Protokoll zum Versuch 3.1
|
|
|
- Chantal Geiger
- vor 9 Jahren
- Abrufe
Transkript
1 Grundpraktikum Physikalische Chemie Studiengang: Chemie-Ingenieurwesen Technische Universität München SS 2003 Protokoll zum Versuch 3.1 Kalorimetrie Gruppe 3 Kim Langbein Oliver Gobin 11 April 2003
2 Inhaltsverzeichnis 1 Aufgabenstellung 1 2 Theoretischer Hintergrund Themodynamische Größen Der Kalorimeter Neutralisationsenthalpie von Salzsäure Hydratations- und Lösungsenthalpie eines Salzes Versuchsdurchführung 3 4 Auswertung und Diskussion Neutralisationsenthalpie von Salzsäure Lösungswärme von Ammoniumclorid Fehlerrechnung und Fehlerbetrachtung Fehlerrechnung Fehlerbetrachtung Anhang 6
3 1 Aufgabenstellung Mittels eines Flüssigkeitskalorimeters ist die Neutralisationsenthalpie von Salzsäure und die Lösungsenthalpie von NH 4 Cl zu bestimmen. 2 Theoretischer Hintergrund 2.1 Themodynamische Größen In diesem Versuch werden die Energieänderungen gemessen, die von verschiedenen Größen abhängen können: F = f(p, V, T ) (1) Hält man das Volumen konstant, so wird die Änderung der inneren Energie gemessen, bzw die Wärmekapazität C v : ( ) ( ) U Q C v = = (2) T V T V Bei konstanten Druck erhält man die Aenderung der Enthalpie: ( ) ( ) H Q C p = = T T p p (3) 2.2 Der Kalorimeter Mit einem Kalorimeter lassen sich Wärmemengen, die z. B. bei einer chemischen Reaktion umgesetzt werden, quantitativ bestimmen. Die Wärmemenge ergibt sich als Q = (C K + c W m W ) T = C Sys T (4) mit der Wärmemenge Q, der Wärmekapazität C K des Kalorimeters, der spezifischen Wärmekapazität c W der Kalorimeterflüssigkeit (hier Wasser), der Menge der Kalorimeterflüssigkeit m W und T, der gemessenen Temperaturänderung. C Sys entspricht der Wärmekapazität des gesamten Systems, dem des Wassers und der des Kalorimeters. Zur Bestimmung von C Sys fährt man eine Eichmessung durch, indem man z.b. über eine elektrische Heizung eine genau definierte Wärmemange zuführt Q = RI 2 t = C Sys T eich (5) mit dem ohmschen Widerstand R der elektrischen Heizung, durch den in dem Zeitraum t der Strom I fliesst. Für C Sys ergibt sich daher: C Sys = I2 R t (6) T Da nun die Gesamtwärmekapazität des Systems (dazu gehört auch die elek. Heizung) bekannt ist, kann man mit Gleichung (4) versch. Wärmemengen bestimmen. 1
4 Der hier verwendete Kalorimeter tauscht Wärme mit der Umgebung aus, er ist nicht isotherm oder adiabatisch, daher muss der Wärmeverlust während des Versuchs an die Umgebung rechnerisch oder, wie hier gemacht wurde, zeichnerisch berücksichtigt werden. Zeichnerisch lässt sich dies mit dem Flächenausgleichsverfahren, durch extrapolation der erhaltenen Geraden der Vor- und Nachperioden des Versuchs, bewerkstelligen. Man erhält eine gute Näherung für T unter Berücksichtigung des Wärmeverlustes. Rechnerisch erhält man die Temperaturdifferenz in erster Näherung aus dem Newtonschen Abkühlgesetz: dt dt = K (T 0 T (t)) (7) mit der Temperatur T (t) des Kalorimeters zum Zeitpunkt t und der Abkühlkonstante K, die nur konstant ist solange T 0 T < 6K ist. 2.3 Neutralisationsenthalpie von Salzsäure Bei der Vereinignung einer Säure und einer Base wird die Neutralisationsenthalpie frei, welche bei konstanten Druck der Neutralisationswärme entspricht. Wenn es sich, wie in diesem Fall, um eine starke Säure und eine starke Base handelt, entspricht die Neutralisationsenthalpie der Bildungsenthalpie des Wassers aus OH - und H 3 O + -Ionen, sofern die Lösung stark verdünnt ist. Bei konzentrierten Lösungen ist u.a. die sog. Verdünnungsenthalpie zu berücksichtigen. Es ergibt sich unter Berücksichtigung der Verdünnungsenthalpie: C Sys T verd. + n H verd. + n H neutr. = 0 (8) 2.4 Hydratations- und Lösungsenthalpie eines Salzes Wenn ein Salz gelöst wird, wird in einigen Fällen Energie frei (exothermer Vorgang) und in anderen Fällen wird Energie aufgenommen (endothermer Vorgang). Der Lösungsvorgang eines Salzes in einem Lösemittel wird dabei in zwei Schritte unterteilt. 