalpie einer organischen Substanz Allgemeine Grundlagen 1. Hauptsatz der Thermodynamik, Enthalpie,

Mehr

Verbrennungsenergie und Bildungsenthalpie

Verbrennungsenergie und Bildungsenthalpie Praktikum Physikalische Chemie I 1. Januar 2016 Verbrennungsenergie und Bildungsenthalpie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Bildungsenthalpie von Salicylsäure wurde

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie 10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong

Mehr

Versuchsprotokoll: Neutralisationsenthalpie

Versuchsprotokoll: Neutralisationsenthalpie Versuchsprotokoll: Neutralisationsenthalpie Patrik Wolfram TId: 0 Alina Heidbüchel TId: 19 Gruppe 10 01.06.13 1 Inhaltsverzeichnis 1. Einleitung...3. Theorie...3 3. Durchführung...6 4.Auswertung...7 4.1

Mehr

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer

Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Lehrbuch der Thermodynamik

Lehrbuch der Thermodynamik Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene

Mehr

Versuch W1: Kalorimetrie

Versuch W1: Kalorimetrie Versuch W1: Kalorimetrie Aufgaben: 1. Bestimmen Sie die Wärmekapazität zweier Kalorimeter (Kalorimeterkonstanten). 2. Bestimmen Sie die spezifische Wärmekapazität von 2 verschiedenen festen Stoffen. 3.

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

Whitekalorimeter. Wärmekapazitätsbestimmung verschiedener Materialien. Dominik Büchler 5HL. Betreuer: Mag. Dr. Per Federspiel

Whitekalorimeter. Wärmekapazitätsbestimmung verschiedener Materialien. Dominik Büchler 5HL. Betreuer: Mag. Dr. Per Federspiel Dominik Büchler Physikalisch chemisches Laboratorium Betreuer: Mag. Dr. Per Federspiel 5HL Whitekalorimeter sbestimmung verschiedener Materialien Note: Datum: Unterschrift: Whitekalorimetrie Seite 1 von

Mehr

PC-Grundpraktikum Versuch 7: Adiabatische Kalorimetrie vom Gruppe 2 (Johannes Martin und Christina Sauermann)

PC-Grundpraktikum Versuch 7: Adiabatische Kalorimetrie vom Gruppe 2 (Johannes Martin und Christina Sauermann) PC-Grundpraktikum Versuch 7: Adiabatische alorimetrie vom 22.11.1999 Gruppe 2 (ohannes Martin und Christina Sauermann) 1 Versuch 7: Adiabatischen alorimetrie 1.Theorie Temperaturänderungen im Zusammenhang

Mehr

E5: Faraday-Konstante

E5: Faraday-Konstante E5: Faraday-Konstante Theoretische Grundlagen: Elektrischer Strom ist ein Fluss von elektrischer Ladung; in Metallen sind Elektronen die Ladungsträger, in Elektrolyten übernehmen Ionen diese Aufgabe. Befinden

Mehr

T1: Wärmekapazität eines Kalorimeters

T1: Wärmekapazität eines Kalorimeters Grundpraktikum T1: Wärmekapazität eines Kalorimeters Autor: Partner: Versuchsdatum: Versuchsplatz: Abgabedatum: Inhaltsverzeichnis 1 Physikalische Grundlagen und Aufgabenstellung 2 2 Messwerte und Auswertung

Mehr

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease.

Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. A 36 Michaelis-Menten-Kinetik: Hydrolyse von Harnstoff Aufgabe: Untersuchung der Kinetik der Zersetzung von Harnstoff durch Urease. Grundlagen: a) Michaelis-Menten-Kinetik Im Bereich der Biochemie spielen

Mehr

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p:

8. Mehrkomponentensysteme. 8.1 Partielle molare Größen. Experiment 1 unter Umgebungsdruck p: 8. Mehrkomponentensysteme 8.1 Partielle molare Größen Experiment 1 unter Umgebungsdruck p: Fügen wir einer Menge Wasser n mit Volumen V (molares Volumen v m =V/n) bei einer bestimmten Temperatur T eine

