Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Größe: px
Ab Seite anzeigen:

Download "Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0"

Transkript

1 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus ṁ aus h tot,aus mit : h tot = h+ c2 2 +g z ii. Geschlossenes System de = de pot + de kin + du = i Q i + j Ẇ j Anmerkungen: - stationäres System: de = 0 - keine pot. und kin. Energien: depot = 0 = de kin - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 ; h tot = h (b 2. Hauptsatz der hermodynamik i. Offenes System ds = i Ṡ Qi +Ṡirr + ein mit : i Ṡ Qi = i ii. Geschlossenes System ṁ ein s ein aus ṁ aus s aus ( Q i ds = i Ṡ Qi +Ṡirr Anmerkungen: - stationäres System: ds = 0 - adiabate ZÄ: Q i = 0 - reversible ZÄ: Ṡ irr = 0 - irreversible ZÄ: Ṡ irr > 0

2 Institut für hermodynamik hermodynamik - Formelsammlung 2. Arbeit technische Arbeit: w t,2 = Volumenänderungsarbeit: w V,2 = 2 v(p dp (reversibel, e kin = 0, e pot = 0 2 p(v dv 3. Zustandsgleichung für ideale/perfekte Gase p V = m R p = ρ R p V = N k B p V = n R m 4. Barometrische Höhenformel = exp ( zh0 p 0 mit H 0 = R 0 g für 0 = 273,5 K und R L = Kreisprozesse (a allgemeine Schließbedingung w t,ik = w ik = ik ik ik q ik J kgk : H 0 = 799 m (b Wirkungsgrad Definition des Wirkungsgrades: thermischer Wirkungsgrad Wärmekraftmaschine: Gesamtwirkungsgrad: isentroper Verdichterwirkungsgrad: isentroper urbinenwirkungsgrad: η th = Nutzen Aufwand η th = P Q zu η Carnot = 0 η ges = η th η g η m η s,v = w t,is w t,real = h is h real η s, = w t,real w t,is = h real h is (c Leistungszahl Wärmepumpe: Kältemaschine: ǫ WP = Q H P ε WP,Carnot = 0 ǫ KM = Q L P ε KM,Carnot = 0 0 2

3 Institut für hermodynamik hermodynamik - Formelsammlung 6. Reversible Zustandsänderung für perfekte Gase Isolinie thermodyn. Größe Exponent aus p v n = const Isochore v = const. (n = Isobare p = const. (n = 0 Isotherme = const. (n = Isentrope s = const. (n = κ Zusammenhang zwischen den Zuständen und 2 Volumenänderungsarbeit 2 w V,2 = p(v dv echnische Arbeit 2 w t,2 = v(p dp ( e kin = 0, e pot = 0 = 2 0 = v ( = R( 2 v = 2 = ( v = R( 2 = v ( κ = v ( κ 2 = p2 κ v = ( κ 2 ( p2 = R ln = R ln( v = (s 2 s = u 2 u = c v ( 2 = c v κ κ κ = R κ κ Wärme q 2 = u 2 u = c v ( 2 0 = h 2 h = c p ( 2 = (s 2 s = (s 2 s = h 2 h = c p ( 2 = c p κ κ κ = κ R κ κ 0 Polytrope n = const. (n ( n = v ( 2 = p2 n v = ( 2 = R (2 = R n = R [ (v = n R (2 = n R n = c v n(κ ( 2 n κ = c v (2 κ = c v (2 7. Wärmekapazitäten isobare spezifische Wärmekapazität: c p isochore spezifische Wärmekapazität: c v Isentropenexponent: κ spezifische Gaskonstante: Zusammenhänge bei perfekten Gasen: R = Rm M κ = c p c v c p = κ R κ R = c p c v c v = R κ 3

4 verbal formal perfektes Gas ideales Gas reales Gas thermische Zustandsgleichung spezifische Wärmekapazität f(p,v, = 0 p V = m R p V = m R z.b.: ( p+ a (v b = c (van der Waals c v = c v(,v c v = const. c v = c v( c v = ( u v = ( s = cv(,v v c v Innere Energie, explizit u u = u(,v u = c v ( 0+u 0 u = c v( d +u 0 u = u(,v Innere Energie, differentiell du du = du(,v du = c v d du = c v( d du = ( u v d +( u v dv = cv(,v d +( u dv v = ( p v p = ( s p v mit ( u v Institut für hermodynamik hermodynamik - Formelsammlung 8. hermische und kalorische Zustandsgrößen spezifische Wärmekapazität c p Enthalpie, explizit h Enthalpie, differentiell dh Entropie, explizit s Entropie, differentiell ds c p = c p(,p c p = const. c p = c p( c p = ( h p = ( s = cp(,p p h = h(,p h = c p( 0+h 0 h = c p( d +h 0 h = h(,p dh = dh(,p dh = c p d dh = c p( d dh = ( h s = s(,v s = s(,p ds = ds(,v ds = ds(,p s = c v ln 0 +Rln v v 0 s = c pln 0 Rln p p 0 ds = c v dln +R dlnv ds = c p dln R dlnp s = c v( d +Rln v v 0 s = c p( ds = ds = ( cv( ( cp( d Rln p p 0 d +R dlnv d R dlnp ( h p d+ p ( mit h p ( h dp = c p(,p d+ p ( s p = v + p = v ( v s = s(,v s = s(,p dp 4