1.Schritt: Das Salz liegt vor dem Lösen in kristalliner Form vor. Zwischen den unterschiedlich geladenen Ionen eines Salzkristalls herrschen starke Anziehungskräfte. Zur Aufspaltung des Kristallgitters müssen diese Kräfte überwunden werden. Die hierzu nötige Energie wird Gitterenergie genannt. Die Gitterenergie wird dem Lösemittel entzogen, wodurch sich die Lösung stark abkühlt. Da beim Aufspalten des Kristallgitters Energie benötigt wird, handelt es sich um einen endothermen Vorgang. 2.Schritt: Die abgespaltenen Ionen umgeben sich mit einer Hülle aus Lösemittelmolekülen (Solvathülle). Dieser exotherme Vorgang wird Solvatation genannt. Die hierbei an das Lösemittel abgegebene Energie heißt Solvatationsenergie. Handelt es sich bei dem Lösemittel um Wasser, spricht man von Hydratation bzw. Hydratationsenergie. Beide obengenannten Prozesse laufen parallel züinander ab. Überwiegt die Gitterenergie, so ist der Gesamtvorgang des Lösens endotherm. Im umgekehrten Fall hat die Lösungsenthalpie ein negatives Vorzeichen (exotherm). Jedoch kann die Reaktion freiwillig ablaufen, selbst wenn die 2
5 Lösungsenthalpie des Salzes endotherm ist. Dafür muss die freie Enthalpie G = H T S betrachtet werden, welche bei der Zunahme der Entropie kleiner wird. Ist G < 0 so läuft die Reaktion freiwillig ab, sie ist exergonisch, im Falle von G > 0 läuft sie nicht freiwillig ab, sie ist endergonisch. Gesucht ist die Lösungsenthalpie des Salzes, die folgender Energieerhaltung entsprechen muss: C Sys T loes. + n H loes. = 0 (9) Die Wärmekapazität des Systems (achtung hier handelt es sich um ein anderes System als im ersten Versuch) und die Temperaturänderung infolge der Lösung des Salzes, werden im Versuch bestimmt und man erhält die gesuchte Lösungsenthalpie. 3 Versuchsdurchführung Das Thermostat wurde auf die Stufe 3 eingestellt und das Kühlwasser nicht zu stark aufgedreht. 25 ml 1-molare Natronlauge wurden in 225 ml dest. Wasser pipettiert und mit einem Stopfen im Thermostat etwa eine halbe Stunde auf ca. 25 C temperiert. Ebenso 25 ml 1-molare Salzsäure. Nun wurde der Temperaturausgleich abgewartet (dauert ca. eine halbe Stunde). Dann wurde die verdünnte Natronlauge ins Kalorimetergefäß gegeben und die Temperatur 10 Minuten lang in einminuten Schritten auf dem Präzissions-Thermometer verfolgt (Vorperiode). Danach wurde die Säure zugegeben und der rasche Temperaturanstieg beobachtet (Hauptperiode), der nach ca. 20 sec beendet war. Als die Temperatur konstant blieb, wurde 10 Minuten lang weiterbeobachtet (Nachperiode). Nun wurde die elektrische Eichung zur Bestimmung der Wärmekapazität C durchgeführt. Die elektrische Heizung wurde eingeschaltet und ein Strom von 1 A eingestellt und ca. 10 Minuten geheizt (Vorperiode). Dann wurde noch die Nachperiode beobachtet. Das selbe Verfahren führt man auch mit Ammoniumchlorid (8 g) durch. Die Hauptperiode dauerte länger als beim vorherigen Versuch. Wichtig: Zwischendrin im Kalorimeter rühren, damit sich die Wärme im ganzen Gefäß verteilt. 3
6 4 Auswertung und Diskussion Der Versuch wird nicht adiabatisch ausgeführt, daher ist der Wärmeaustausch mit der Umgebung nicht zu vernachlässigen, und es müssen Vergleichsmessungen durchgeführt werden. 4.1 Neutralisationsenthalpie von Salzsäure Die Molzahl von Salzsäre ergibt sich zu: n HCl = 1mol 25ml = 0, 025mol 1000ml Mit den, aus den Messdaten (siehe Tabelle 1) mit Hilfe des Flächenausgleichsverfahrens, erhaltenen Temperaturdifferenzen T eich. = 0, 63K und T neutr. = 1, 09K und dem vorgegebenen Wert der Verdünnungsenthalpie H verd. = 2, 68kJ/mol ergibt sich aus (8) mit (4): C Sys1 = 1A2 1Ω 600s 0, 63K = 952, 38J/K H neutr. = ( H molar H verd. ) = RI2 t n HCl T neutr. = 1A2 1Ω 600s 0, 025mol = 38, 84 ± 1, 19 kj mol 1, 09K 0, 63K + 2, 68 kj mol T eich. H verd. Wegen H < 0 handelt es sich um einen exothermen Vorgang, d.h. es wird Wärme freigesetzt, bzw. der Umgebung zugeführt. 4.2 Lösungswärme von Ammoniumclorid Es ergibt sich für die Molzahl von Ammoniumclorid: n NH4Cl = 8g mol = 0, 15mol 53, 5g Analog zu der Rechnung der Neutralisationsenthalpie von Salzsäure, ergibt sich mit den Temperaturdifferenzen T loes. = 1, 80K und T eich. = 0, 82K aus (9) mit (4): C Sys2 = 1A2 1Ω 720s 0, 82K = 878, 049J/K H loes. = H molar = RI2 t n NH4Cl T neutr. = 1A2 1Ω 720s 0, 15mol = 10, 537 ± 0, 103 kj mol 1, 80K 0, 82K T eich. Hier handelt es sich um einen endothermen Vorgang, der allerdings spontan abläuft und daher exergonisch ist, siehe Abschnitt