Mehr

Physikalische Grundlagen und Aufgabenstellung

Physikalische Grundlagen und Aufgabenstellung Inhaltsverzeichnis Physikalische Grundlagen und Aufgabenstellung... 2 Versuchsziel... 2 Versuchsbeschreibung... 2 Elektrische Methode... 2 Mischungsmethode... 2 Messwerte... 2 Elektrische Methode... 2

Mehr

Enthalpie und Entropie

Enthalpie und Entropie Schulversuchspraktikum Patricia Hiller Sommersemester 2015 Klassenstufen 11 & 12 Enthalpie und Entropie 1 Beschreibung des Themas und zugehörige Lernziele Auf einen Blick: In diesem Protokoll zum Themenbereich

Mehr

Gefrierpunktserniedrigung

Gefrierpunktserniedrigung Knoch, Anastasiya Datum der Durchführung: Petri, Guido 05.01.2016 (Gruppe 11) Datum der Korrektur: 02.02.2016 Praktikum Physikalische Chemie I. Thermodynamik Gefrierpunktserniedrigung 1. Aufgabenstellung

Mehr

Spezifische Wärmekapazität fester Körper

Spezifische Wärmekapazität fester Körper Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze

Mehr

Klausur Technische Chemie SS 2008 Prof. M. Schönhoff // PD Dr. C. Cramer-Kellers Klausur zur Vorlesung

Klausur Technische Chemie SS 2008 Prof. M. Schönhoff // PD Dr. C. Cramer-Kellers Klausur zur Vorlesung Klausur zur Vorlesung Technische Chemie: Reaktionstechnik 14.7.2008 10.00 Uhr bis 12.00 Uhr Name, Vorname Geburtsdatum Studiengang/Semester Matrikelnummer Hinweis: Alle Ansätze und Rechenwege sind mit

Mehr

Bestimmung der spezifischen Wärmekapazität fester Körper

Bestimmung der spezifischen Wärmekapazität fester Körper - B02.1 - Versuch B2: Bestimmung der spezifischen Wärmekapazität fester Körper 1. Literatur: Demtröder, Experimentalphysik, Bd. I Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Walcher, Praktikum der Physik

Mehr

Spezifische Wärme fester Körper

Spezifische Wärme fester Körper 1 Spezifische ärme fester Körper Die spezifische, sowie die molare ärme von Kupfer und Aluminium sollen bestimmt werden. Anhand der molaren ärme von Kupfer bei der Temperatur von flüssigem Stickstoff soll

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid

Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid Versuchsaufbau : Um den Versuch durchzuführen, benötigen wir 180 g Wasser, welches in ein Becherglas gefüllt wird. Die Temperatur ermitteln

Mehr

Experimentalphysik VO, Kapitel 4Wärme: Wärme als Energieform (1. Hauptsatz), Mischungsvorgänge,

Experimentalphysik VO, Kapitel 4Wärme: Wärme als Energieform (1. Hauptsatz), Mischungsvorgänge, 3 Wärme 3.1 Lernziel Die Studierenden vertiefen das Verständnis der Begriffe Innere Energie, Wärme, spezifische Wärmekapazität und molare Wärme von Festkörpern und Flüssigkeiten. Sie können den Wasserwert

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Kalorimetrische Untersuchung verschiedener Enthalpieformen anhand von Oxalsäure, atronlauge, Essigsäure, Kaliumchlorid und Wasser

Kalorimetrische Untersuchung verschiedener Enthalpieformen anhand von Oxalsäure, atronlauge, Essigsäure, Kaliumchlorid und Wasser Kalorimetrische Untersuchung verschiedener Enthalpieformen anhand von Oxalsäure, atronlauge, Essigsäure, Kaliumchlorid und Wasser Lisa Kamber, D-CHAB, 1. Semester kamberl@student.ethz.ch Jorge Ferreiro,

Mehr

Universität Kassel, Grundpraktikum Physikalische Chemie in den Studiengängen Nanostrukturwissenschaft, Lehramt Chemie und Diplom Biologie

Universität Kassel, Grundpraktikum Physikalische Chemie in den Studiengängen Nanostrukturwissenschaft, Lehramt Chemie und Diplom Biologie Versuch 4 Bestimmung der Verbrennungswärme einer festen organischen Substanz ACHTUNG: Das Versuchskolloquium findet direkt im Anschluss an den Versuch statt. Seien Sie vorbereitet! Themenbereiche Zustandsfunktionen,

