Phasenumwandlungsenthalpie
|
|
|
- Christoph Beutel
- vor 7 Jahren
- Abrufe
Transkript
1 Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 7 Phasenumwandlungsenthalpie Die Enthalpieänderung beim Übergang eines Systems in einen anderen Aggregatzustand kann unter der Voraussetzung, dass dieser Prozess isobar verläuft, durch Messung der dabei ausgetauschten Wärme bestimmt werden. Auch bei nicht-isobaren Umwandlungen (z.b. Messung der Dampfdruckkurve) ist es unter gewissen vereinfachenden Annahmen möglich, die Enthalpieänderung zu ermitteln. Im Experiment bestimmen Sie bei isobarer Prozessführung die Kondensationsenthalpie von Wasserdampf und bei nicht-isobarer Prozessführung die Verdampfungsenthalpie von Wasser. Aufgaben 1. Spezifische Kondensationsenthalpie und spezifische Kondensationsentropie des Wassers sind zu bestimmen. 2. Molare Kondensationsenthalpie sowie molare Kondensationsentropie für Wasser sind zu berechnen. 3. Im emperaturintervall von 20 C bis 100 C ist die Dampfdruckkurve des Wassers aufzunehmen. Die Diagramme p = p () und ln p [p] = f 1 sind darzustellen. 4. Für das untersuchte emperaturintervall sind die mittlere molare Verdampfungsenthalpie und die mittlere spezifische Verdampfungsenthalpie von Wasser zu ermitteln. Zubehör Dampferzeuger, Dewar-Gefäß, Stoppuhr, elektronische Waage, Bechergläser, Digitalthermometer, Komplett aufgebaute Apparatur zur Aufnahme der Dampfdruckkurve des Wassers, Siedesteine, dest. Wasser. 1
2 Grundlagen Die Wärme ist keine thermodynamische Zustandsgröße. Sie ist im allgemeinen zur eindeutigen Beschreibung einer Zustandsänderung nicht geeignet. Für spezielle Prozesse wird jedoch die zuoder abgeführte Wärme gleich der Änderung einer Zustandsgröße, oder die Änderung dieser Zustandsgröße lässt sich aus der zu- oder abgeführten Wärme errechnen. Bei isotherm-isobaren Phasenumwandlungen eines Stoffes trifft das für die Zustandsgröße Enthalpie und Entropie zu. Die bei isothermer Umwandlung einer Phase in eine andere, etwa fest flüssig oder flüssig gasförmig, zugeführte Energie umfasst sowohl die für die Volumenänderung erforderliche Arbeit als auch die Änderung der inneren Energie. Das totale Differential der Zustandsgröße Enthalpie dh = du pdv Vdp (1) nimmt für einen isobaren Prozeß, z. B. eine isobare Phasenumwandlung, die Form an dh = du p dv. (2) Da andererseits gilt đq = du p dv, folgt dh = đq. (3) Die vom System bei der Phasenumwandlung in Form von Wärme ausgetauschte Energie ist gleich der Änderung seiner Enthalpie. Charakteristisch für die Phasenumwandlung ist also die Änderung der Enthalpie, die Umwandlungsenthalpie (Schmelzenthalpie, Kondensationsenthalpie). Nach Gl.(3) kann sie durch Messung der zu- oder abgeführten Wärme ermittelt werden. Die Änderung der Zustandsgröße Entropie lässt sich durch ds := du p dv (4) definieren. Für einen isobaren Prozeß folgt mit Gleichung (2) ds := dh. Handelt es sich außerdem um einen isothermen Prozeß, so ergibt sich S = H. (5) 2
3 Zur Kondensationsenthalpie und - entropie Als Kondensationsenthalpie k H bezeichnet man die Enthalpieänderung eines Systems beim Kondensieren. Die spezifische Kondensationsenthalpie ist k h = k H m. (6) Werden bei diesem Mischungsexperiment die Größen des höher temperierten eilsystems mit dem Index A gekennzeichnet, so bedeuten: m A A m B B = Masse des kondensierten Wasserdampfes, = Kondensationstemperatur, = Masse des Wassers im Kalorimeter, = emperatur von Wasser und Kalorimeter vor dem Mischungsvorgang. Es gilt k h = cw A M m B c W C M B m A. (7) Beachten Sie, dass sich nach Gl.(7) für die spezifische Kondensationsenthalpie ein negativer Wert ergeben muss, da sich die Enthalpie des eilsystems A beim Kondensieren verkleinert. Der positive Wert vom gleichen Betrag wäre die spezifische Verdampfungsenthalpie. Nach Gl.(5) erhält man für diese speziellen Prozesse die entsprechenden Entropien: spezifische Kondensationsentropie k s = k h und molare Kondensationsentropie k s = h k. Die molare Verdampfungsentropie unterscheidet sich nur durch ihr positives Vorzeichen von der molaren Kondensationsentropie. 3