7 4.3 Fehlerrechnung und Fehlerbetrachtung Fehlerrechnung Im Laufe des Versuches und der Auswertung traten folgende Fehler auf: 1. Die Ungenauigkeit σ I des Eichstroms (I = 1 ± 0, 01A) 2. Zeitungenauigkeit σ t (t = 60 ± 1s) 3. Aus dem Flächenausgleichsverfahren geschätzter Temperaturfehler (±0, 1K) 4. Fehler beim Abwiegen (± g) 5. Fehler des Beckmannthermomethers (±0, 01K) Die Fehler 4 und 5 sind vernachlässigbar klein, bzw. Fehler 5 wurde bei der Abschätzung des Temperaturfehlers in 3 berücksichtigt. Der Widerstand ist fest auf 1Ω eingestellt und verursacht daher keinen Fehler. Der Maximalfehler ergibt sich nach dem Gaußschen Fehlerfortpflanzungssatz aus mit zu σ H = = H = RI2 t T n T eich. H σ I + H I σ t + H t T σ T + H σ Teich. T eich. 2 RIt T σ I n T eich. + RI 2 T σ t n T eich. + RI 2 t σ T n T eich. + RI 2 t T σ Teich. n T 2 eich. σ H(neutr.) = (83, , , , 1) J kj = 1, 192 mol mol σ H(loes.) = (17, , , , 22) J mol = 103, 2 J mol Fehlerbetrachtung - Der Fehler beim Flächenausgleichsverfahren könnte auch noch größer sein, da die Temperatur während des Versuches (z.b. bei der Neutralisation) teilweise schlagartig stieg und deshalb in dem Bereich dieses starken Temperaturanstiegs nur jeweils ein Messpunkt vorliegt. - Beim Zufügen des Ammoniumchlorids in das Kalorimeter ist eine kleine Menge Salz im Reagenzglas und auf dem Kalorimeter geblieben. Dadurch wird das Ergebnis leicht verfälscht. - Die Umgebungstemperatur während des Versuchs ist mit Sicherheit nicht konstant geblieben, diese Fehlerquelle wird zwar mit Hilfe mehrerer Ausgleichsmessungen teilweise kompensiert, jedoch ist dies eine weitere Fehlerquelle, die von uns nicht in dieser Rechnung erfasst wurde. 5
8 5 Anhang t in [s] T neutr. in [K] T salz in [K] t in [s] T neutr. in [K] T salz in [K] Tabelle 1: Messwerte 6
Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1
Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 6 Kalorimetrie Aufgabe: Mittels eines Flüssigkeitskalorimeters ist a) die Neutralisationsenthalpie von säure b) die ösungsenthalpie
T5 - Hydratations- und Neutralisationsenthalpie
T5 - Hydratations- und Neutralisationsenthalpie Aufgaben: 1. Messung der molaren integralen Lösungsenthalpie von Natriumhydrogenphosphat Na 2 HPO 4, Natriumhydrogenphosphat-dihydrat Na 2 HPO 4 2H 2 O,
ADIABATISCHE KALORIMETRIE
VERSUCH 6 ADIABATISCHE KALORIMETRIE Thema Kalorimetrische Bestimmung von Lösungs- und Neutralisationswärmen Grundlagen Literatur 1. Hauptsatz der Thermodynamik adiabatische Kalorimetrie Lösungs-, Neutralisations-,
Kalorimetrische Messungen. Die Bestimmung von Enthalpieänderungen in Lösungen Praktikum physikalische Chemie für Pharmaziestudenten
Kalorimetrische Messungen. Die Bestimmung von Enthalpieänderungen in Lösungen Praktikum physikalische Chemie für Pharmaziestudenten zusammengestellt von Soma Vesztergom 1.) Kurzbeschreibung Mit Hilfe eines
TD 3: Neutralisationswärme
TD 3: Neutralisationswärme Theoretische Einleitung Chemische Umsetzungen sind stets von einer Energieänderung begleitet, wobei der umgesetzte Energiebetrag entweder vom System aufgenommen (endotherme Reaktion)
Versuchsprotokoll: Neutralisationsenthalpie
Versuchsprotokoll: Neutralisationsenthalpie Patrik Wolfram TId: 0 Alina Heidbüchel TId: 19 Gruppe 10 01.06.13 1 Inhaltsverzeichnis 1. Einleitung...3. Theorie...3 3. Durchführung...6 4.Auswertung...7 4.1
Lösungswärme von Salzen
Lösungswärme von Salzen In diesem Versuch wird die Lösungswärme von zwei Salzen, Calciumchlorid und Calciumchlorid-Hexahydrat ermittelt. Dabei wird die Temperaturänderung beim Lösen des Salzes kalorimetrisch
Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie.