Mehr

Chemie Klausur

Chemie Klausur Chemie Klausur 12.1 1 21. Oktober 2002 Aufgaben Aufgabe 1 1.1. Definiere: Innere Energie, Enthalpieänderung, Volumenarbeit, Standard-Bildungsenthalpie, molare Standard- Bildungsenthalpie. 4 VP 1.2. Stelle

Mehr

A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit

A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Aufgabe: Es ist die Dampfdruckkurve einer leicht flüchtigen Flüssigkeit zu ermitteln

Mehr

PC-Übung Nr.3 vom

PC-Übung Nr.3 vom PC-Übung Nr.3 vom 31.10.08 Sebastian Meiss 25. November 2008 1. Die Säulen der Thermodynamik Beantworten Sie folgende Fragen a) Welche Größen legen den Zustand eines Gases eindeutig fest? b) Welche physikalischen

Mehr

Spezifische Wärmekapazität von Wasser mit SMARTsense (Artikelnr.: P )

Spezifische Wärmekapazität von Wasser mit SMARTsense (Artikelnr.: P ) Lehrer-/Dozentenblatt Spezifische Wärmekapazität von Wasser mit SMARTsense (Artikelnr.: P1043969) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Wärmelehre Unterthema:

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 7

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 7 1. Aufgabe Die kyroskopische Konstante E k und die ebulloskopische Konstante E e werden wie folgt berechnet. E k Wasser = R T 2 schmelz M H schmelz = 8,31451 J 273,15 K 2 18,02 10 3 kg mol = 1,86 K kg

Mehr

Phasenumwandlungsenthalpie

Phasenumwandlungsenthalpie Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 7 Phasenumwandlungsenthalpie Die Enthalpieänderung beim Übergang eines Systems in einen anderen Aggregatzustand kann unter der Voraussetzung,

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 10. Temperaturabhängigkeit der Reaktionsgeschwindigkeit: Arrhenius-Beziehung Thema In diesem Versuch

Mehr

Anorganische Chemie. Versuch 7 Kristallwassergehalt von Salzen. Versuche 8.1 / 8.2 Lösungswärme von Salzen

Anorganische Chemie. Versuch 7 Kristallwassergehalt von Salzen. Versuche 8.1 / 8.2 Lösungswärme von Salzen Georg-August-Universität Göttingen Fakultät für Biologie und Psychologie Anorganische Chemie Versuch 7 Kristallwassergehalt von Salzen Versuche 8.1 / 8.2 Lösungswärme von Salzen Tischgruppe: 98 Mitarbeiter:

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper

Fachhochschule Flensburg. Die spezifische Wärmekapazität fester Körper Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: W4 Die spezifische Wärmekapazität fester Körper Gliederung: Seite Einleitung 1 Berechnung 1 Versuchsbeschreibung

Mehr

Chemische Thermodynamik. Arbeitsbuch 4. 4., überarbeitete Auflage. Autoren. Mit 53 Bildern sowie zahlreichen Tabellen im Text und im Anhang

Chemische Thermodynamik. Arbeitsbuch 4. 4., überarbeitete Auflage. Autoren. Mit 53 Bildern sowie zahlreichen Tabellen im Text und im Anhang Arbeitsbuch 4 Chemische Thermodynamik Autoren Gert Wolf, Freiberg (federführender Autor) Wolfgang Schneider, Dresden 4., überarbeitete Auflage Mit 53 Bildern sowie zahlreichen Tabellen im Text und im Anhang

Mehr

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,

ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend

Mehr

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8 Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste

Mehr

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X

Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45.

Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13. Klausur PC 1. Sommersemester :15 bis 11:45. Physikalische Chemie 1 (Thermodyn. u. Elektrochemie) SS09 - Blatt 1 von 13 Klausur PC 1 Sommersemester 2009 03.08.2007 10:15 bis 11:45 Name: Vorname: geb. am: in: Matrikelnummer: Unterschrift: Für die

Mehr

ST Der Stirling-Motor als Wärmekraftmaschine

ST Der Stirling-Motor als Wärmekraftmaschine ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische

Mehr

Physikalisch-chemische Grundlagen der Verfahrenstechnik

Physikalisch-chemische Grundlagen der Verfahrenstechnik Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik guenter.tovar@igvt.uni-stuttgart.de Physikalisch-chemische Grundlagen der

Mehr

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2

Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft

Mehr

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum

Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Praktikumsprotokoll Physikalisch-Chemisches Anfängerpraktikum Tobias Schabel Datum des Praktikumstags: 02.12.2005 Matthias Ernst Protokoll-Datum: 12/20/2005 Gruppe A-11 11. Versuch: Schmelzdiagramm Assistent:

Mehr

E1: Bestimmung der Dissoziationskonstante einer schwachen Säure durch Messung der elektrischen Leitfähigkeit der Elektrolytlösung

E1: Bestimmung der Dissoziationskonstante einer schwachen Säure durch Messung der elektrischen Leitfähigkeit der Elektrolytlösung Versuch E1/E2 1 Versuch E1/E2 E1: Bestimmung der Dissoziationskonstante einer schwachen Säure durch Messung der elektrischen Leitfähigkeit der Elektrolytlösung E2: Konduktometrische Titration I Aufgabenstellung

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludigs-Universität Freiburg Lösungen zum 4. Übungsblatt zur orlesung Physikalische Chemie I SS 00 Prof. Dr. Bartsch 4. (6 Punkte) In einem Behälter mit der Grundfläche

Mehr

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent)

Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) 1. Ziel des Versuches Umwandlung von mechanischer Reibungsarbeit in Wärme, Umwandlung von elektrischer Arbeit bzw. Energie in Wärme,

Mehr

PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL. WiSe 2015/2016. Versuch 6. Adiabatischer Batch-Reaktor

PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL. WiSe 2015/2016. Versuch 6. Adiabatischer Batch-Reaktor PRAKTIKUM DER TECHNISCHEN CHEMIE I PRAKTIKUMSPROTOKOLL WiSe 2015/2016 Versuch 6 Adiabatischer Batch-Reaktor Rami Saoudi (356563) Guido Petri (364477) Gruppe 29 1. EINFÜHRUNG Es wurde der Temperaturverlauf

Mehr

... U I t = c m ΔT ( ΔT = T 2 - T 1 )

... U I t = c m ΔT ( ΔT = T 2 - T 1 ) nergie - Wärmespeicherung und Wärmeumsatz 1.) Spezifische Wärmekapazität von Wasser F Unter der spezifischen Wärmekapazität c eines Stoffes versteht man die nergie, die man zuführen muß, um 1 kg dieses

Mehr

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11

Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose

Mehr

Lösung Übungsserie 3

Lösung Übungsserie 3 Institut für Energietechnik Laboratorium für Aerothermochemie und Verbrennungssysteme Prof. Dr. onstantinos Boulouchos Lösung Übungsserie 3 Chemisches Gleichgewicht & Exergie Formeln Molare Entropie (ideales

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Lösungen zum Übungsblatt 4 zur Vorlesung Physikalische Chemie II WS 2008/09 Prof. E. Bartsch 4.1 Der Siedepunkt einer flüssigen Mischung

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

Wenn der Mischungsvorgang bei konstantem Druck abläuft, ist die Mischungswärme gleich der Mischungsenthalpie

Wenn der Mischungsvorgang bei konstantem Druck abläuft, ist die Mischungswärme gleich der Mischungsenthalpie Mischungsenthalpie Ziel des Versuchs Aus Messungen der mittleren molaren Mischungsenthalpie sind die partiell molaren Mischungsenthalpien als Funktion der Zusammensetzung zu bestimmen. Unter Annahme des

Mehr

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan

Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer

Mehr

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)

Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,

Mehr

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018)

Musterlösung zur Abschlussklausur PC I Übungen (27. Juni 2018) 1. Abkühlung (100 Punkte) Ein ideales Gas (genau 3 mol) durchläuft hintereinander zwei (reversible) Zustandsänderungen: Zuerst expandiert es isobar, wobei die Temperatur von 50 K auf 500 K steigt und sich

Mehr

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln

Physikalische Chemie Praktikum. Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 16 April 2017 Elektrolyte: Dissoziationskonstante von Essigsäure λ von NaCl ist zu ermitteln In diesem Versuch soll die Dissoziationskonstante