4 Die Mischungstemperatur M wird durch ein grafisches Extrapolationverfahren (/2/) aus der Messreihe zur zeitlichen Änderung der emperatur ermittelt: Zum Zeitpunkt t 0 beginnt die Dampfeinleitung in das wassergefüllte Kalorimetergefäß. Dadurch steigt die emperatur des Wassers (beginnend bei der Raumtemperatur ϑ B ) zügig an. Die Dampfeinleitung wird unterbrochen, sobald die emperatur des Wasser um etwa 10K gestiegen ist. Aufgrund der Wärmeabgabe an die Umgebung wird sich nun die Messtemperatur langsam assymptotisch der Raumtemperatur nähern. Für kurze Beobachtungszeiten kann diese emperaturabnahme linear genähert werden. Nun zeichnet man eine senkrechte Linie so in das Diagramm, dass die beiden schraffierten Flächen gleich groß sind. Diese Flächen sind proportional zu den ausgetauschten Wärmen Q A und Q B. Die grafische Extrapolation der linearisierten Messkurve führt zu einem Schnittpunkt mit der eben konstruierten senkrechten Linie. Dieser Schnittpunkt liefert die gesuchte Mischungstemperatur ϑ Μ. Zur Dampfdruckkurve Für den Gleichgewichtszustand zwischen flüssiger Phase und Gasphase gilt unter vereinachenden Annahmen die Clausius-Clapeyronsche Gleichung dp d = p V h R 2 (8) p = Dampfdruck, Δ V h = molare Verdampfungsenthalpie, = emperatur, R = molare Gaskonstante. 4
5 Nach der rennung der Variablen und Integration folgt für den Fall, dass Δ V h temperaturunabhängig ist, ln p [p] = h V 1 R const. (9) Vor dem Logarithmieren ist der Druck p durch seine Einheit [p] zu dividieren (Geben Sie p unbedingt in der Si-Einheit Pa an). Die graphische Darstellung von ln p [p] = f 1 ergibt eine Gerade, aus deren Anstieg die molare Verdampfungsenthalpie bestimmt wird. Die molare Verdampfungsenthalpie des Wassers kann jedoch nur in grober Näherung als temperaturunabhängig angesehen werden. Sie hängt im untersuchten Intervall gemäß V h 45 J mol K (10) von der emperatur ab. Die Annäherung der Gl.(9) durch eine Gerade liefert eine molare Verdampfungsenthalpie, die etwa für die Mitte des untersuchten emperaturintervalls zutrifft. Will man diesen Wert mit einem abellenwert vergleichen, so ist zu beachten, dass dieser meist für Wasser von 100 C angegeben ist. Mit Hilfe der Gl.(10) kann jedoch der abellenwert für die Mitte des jeweiligen emperaturintervalls berechnet werden. Hinweise zur Vorbereitung Definition der inneren Energie, Enthalpie, Entropie. Spezifische und molare Größen. Bestimmung von M aus dem Verlauf von (t). Nach welchem emperatur-zeit-gesetz (t) kühlt sich ein erwärmter Körper ab? Unter welchen Bedingungen wird die Wärmekapazität zur Zustandsgröße? In der Literatur wird die spezifische Verdampfungsenthalpie des Wassers bei 100 C und dem Normaldruck p n = 1013,25 hpa mit 2256 J/g angegeben. Berechnen Sie daraus die molare Verdampfungsenthalpie bei 60 C! Leiten Sie die Clausius-Clapeyronsche Gleichung her! Zeichnen Sie das vollständige p,-diagramm des Wassers! Erläutern Sie an diesem Zustandsdiagramm die Entstehung der verschiedenen Arten der Niederschläge (Regen, Schnee, Hagel, au, Reif)! 5
6 Literatur /1/ Geschke, D.: Physikalisches Praktikum, Leipzig 2001 /2/ Walcher, W.: Praktikum der Physik, Stuttgart 2006 /3/ Hänsel, H., Neumann, W.: Physik, Mechanik und Wärmelehre, Berlin 2000 /4/ Grehn, J.: Metzler Physik, Hannover 2003 /5/ Stephan, K., Mayinger, F.: hermodynamik, Bd. 1, Berlin
T3 - Wärmekapazität. Nutzen Sie die Fachliteratur, um die nachfolgenden Fragen und Aufgaben zu beantworten:
T3 - Wärmekapazität Ziel des Versuches In diesem Versuch sollen Sie sich mit den Konzepten der Wärmekapazität und der Kalorimetrie vertraut machen. Hierzu bestimmen Sie die Wärmekapazität des zur Verfügung
Physikalisches Praktikum I
Fachbereich Physik Physikalisches Praktikum I W21 Name: Verdampfungswärme von Wasser Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Folgende Fragen
A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit
Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Aufgabe: Es ist die Dampfdruckkurve einer leicht flüchtigen Flüssigkeit zu ermitteln
T7 Phasenumwandlungsenthalpie
Christian Müller Jan Philipp Dietrich T7 Phasenumwandlungsenthalpie 1. Bestimmung der Kondensationsenthalpie und -entropie a) Versuchserläuterung b) Werte und Grafiken c) Berechnung der Kondensationsenthalpie
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe. W 3 - Kalorimetrie
10.08.2008 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: W 3 - Kalorimetrie 1. Grundlagen Definition und Einheit von Wärme und Temperatur; Wärmekapazität (spezifische und molare); Regel von Dulong
Modul Chemische Thermodynamik: Verdampfungsgleichgewicht
Modul Chemische hermodynamik: Verdampfungsgleichgewicht M. Broszio, F. Noll, Oktober 2007, Korrekturen September 2008 Lernziele Ziel dieses Versuches ist es einen Einblick in die Beschreibung von Phasengleichgewichten
Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung)
Versuch Nr. 57 Dampfdruck von Flüssigkeiten (Clausius-Clapeyron' sche Gleichung) Stichworte: Dampf, Dampfdruck von Flüssigkeiten, dynamisches Gleichgewicht, gesättigter Dampf, Verdampfungsenthalpie, Dampfdruckkurve,
O. Sternal, V. Hankele. 5. Thermodynamik
5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe
6.2 Zweiter HS der Thermodynamik
Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W
Umwandlungsenergien. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Sadovsky. Physikalisches Grundpraktikum
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: UE Erstellt: U. Escher A. Sadovsky Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Aktualisiert: am 29. 03. 2010 Umwandlungsenergien
Grundlagen der Physik II
Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur
Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan
Physik 4 Praktikum Auswertung Zustandsdiagramm Ethan Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Zustandsgleichung....... 2 2.2. Koexistenzgebiet........ 3 2.3. Kritischer
6 Thermodynamische Potentiale und Gleichgewichtsbedingungen
6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen
PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5
Musterlösung Übung 5 ufgabe 1: Enthalpieänderungen bei Phasenübergängen Es ist hilfreich, zuerst ein Diagramm wie das folgende zu konstruieren: (Die gesuchten Werte sind in den umrandeten oxen.) sub X
Laden und Entladen eines Kondensators
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum E5 Laden und Entladen eines Kondensators Bei diesem Versuch werden Sie mit dem zeitlichen Verlauf der Spannungen und Ströme beim Aufund
a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)
Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche
4. Freie Energie/Enthalpie & Gibbs Gleichungen
4. Freie Energie/Enthalpie & Gibbs Gleichungen 1. Eigenschaften der Materie in der Gasphase 2. Erster Hauptsatz: Arbeit und Wärme 3. Entropie und Zweiter Hauptsatz der hermodynamik 4. Freie Enthalpie G,
1 Thermodynamik allgemein
Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der
Versuch W1: Kalorimetrie
Versuch W1: Kalorimetrie Aufgaben: 1. Bestimmen Sie die Wärmekapazität zweier Kalorimeter (Kalorimeterkonstanten). 2. Bestimmen Sie die spezifische Wärmekapazität von 2 verschiedenen festen Stoffen. 3.
Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)
Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,
Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)
U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip
A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit
Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 3 Dampfdruckkurve einer leichtflüchtigen Flüssigkeit Aufgabe: Es ist die Dampfdruckkurve einer leicht flüchtigen Flüssigkeit zu ermitteln
Spezifische Wärmekapazität fester Körper
Version: 14. Oktober 2005 Spezifische Wärmekapazität fester Körper Stichworte Wärmemenge, spezifische Wärme, Schmelzwärme, Wärmekapazität, Wasserwert, Siedepunkt, innere Energie, Energiesatz, Hauptsätze
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,
Antrieb und Wärmebilanz bei Phasenübergängen. Speyer, März 2007
Antrieb und Wärmebilanz bei Phasenübergängen Speyer, 19-20. März 2007 Michael Pohlig, WHG-Durmersheim [email protected] Literatur: Physik in der Oberstufe; Duden-PAETEC Schmelzwärme wird auch als Schmelzenergie
Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.
PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice
PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test
PCG Grundpraktikum Versuch 4 Neutralisationswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Neutralisationswärme wird dieses Vorgespräch durch einen
Kapitel IV Wärmelehre und Thermodynamik
Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)
T5 - Hydratations- und Neutralisationsenthalpie
T5 - Hydratations- und Neutralisationsenthalpie Aufgaben: 1. Messung der molaren integralen Lösungsenthalpie von Natriumhydrogenphosphat Na 2 HPO 4, Natriumhydrogenphosphat-dihydrat Na 2 HPO 4 2H 2 O,
11. Der Phasenübergang
11. Der Phasenübergang - Phasendiagramme, Kritischer Punkt und ripelpunkt - Gibbssche Phasenregel - Phasenübergänge 1. und 2. Ordnung - Das Phasengleichgewicht - Clausius-Clapeyron-Gleichung - Pictet-routon-Regel,
Thermodynamik Prof. Dr.-Ing. Peter Hakenesch
hermodynamik _ hermodynamik Prof. Dr.-Ing. Peter Hakenesch [email protected] www.lrz-muenchen.de/~hakenesch _ hermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische
Vorlesung Statistische Mechanik: Ising-Modell
Phasendiagramme Das Phasendiagramm zeigt die Existenzbereiche der Phasen eines Stoffes in Abhängigkeit von thermodynamischen Parametern. Das einfachste Phasendiagramm erhält man für eine symmetrische binäre
1. Wärmelehre 1.1. Temperatur Wiederholung
1. Wärmelehre 1.1. Temperatur Wiederholung a) Zur Messung der Temperatur verwendet man physikalische Effekte, die von der Temperatur abhängen. Beispiele: Volumen einer Flüssigkeit (Hg-Thermometer), aber
Physik III - Anfängerpraktikum- Versuch 203
Physik III - Anfängerpraktikum- Versuch 203 Sebastian Rollke (103095) und Daniel Brenner (105292) 1. Februar 2005 Inhaltsverzeichnis 1 Vorbetrachtung 2 2 Theorie 2 2.1 Die mikroskopischen Vorgänge bei
Probeklausur STATISTISCHE PHYSIK PLUS
DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben
Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 4 Lösung. P + a )
U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter ogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 4 Lösung. van der Waals Gas, Adiabatengleichung
(VIII) Wärmlehre. Wärmelehre Karim Kouz WS 2014/ Semester Biophysik
Quelle: http://www.pro-physik.de/details/news/1666619/neues_bauprinzip_fuer_ultrapraezise_nuklearuhr.html (VIII) Wärmlehre Karim Kouz WS 2014/2015 1. Semester Biophysik Wärmelehre Ein zentraler Begriff
Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.
Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische
Klausur zur Vorlesung Thermodynamik
Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets
Versuch: Zustandsdiagramm (Ethan)
Physikpraktikum Versuch: Zustandsdiagramm (Ethan) Teilnehmer: Arthur Halama 858808 Cristoph Hansen 874837 Kurzfassung Der Versuch Zustandsdiagramm Ethan befasst sich der Untersuchung des Gases Ethan nahe
Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 1. Prof. Dr. Ing. Heinz Pitsch
Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 1 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 1: Übersicht 2 Zustandsgrößen 2.1 Thermische Zustandsgrößen 2.1.1 Masse und Molzahl 2.1.2 Spezifisches
Versuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten -
1 ersuch 14: Dampfdruckkurve - Messung der Dampfdruckkurven leicht verdampfbarer Flüssigkeiten - 1. Theorie Befindet sich eine Flüssigkeit in einem abgeschlossenen Gefäß, so stellt sich zwischen der Gasphase
Physikalisches Grundpraktikum. Phasenumwandlungen
Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:
4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:
Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar
Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts
Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K
8.4.5 Wasser sieden bei Zimmertemperatur ******
8.4.5 ****** 1 Motivation Durch Verminderung des Luftdrucks siedet Wasser bei Zimmertemperatur. 2 Experiment Abbildung 1: Ein druckfester Glaskolben ist zur Hälfte mit Wasser gefüllt, so dass die Flüsigkeit
Wärmelehre Zustandsänderungen ideales Gases
Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener
T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12
. Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase
Phasengleichgewicht. 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. A fl. A g
Physikalisch-Chemische Praktika Phasengleichgewicht Versuch T-2 Aufgaben 1. Experimentelle Bestimmung des Dampfdrucks von Methanol als Funktion der Temperatur. 2. Ermittlung der Phasenumwandlungsenthalpie
2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme
2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen
Dampfdruck von Flüssigkeiten
Dampfdruck von Flüssigkeiten 1 Dampfdruck von Flüssigkeiten In diesem Versuch werden die Dampfdruckkurven zweier Flüssigkeiten im Temperaturbereich zwischen Raumtemperatur und den jeweiligen Siedetemperaturen
ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,
ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend
Gefrierpunktserniedrigung
Knoch, Anastasiya Datum der Durchführung: Petri, Guido 05.01.2016 (Gruppe 11) Datum der Korrektur: 02.02.2016 Praktikum Physikalische Chemie I. Thermodynamik Gefrierpunktserniedrigung 1. Aufgabenstellung
3 Der 1. Hauptsatz der Thermodynamik
3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.
Physik 2 (B.Sc. EIT) 2. Übungsblatt
Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,
Musterlösung Übung 10
Musterlösung Übung 10 Aufgabe 1: Phasendiagramme Abbildung 1-1: Skizzen der Phasendiagramme von Wasser (links) und Ethanol (rechts). Die Steigung der Schmelzkurven sind zur besseren Anschaulichkeit überzogen
PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test
PCG Grundpraktikum Versuch 5 Lösungswärme Multiple Choice Test 1. Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Lösungswärme wird dieses Vorgespräch durch einen Multiple Choice
4 Hauptsätze der Thermodynamik
I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es
2 Grundbegriffe der Thermodynamik
2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch
Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3
Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes
Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge
Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer
Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen
Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14
b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3
Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von
d) Das ideale Gas makroskopisch
d) Das ideale Gas makroskopisch Beschreibung mit Zustandsgrößen p, V, T Brauchen trotzdem n, R dazu Immer auch Mikroskopische Argumente dazunehmen Annahmen aus mikroskopischer Betrachtung: Moleküle sind
Thermodynamik. Thermodynamics. Markus Arndt. Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008
Thermodynamik Thermodynamics Markus Arndt Quantenoptik, Quantennanophysik und Quanteninformation Universität Wien January 2008 Die Hauptsätze der Thermodynamik & Anwendungen in Wärmekraft und Kältemaschinen
Kalorimetrische Untersuchung verschiedener Enthalpieformen anhand von Oxalsäure, atronlauge, Essigsäure, Kaliumchlorid und Wasser
Kalorimetrische Untersuchung verschiedener Enthalpieformen anhand von Oxalsäure, atronlauge, Essigsäure, Kaliumchlorid und Wasser Lisa Kamber, D-CHAB, 1. Semester [email protected] Jorge Ferreiro,
! #!! % & ( )! ! +, +,# # !.. +, ) + + /) # %
! #! #!! % & ( )!! +, +,# #!.. +, ) + + /)!!.0. #+,)!## 2 +, ) + + 3 4 # )!#!! ), 5 # 6! # &!). ) # )!#! #, () # # ) #!# #. # ) 6 # ) )0 4 )) #, 7) 6!!. )0 +,!# +, 4 / 4, )!#!! ))# 0.(! & ( )!! 8 # ) #+,
Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler
U München Reinhard Scholz Physik Department, 33 homas Eissfeller, Peter Greck, illmann Kubis, Christoph Schindler http://www.wsi.tum.de/33/eaching/teaching.htm Übung in heoretischer Physik 5B (hermodynamik)
2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen
2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe
Zustandsbeschreibungen
Aggregatzustände fest Kristall, geordnet Modifikationen Fernordnung flüssig teilgeordnet Fluktuationen Nahordnung gasförmig regellose Bewegung Unabhängigkeit ngigkeit (ideales Gas) Zustandsbeschreibung
Physikalisches Anfaengerpraktikum. Zustandsgleichung idealer Gase und kritischer Punkt
Physikalisches Anfaengerpraktikum Zustandsgleichung idealer Gase und kritischer Punkt Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Freitag, 18. März 005 email: [email protected]
Vorlesung Physik für Pharmazeuten PPh Wärmelehre
Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild
T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse
Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man
Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.
Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,
Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3
Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System
Praktikum Physikalische Chemie I. Versuch 4. p, V, T - Verhalten realer Gase am Beispiel von SF 6
Praktikum Physikalische Chemie I ersuch 4 p,, T - erhalten realer Gase am Beispiel von SF 6 1. Grundlagen Komprimiert man ein Gas isotherm, so steigt dessen Druck näherungsweise gemäß dem idealen Gasgesetz
Dampfdruck von Flüssigkeiten
Dampfdruck von Flüssigkeiten 1 Dampfdruck von Flüssigkeiten In diesem Versuch werden die Dampfdruckkurven zweier Flüssigkeiten im Temperaturbereich zwischen Raumtemperatur und den jeweiligen Siedetemperaturen
Typische Fragen. Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische Energien 2. Gasgesetze 3. Innere Energie 4. Aggregatszustandsänderungen
28.05.2004 - Seite 1 von 7 Fragen und Aufgaben zu den Themenbereichen: 1. Mechanische nergien 2. Gasgesetze 3. Innere nergie 4. Aggregatszustandsänderungen Typische Fragen F1. Mechanische nergien 1. Welche
Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.
Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)
Grundlagen der Physik II
Grundlagen der Physik II Othmar Marti 05. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 05. 07. 2007 Klausur Die Klausur
200 Spezifische Kondensationswärme von Wasserdampf
200 Spezifische Kondensationswärme von Wasserdampf 1. Aufgaben 1.1 Ermitteln Sie die Wärmekapazität eines Kalorimeters! 1.2 Bestimmen Sie die spezifische Kondensationswärme von Wasserdampf und berechnen
Einführung in die Technische Thermodynamik
Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik
22. Entropie; Zweiter Hauptsatz der Wärmelehre
22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem
Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3
Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm
Grundlagen der statistischen Physik und Thermodynamik
Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die
5. Die gelbe Doppellinie der Na-Spektrallampe ist mit dem Gitter (1. und 2. Ordnung) zu messen und mit dem Prisma zu beobachten.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum O Gitter/Prisma Geräte, bei denen man von der spektralen Zerlegung des Lichts (durch Gitter bzw. Prismen) Gebrauch macht, heißen (Gitter-
1. BESTIMMUNG DER DAMPFDRUCKKURVE EINER REINEN FLÜSSIGKEIT ZUR BERECHNUNG DER VER- DAMPFUNGSENTHALPIE DH verd UND -ENTROPIE DS verd
A1-1 1. BESTIMMUNG DER DAMPFDRUCKKURVE EINER REINEN FLÜSSIGKEIT ZUR BERECHNUNG DER VER- DAMPFUNGSENTHALPIE DH verd UND -ENTROPIE DS verd Bereiten Sie folgende Themengebiete vor Zustandsdiagramme von Einkomponentensystemen
Formel X Leistungskurs Physik 2001/2002
Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm
Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K
Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala
Reale Gase. Versuch: RG. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: E. Beyer Aktualisiert: am Physikalisches Grundpraktikum
Versuch: RG Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: E. Beyer Aktualisiert: am 01. 10. 2010 Bearbeitet: J. Kelling F. Lemke S. Majewsky M. Justus Reale Gase Inhaltsverzeichnis 1 Aufgabenstellung
Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch
Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung
Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:
Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände
Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!
Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der
Das chemische Gleichgewicht
Das chemische Gleichgewicht Modell: Geschlossenes Gefäß mit Flüssigkeit, die verdampft ( T=const ) Moleküle treten über in die Dampfphase H 2 O (l) H 2 O (g) H 2 O (g) Dampfdruck p H 2 O (l) T = const.
Physikalische Umwandlungen reiner Stoffe
Physikalische Umwandlungen reiner Stoffe Lernziele: Phasendiagramme, die Stabilität von Phasen Phasengrenzen, typische Phasendiagrame Phasenübergänge, die D Gleichgewichtkriterium Die Abhängigkeit der
Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer
Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen
Die Innere Energie U
Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.
Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0
Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus
Lehrbuch der Thermodynamik
Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene
Phasengleichgewicht und Phasenübergänge. Gasförmig
Phasengleichgewicht und Phasenübergänge Siedetemperatur Flüssig Gasförmig Sublimationstemperatur Schmelztemperatur Fest Aus unserer Erfahrung mit Wasser wissen wir, dass Substanzen ihre Eigenschaften bei