Thermodynamik 1 1.Hauptsatz der Thermodynamik Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie. Energie ist die Fähigkeit Arbeit
Physikalische Chemie in der Schule
Universität Kassel, Grundpraktikum Physikalische Chemie Studiengang Lehramt Chemie Physikalische Chemie in der Schule I. Anfangsunterricht: Die Merkmale der chemischen Reaktion (Lit. Elemente chemie I
Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer
Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen
1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure
1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure In diesem Versuch soll der Satz von Hess (die umgesetzte Wärmemenge ist bei einer chemischen Reaktion unabhängig vom Weg)
Reaktionsenthalpie der Hydratbildung von Salzen
Übungen in physikalischer Chemie für B.Sc.-Studierende Versuch Nr.: S12 Version 2015 Kurzbezeichnung: Hydratation Reaktionsenthalpie der Hydratbildung von Salzen Aufgabenstellung Molare Lösungsenthalpien
PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test
PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice
Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid
Experimentelle Ermittlung der molaren Lösungswärme von Kaliumchlorid Versuchsaufbau : Um den Versuch durchzuführen, benötigen wir 180 g Wasser, welches in ein Becherglas gefüllt wird. Die Temperatur ermitteln
Reaktionsenthalpie der Hydratbildung von Salzen
Übungen in physikalischer Chemie für B.Sc.-Studierende Versuch Nr.: S12 Version 2016 Kurzbezeichnung: Hydratbildung Reaktionsenthalpie der Hydratbildung von Salzen Aufgabenstellung Die molaren Lösungsenthalpien
Enthalpie und Entropie
Schulversuchspraktikum Patricia Hiller Sommersemester 2015 Klassenstufen 11 & 12 Enthalpie und Entropie 1 Beschreibung des Themas und zugehörige Lernziele Auf einen Blick: In diesem Protokoll zum Themenbereich
Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)
Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,
Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate
Lösungsenthalpie / Lösungswärme unterschiedlicher Zinksulfat-Hydrate Zeitbedarf für die Versuchsdurchführung: ca. 10 Min. Geräte: Magnetrührer mit Magnetrührstäbchen Thermometer (min. 0,5 C Genauigkeit)
Verbrennungsenergie und Bildungsenthalpie
Praktikum Physikalische Chemie I 1. Januar 2016 Verbrennungsenergie und Bildungsenthalpie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Bildungsenthalpie von Salicylsäure wurde
PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test
PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Neutralisationswärme wird dieses Vorgespräch durch einen
5). KALORIMETRISCHE MESSUNGEN: Bestimmung der Lösungswärme von Elektrolyten. Zum Bestehen müssen drei von sechs Fragen richtig beantwortet werden.
1 5). KALORIMETRISCHE MESSUNGEN: Bestimmung der Lösungswärme von Elektrolyten Fragen zum Eingangskolloquium: Zum Bestehen müssen drei von sechs Fragen richtig beantwortet werden. 1. Was versteht man unter
Chemie Klausur
Chemie Klausur 12.1 1 21. Oktober 2002 Aufgaben Aufgabe 1 1.1. Definiere: Innere Energie, Enthalpieänderung, Volumenarbeit, Standard-Bildungsenthalpie, molare Standard- Bildungsenthalpie. 4 VP 1.2. Stelle
Kalorimetrische Untersuchung verschiedener Enthalpieformen anhand von Oxalsäure, atronlauge, Essigsäure, Kaliumchlorid und Wasser
Kalorimetrische Untersuchung verschiedener Enthalpieformen anhand von Oxalsäure, atronlauge, Essigsäure, Kaliumchlorid und Wasser Lisa Kamber, D-CHAB, 1. Semester [email protected] Jorge Ferreiro,
Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.
Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte
Reaktion und Energie
Reaktion und Energie Grundsätzliches Bei chemischen Reaktionen werden die Atome der Ausgangsstoffe neu angeordnet, d. h. Bindungen werden gespalten und neu geknüpft. Die Alltasgserfahrung legt nahe, dass
Praktikum Physik. Protokoll zum Versuch 5: Spezifische Wärme. Durchgeführt am Gruppe X
Praktikum Physik Protokoll zum Versuch 5: Spezifische Wärme Durchgeführt am 10.11.2011 Gruppe X Name 1 und Name 2 ([email protected]) ([email protected]) Betreuer: Wir bestätigen hiermit, dass wir das
Neutralisationsenthalpie in Wasser
Übungen in physikalischer Chemie für B. Sc.-Studierende Versuch Nr.: S11 Version 2018 (090318) Kurzbezeichnung: Neutralisation Neutralisationsenthalpie in Wasser Aufgabenstellung Mit einem Kalorimeter
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie
10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong
Physikalisches Anfaengerpraktikum. Dissoziationsgrad und Gefrierpunkterniedrigung
Physikalisches Anfaengerpraktikum Dissoziationsgrad und Gefrierpunkterniedrigung Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe ) Montag, 1. Februar 00 1. Versuchsaufbau Um den Dissoziationsgrad
T1: Wärmekapazität eines Kalorimeters
Grundpraktikum T1: Wärmekapazität eines Kalorimeters Autor: Partner: Versuchsdatum: Versuchsplatz: Abgabedatum: Inhaltsverzeichnis 1 Physikalische Grundlagen und Aufgabenstellung 2 2 Messwerte und Auswertung
Versuch Nr. 2. Kalorimetrie - Bombenkalorimeter
Versuch Nr. 2 (Bestimmung von Verbrennungswärmen) 1. Grundlagen Die Thermochemie ist die Lehre von den Wärmeeffekten, die chemische Reaktionen, Lösungsvorgänge und Phasenumwandlungen begleiten. Eine der
Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen.
1) DEFINITIONEN DIE CHEMISCHE REAKTION Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. Der Massenerhalt: Die Masse ändert sich im Laufe einer Reaktion
A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?
A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten
C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8
Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste
Enthalpie H (Wärmeinhalt, Wärmefunktion)
Enthalpie H (Wärmeinhalt, Wärmefunktion) U = Q + W Innere Energie: Bei konstantem Volumen ablaufende Zustandsänderung (isochorer Prozess, dv=) W=p V= U=Q v Bei Zustandsänderung unter konstantem Druck (isobarer
Physikalische Chemie Praktikum. Thermodynamik: Verbrennungsenthalpie einer organischen Substanz
Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 18 Nov. 2016 Thermodynamik: Verbrennungsenthalpie einer organischen Substanz Allgemeine Grundlagen 1. Hauptsatz der Thermodynamik, Enthalpie,
Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung
Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)
Thermodynamik & Kinetik
Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters
Protokoll zum Versuch: Elektrisches Wärmeäquivalent
Protokoll zum Versuch: Elektrisches Wärmeäquivalent Nils Brüdigam Fabian Schmid-Michels Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 07.12.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie
Versuchsprotokoll. Spezifische Wärmekapazität des Wassers. Dennis S. Weiß & Christian Niederhöfer. zu Versuch 7
Montag, 10.11.1997 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 7 Spezifische Wärmekapazität des Wassers 1 Inhaltsverzeichnis 1 Problemstellung
Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2
Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft
Praktikumsrelevante Themen
Praktikumsrelevante Themen Lösungen Der Auflösungsprozess Beeinflussung der Löslichkeit durch Temperatur und Druck Konzentration von Lösungen Dampfdruck, Siede- und Gefrierpunkt von Lösungen Lösungen von
Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13
Kantonsschule Kreuzlingen, Klaus Hensler Chemiebuch Elemente Lösungen zu Aufgaben aus Kapitel 13 Grundregeln für stöchiometrische Berechnungen Wenn es um Reaktionen geht zuerst die chem. Gleichung aufstellen
Verbrennungsenthalpie einer festen organischen Substanz
Universität Potsdam Professur für Physikalische Chemie Grundpraktikum Physikalische Chemie Dr. B. Kallies, 02.06.2000 Verbrennungsenthalpie einer festen organischen Substanz Verbrennungswärmen fester organischer
C1 Erhitzen von Kupfer(II)-sulfat-Pentahydrat
Chemische Reaktionen lassen sich anhand einiger charakteristischer Kennzeichen erkennen. Produkte einer Reaktion haben gegenüber den Ausgangsstoffen veränderte chemische Eigenschaften, bei Reaktionen wird
Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen
Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14
a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)
Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche
3. Berechnung der molaren Verbrennungsenthalpie. 4. Berechnung der Standardreaktionsenthalpie für die Hydrierung von Phthalsäureanhydrid
Verbrennungswärme Aufgaben: 1. Ermittlung der Wärmekapazität des Kalorimeters durch Verbrennen einer Eichsubstanz. 2. Bestimmung der spezifischen Verbrennungswärmen von Phthalsäureanhydrid und Tetrahydrophthalsäureanhydrid.