Mehr

Planung, Bau und Betrieb von Chemieanlagen - Übung Allgemeine Chemie. Allgemeine Chemie. Rückblick auf vorherige Übung

Planung, Bau und Betrieb von Chemieanlagen - Übung Allgemeine Chemie. Allgemeine Chemie. Rückblick auf vorherige Übung Planung, Bau und Betrieb von Chemieanlagen - Übung Allgemeine Chemie 1 Allgemeine Chemie Rückblick auf vorherige Übung 2 Löslichkeit Was ist eine Lösung? - Eine Lösung ist ein einphasiges (homogenes) Gemisch

Mehr

Reaktion und Energie

Reaktion und Energie Reaktion und Energie Grundsätzliches Bei chemischen Reaktionen werden die Atome der Ausgangsstoffe neu angeordnet, d. h. Bindungen werden gespalten und neu geknüpft. Die Alltasgserfahrung legt nahe, dass

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Elektromotorische Kraft und thermodynamische Zustandsfunktionen

Elektromotorische Kraft und thermodynamische Zustandsfunktionen Praktikum Physikalische Chemie I 11. November 2015 Elektromotorische Kraft und thermodynamische Zustandsfunktionen Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Reaktion des Daniell-Elements

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus:

Grundlagen: Die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure verläuft nach folgendem Mechanismus: A 35: Zersetzung von Ameisensäure Aufgabe: Für die Zersetzung von Ameisensäure in konzentrierter Schwefelsäure sind die Geschwindigkeitskonstante bei 30 und 40 C sowie der präexponentielle Faktor und die

Mehr

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen

3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Inhalt Kapitel 3 3.0-1 3. Mehrkomponentensysteme 3.1 Partielle molare Zustandsgrößen 3.2 Thermodynamische Gleichgewichte in Mehrkomponentensystemen Das Chemische Potential reiner Stoffe und von Stoffen

Mehr

Thermodynamik & Kinetik

Thermodynamik & Kinetik Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters

Mehr

Protokoll Tag 4, Teil 1

Protokoll Tag 4, Teil 1 Protokoll Tag 4, Teil 1 D. Titrationsverfahren D.1. Einführung in die quantitative Analyse; D.2. Acidimetrie (Bestimmung der Konzentration einer Säure) Am heutigen letzten Tag des Praktikums geht es um

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3Bilanzgleichungen 3.3.1Massenbilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Versuch: Spezifische Wärmekapazität fester Körper

Versuch: Spezifische Wärmekapazität fester Körper ersuch T1 SPEZIFISHE WÄRMEKAPAZITÄT FESTER KÖRPER Seite 1 von 5 ersuch: Spezifische Wärmekapazität fester Körper Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, hemie,

Mehr

Prozesstechnik-Übung Wintersemester Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen.

Prozesstechnik-Übung Wintersemester Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen. Prozesstechnik-Übung Wintersemester 2008-2009 Thermische Analyse 1 Versuchsziel Es ist das Phasendiagramm des Systems Naphthalin/Biphenyl durch thermische Analyse zu bestimmen. 2 Theoretische Grundlagen

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Schmelzdiagramm eines binären Stoffgemisches

Schmelzdiagramm eines binären Stoffgemisches Praktikum Physikalische Chemie I 30. Oktober 2015 Schmelzdiagramm eines binären Stoffgemisches Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1. Theorie hinter dem Versuch Ein Schmelzdiagramm zeigt

Mehr

Laborübungen aus Physikalischer Chemie Karl-Franzens-Universität Graz. Kalorimetrie. Labor: Heinrichstraße 28, 3.St. Karl-Franzens Universität Graz

Laborübungen aus Physikalischer Chemie Karl-Franzens-Universität Graz. Kalorimetrie. Labor: Heinrichstraße 28, 3.St. Karl-Franzens Universität Graz Laborübungen aus Physikalischer Chemie Karl-Franzens-Universität Graz Kalorimetrie Labor: Heinrichstraße 28, 3.St Prof. Dr. Anton Huber DI Gerhard Kellner anton.huber@uni-graz.at gerhard.kellner@uni-graz.at

Mehr