Grundlagen der Chemie Lösungen Prof. Annie Powell
Lösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Inhalte Konzentrationsmaße Wasser als Lösungsmittel Solvatation,
Energie und chemische Reaktion. Was ist Energie? Welche Einheit hat Energie?
Was ist Energie? Welche Einheit hat Energie? Was ist Energie? Es gibt verschiedene Formen von Energie, die ineinander überführt werden können. Energie kann jedoch nicht vernichtet oder erzeugt. Es gibt
Die Innere Energie U
Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.
Versuchsprotokoll T12 Bestimmung der Standardbildungsenthalpie aus Verbrennungsenergien
Dieses Werk steht unter der Creative-Commons-Lizenz CC BY-NC 3.0 1 Physikalische Chemie I Versuchsprotokoll T12 Bestimmung der Standardbildungsenthalpie aus Verbrennungsenergien Inhaltsverzeichnis 1 Ziel
NICHT: W = ± 468 J, sondern: W = ± J oder: W = (1.283 ± 0.005) 10 5 J
Musterbericht Allgemeines Der Versuchsbericht sollte kurz gehalten werden, aber das Notwendige enthalten. Er sollte klar vermitteln was - wie gemessen wurden. Kapitelüberschriften helfen bei der sauberen
Enthalpie und Entropie
Schulversuchspraktikum Marlene Eberl Sommersemester 2014 Klassenstufen 11 & 12 Enthalpie und Entropie 1 Beschreibung des Themas und zugehörige Lernziele 1 Auf einen Blick: Dieses Protokoll zum Thema Enthalpie
C Säure-Base-Reaktionen
-V.C1- C Säure-Base-Reaktionen 1 Autoprotolyse des Wassers und ph-wert 1.1 Stoffmengenkonzentration Die Stoffmengenkonzentration eines gelösten Stoffes ist der Quotient aus der Stoffmenge und dem Volumen
A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs
A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man
Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.
Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,
Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm
Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften
Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11
Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose
Lösung Sauerstoff: 1s 2 2s 2 2p 4, Bor: 1s 2 2s 2 2p 1, Chlor: 1s 2 2s 2 2p 6 3s 2 3p 5 Neon: 1s 2 2s 2 2p 6
1 of 6 10.05.2005 10:56 Lösung 1 1.1 1 mol Natrium wiegt 23 g => 3 mol Natrium wiegen 69 g. 1 mol Na enthält N A = 6.02 x 10 23 Teilchen => 3 mol enthalten 1.806 x 10 24 Teilchen. 1.2 Ein halbes mol Wasser
E1: Bestimmung der Dissoziationskonstante einer schwachen Säure durch Messung der elektrischen Leitfähigkeit der Elektrolytlösung
Versuch E1/E2 1 Versuch E1/E2 E1: Bestimmung der Dissoziationskonstante einer schwachen Säure durch Messung der elektrischen Leitfähigkeit der Elektrolytlösung E2: Konduktometrische Titration I Aufgabenstellung
Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E
Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 [email protected] www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2016 Wie zählen wir Mengen in der Chemie? Stefan
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #10 30/10/2008 Vladimir Dyakonov [email protected] Thermisches Gleichgewicht Soll die Temperatur geändert werden, so muss dem System Wärme (kinetische
4. KALORIMETRISCHE MESSUNGEN: Bestimmung der Neutralisationswärme
1 4. KALORIMETRISCHE MESSUNGEN: Bestimmung der Neutralisationswärme Fragen zum Eingangskolloquium: Zum Bestehen müssen vier von sechs Fragen richtig beantwortet werden. 1. Was versteht man unter ein totales
Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt
1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei
Kalorimetrische Messungen
Kalorimetrische Messungen 1 Kalorimetrische Messungen Durch Verfolgen des Temperaturverlaufs in einem Kalorimeter werden die spezifische Wärmekapazität von Kupfer, die Schmelzwärme von Eis sowie die Lösungswärmen
Technische Thermodynamik
Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik
Spezische Wärme von Festkörpern
Spezische Wärme von Festkörpern Praktikumsversuch am 11.05.2011 Gruppe: 18 Thomas Himmelbauer Daniel Weiss Abgegeben am: 18.05.2011 Inhaltsverzeichnis 1 Einleitung 2 2 Vorbemerkung zur Fehlerrechnung 2
Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent)
Physik Erster Hauptsatz (mechanisches und elektrisches Wärmeäquivalent) 1. Ziel des Versuches Umwandlung von mechanischer Reibungsarbeit in Wärme, Umwandlung von elektrischer Arbeit bzw. Energie in Wärme,
Kalorimetrie. Raphael Sigrist, Lars Müller D-CHAB. 25. Januar 2004
Kalorimetrie Raphael Sigrist, Lars Müller D-CHAB 5. Januar 004 Zusammenfassung Mit Hilfe eines Kalorimeters wurden Temperaturänderungen verschiedener Reaktionen gemessen, woraus Rückschlüsse auf die Enthalpieänderung
Bestimmung der spezifischen Wärmekapazität fester Körper
- B02.1 - Versuch B2: Bestimmung der spezifischen Wärmekapazität fester Körper 1. Literatur: Demtröder, Experimentalphysik, Bd. I Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Walcher, Praktikum der Physik
Kalorimetrische Messungen
Kalorimetrische Messungen 1 Kalorimetrische Messungen Durch Verfolgen des Temperaturverlaufs in einem Kalorimeter sollen die spezifische Wärmekapazität von Kupfer, die Schmelzwärme von Eis sowie die Lösungswärmen
1 V 3 Versuch zum Wärmesatz von Hess bei der Reaktion von Calcium mit Salzsäure
V 3 Versuch zum Wärmesatz von Hess bei der Reaktion von Calcium mit Salzsäure 1 1 V 3 Versuch zum Wärmesatz von Hess bei der Reaktion von Calcium mit Salzsäure Der Satz von Hess besagt, dass die Wärmemenge
Neutralisationsenthalpie
Universität Potsdam Professur für Physikalische Chemie Grundpraktikum Physikalische Chemie Dr. B. Kallies, 21.02.2001 Neutralisationsenthalpie Zur Messung von Wärmeeffekten bei Vorgängen in Lösungen (Lösungs-,
4 Die chemische Reaktion
4 Die chemische Reaktion Chemische Reaktionen sind Stoffumwandlungsprozesse. In einer submikroskopischen Betrachtungsweise ist eine chemische Reaktion stets mit einer Änderung der relativen Lage der Atomkerne
Spezifische Wärmekapazität fester Körper
Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze
Zweiter Hauptsatz der Thermodynamik
Zweiter Hauptsatz der hermodynamik Spontan ablaufende Prozesse: Expansion von ideale Gasen Diffusion Wärmeaustausch Der 2. Hauptsatz der hermodynamik liefert Kriterien, mit deren Hilfe sich die Richtung
Elektromotorische Kraft und thermodynamische Zustandsfunktionen
Praktikum Physikalische Chemie I 11. November 2015 Elektromotorische Kraft und thermodynamische Zustandsfunktionen Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 Aufgabenstellung Die Reaktion des Daniell-Elements
Homogenes Gleichgewicht
Knoch, Anastasiya Datum der Durchführung: Petri, Guido 08.12.2015 (Gruppe 11) Datum der Korrektur: 02.02.2016 Praktikum Physikalische Chemie I. Thermodynamik Homogenes Gleichgewicht 1. Aufgabenstellung
Physikalisches Grundpraktikum Sommer-Semester 2003 Kurs 1, Teil 1. Ausarbeitung
Physikalisches Grundpraktikum Sommer-Semester 2003 Kurs 1, Teil 1 Ausarbeitung zu Versuch Nr.10 Messung der spezifischen Wärmekapazität und Schmelzwärme von Florian Staub Datum der Versuchsdurchführung:
Ergänzende Informationen zum Praktikum
Philipps-Universität Marburg Medipraktikum Ergänzende Informationen zum Praktikum Assistent: Markus Dörr E-mail: [email protected] Wintersemester 10/11 Inhaltsverzeichnis Inhaltsverzeichnis 1 Allgemeine
Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen
Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische
200 Spezifische Kondensationswärme von Wasserdampf
200 Spezifische Kondensationswärme von Wasserdampf 1. Aufgaben 1.1 Ermitteln Sie die Wärmekapazität eines Kalorimeters! 1.2 Bestimmen Sie die spezifische Kondensationswärme von Wasserdampf und berechnen
1.3. Fragen zu chemischen Reaktionen
1.3. Fragen zu chemischen Reaktionen Reaktionsgleichungen Ergänze die fehlenden Koeffizienten: a) PbI 4 PbI 2 + I 2 b) PbO 2 PbO + O 2 c) CO + O 2 CO 2 d) SO 2 + O 2 SO 3 e) N 2 + H 2 NH 3 f) N 2 + O 2
Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie. Protokollant: Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre
Physikalisches Anfängerpraktikum Teil 2 Elektrizitätslehre Physik Bachelor 2. Semester Versuch 7 Umwandlung von elektrischer Energie in Wärmeenergie Protokoll Harald Schmidt Sven Köppel Versuchsdurchführung:
Chemie Zusammenfassung KA 2
Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen
... U I t = c m ΔT ( ΔT = T 2 - T 1 )
nergie - Wärmespeicherung und Wärmeumsatz 1.) Spezifische Wärmekapazität von Wasser F Unter der spezifischen Wärmekapazität c eines Stoffes versteht man die nergie, die man zuführen muß, um 1 kg dieses
Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I
Institut für Anorganische Chemie Prof. Dr. R. Streubel Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I Vorlesung für die Studiengänge Bachelor Chemie und Lebensmittelchemie Im WS 08/09 Die
Planung, Bau und Betrieb von Chemieanlagen - Übung Allgemeine Chemie. Allgemeine Chemie. Rückblick auf vorherige Übung
Planung, Bau und Betrieb von Chemieanlagen - Übung Allgemeine Chemie 1 Allgemeine Chemie Rückblick auf vorherige Übung 2 Löslichkeit Was ist eine Lösung? - Eine Lösung ist ein einphasiges (homogenes) Gemisch
Hydrodynamik: bewegte Flüssigkeiten
Hydrodynamik: bewegte Flüssigkeiten Wir betrachten eine stationäre Strömung, d.h. die Geschwindigkeit der Strömung an einem gegebenen Punkt bleibt konstant im Laufe der Zeit. Außerdem betrachten wir zunächst
Enthalpie und Entropie
Schulversuchspraktikum Annika Nüsse Sommersemester 2016 Klassenstufen 11 & 12 Enthalpie und Entropie 1 Beschreibung des Themas und zugehörige Lernziele Auf einen Blick: Das Protokoll zum Thema Enthalpie
CHEMIE KAPITEL 4 SÄURE-BASE. Timm Wilke. Georg-August-Universität Göttingen. Wintersemester 2013 / 2014
CHEMIE KAPITEL 4 SÄURE-BASE Timm Wilke Georg-August-Universität Göttingen Wintersemester 2013 / 2014 Folie 2 Aufgaben In einen Liter Wasser werden 2 g NH - 2 (starke Base) eingeleitet welchen ph-wert hat
Lösung 7. Allgemeine Chemie I Herbstsemester Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf.
Lösung 7 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Je nach Stärke einer Säure tritt eine vollständige oder nur eine teilweise Dissoziation auf. Chlorwasserstoff ist eine starke Säure (pk a = 7),
Hausarbeit. Das Fällungs- und Löslichkeitsgleichgewicht. über. von Marie Sander
Hausarbeit über Das Fällungs- und Löslichkeitsgleichgewicht von Marie Sander Inhaltsverzeichnis 1. Einstieg in das Thema 2. Einflüsse auf das Löslichkeitsgleichgewicht - Das Prinzip von Le Chatelier 3.
Lösungen zur Übungsklausur Thermodynamik WS 2003/04
Lösungen zur Übungsklausur hermodynamik WS 003/04 Name: Vorname: Matrikelnummer: Aufgabe 3 4 5 Gesamt Note mögliche Punkte 9 0 8 9 4 40 erreichte Punkte Die Klausur wird bei Erreichen von insgesamt 0 Punkten
Praktische Übungen Chemie. Versuch 6
Bauhaus-Universität Weimar Professur Bauchemie Prof. Dr. rer. nat. habil. Christian Kaps Praktische Übungen Chemie Versuch 6 Bestimmung der Wasserhärte Stand: April 2008 1. Grundlagen und Zielstellung
Praktikum I PE Peltier-Effekt
Praktikum I PE Peltier-Effekt Florian Jessen, Hanno Rein, Benjamin Mück Betreuerin: Federica Moschini 27. November 2003 1 Ziel der Versuchsreihe Der Peltier Effekt und seine Umkehrung (Seebeck Effekt)
Laborübungen aus Physikalischer Chemie Karl-Franzens-Universität Graz. Kalorimetrie. Labor: Heinrichstraße 28, 3.St. Karl-Franzens Universität Graz
Laborübungen aus Physikalischer Chemie Karl-Franzens-Universität Graz Kalorimetrie Labor: Heinrichstraße 28, 3.St Prof. Dr. Anton Huber DI Gerhard Kellner [email protected] [email protected]
Lösungen zu den Zusatzübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)
Lösungen zu den Zusatzübungen zur hysik für Ingenieure (Maschinenbau) (WS 13/14) rof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Zusatzübung (Lösung) alle Angaben ohne Gewähr Zusatzaufgabe