5 Institut für hermodynamik hermodynamik - Formelsammlung 9. hermodynamische Potentiale u = s pv h = u+pv f = u s g = h s du = ds p dv dh = ds+v dp df = s d p dv dg = s d +v dp 0. hermodynamische Beziehungen für V = V(, p reale Systeme : dv v = ( v + v pd v ( v dp := β(,p d χ(,p dp p Verknüpfung : β = p γ χ isobarer Volumenausdehnungskoeffizient : β = ( v v p isotherme Kompressibilität : χ = ( v v p isochorer Spannungskoeffizient : γ = ( p p. Kontinuitätsgleichung ṁ = ρ V = ρ c A v 2. Zustandsgrößen im Nassdampfgebiet Dampfgehalt : x = m m +m ( x = mit: m = Masse des trocken gesättigten Dampfes m = Masse der siedenden Flüssigkeit m +m = Masse des Nassdampfes m m +m für alle extensiven Zustandsgrößen: Z = Z +x(z Z 3. spezifische Enthalpie des Phasenübergangs 2 U = m 2 u = m p r r = h h = ( s s mit: m p = Masse der Substanz, die den Phasenübergang erfahren hat 5

6 Institut für hermodynamik hermodynamik - Formelsammlung Phasendiagramm 4. Lineare Interpolation y = y + y 2 y x 2 x (x x 5. Naturkonstanten allgemeine Gaskonstante: R m = 8,34 J molk Avogadro-Konstante: N A = 6, mol Erdbeschleunigung: g = 9,8 m s 2 Boltzmann-Konstante: k B = Rm N A =, J K molares Volumen: V m = 22,4 0 3 m3 mol 6. Umrechnungen spezifische Größen: molare Größen: x = X m x m = X n Volumen: m 3 = 000 l = 000 dm 3 = 0 6 cm 3 emperatur: Kraft: Druck: Arbeit/Energie: spez. Energie: Leistung: 0 C = 273,5 K N = kg m s 2 bar = 0 5 Pa = 0 5 N m 2 = 0, MPa = 0 2 kj m 3 J = kg m2 s 2 J kg = m2 = Nm s 2 kg W = J s = Nm s = Nm = Ws 6

Thermodynamik I Formeln

Thermodynamik I Formeln Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti

Thermodynamik I PVK - Tag 2. Nicolas Lanzetti Thermodynamik I PVK - Tag 2 Nicolas Lanzetti Nicolas Lanzetti 05.01.2016 1 Heutige Themen Carnot; Wirkungsgrad/Leistungsziffer; Entropie; Erzeugte Entropie; Isentroper Wirkungsgrad; Isentrope Prozesse

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird?

c ) Wie verhält sich die Enthalpieänderung, wenn das Wasser in einer Düse beschleunigt wird? Aufgabe 4 An einer Drosselstelle wird ein kontinuierlich fließender Strom von Wasser von p 8 bar auf p 2 2 bar entspannt. Die Geschwindigkeiten vor und nach der Drosselung sollen gleich sein. Beim des

Mehr

Zusammenfassung - Thermodynamik I

Zusammenfassung - Thermodynamik I Zusammenfassung - hermodynamik I imothy Habermacher, Ismail Morgenegg auf Basis von S. Liechti Allgemeines. Begriffe Begriffe Amorph Zähflüssiger Feststoff Glas Latente Energie Energie z. Phasenumwandlung

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 8. Aufgabe kg Luft (perfektes Gas: κ = 1,4 ; R L = 287 J Aufgabe 3 0 kg Luft perfektes Gas: κ,4 ; R L 287 J von T 293 K und p 0,96 bar werden auf 0 bar verdichtet. Dies soll. isochor 2. isotherm 3. reversibel adiabat und 4. polytrop mit n,3 geschehen. a Skizzieren

Mehr

Thermodynamik I - Übung 6. Nicolas Lanzetti

Thermodynamik I - Übung 6. Nicolas Lanzetti Thermodynamik I - Übung 6 Nicolas Lanzetti Nicolas Lanzetti 06.11.2015 1 Heutige Themen Zusammenfassung letzter Woche; Zweiter Hauptsatz der Thermodynamik; Halboffene Systeme; Reversible und irreversible

Mehr

Thermodynamik Hauptsatz

Thermodynamik Hauptsatz Thermodynamik. Hauptsatz Inhalt Wärmekraftmaschinen / Kälteprozesse. Hauptsatz der Thermodynamik Reversibilität Carnot Prozess Thermodynamische Temperatur Entropie Entropiebilanzen Anergie und Exergie

Mehr

1. Aufgabe (26 Punkte) a) Massen in den Kammern. m 1 = p 0V 0. = m 1. b) Kraft in der Kolbenstange (Freischnitt System I): System I

1. Aufgabe (26 Punkte) a) Massen in den Kammern. m 1 = p 0V 0. = m 1. b) Kraft in der Kolbenstange (Freischnitt System I): System I Musterlösung WS08 1. Aufgabe (26 Punkte) a) Massen in den Kammern b) Kraft in der Kolbenstange (Freischnitt System I): c) Gleichungssystem m 1 = p 0V 0, m 2 = p 0/4 2V 0 = m 1 RT 0 RT 0 2 F = M g Gleichgewicht:

Mehr

4 Hauptsätze der Thermodynamik

4 Hauptsätze der Thermodynamik I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 200 Abbildungen und 7 Tabellen Springer Inhaltsverzeichnis Liste der Formelzeichen XV 1 Grundlagen der Technischen Thermodynamik 1 1.1 Gegenstand und Untersuchungsmethodik

Mehr

Klausur im Fach Thermodynamik I, SS 2010 am

Klausur im Fach Thermodynamik I, SS 2010 am e c o r e n e n o m g i y e c s n g i e n n v i e e r i n g..t. e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit)

Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) LTT ERLANGEN 1 VON 5 FRAGENSAMMLUNG Mögliche Klausurfragen und aufgaben (Beispiele mit keinem Anspruch auf Vollständigkeit) Neben den Fragen können einfachste Rechenaufgaben gestellt werden. Bei einigen

Mehr

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (60 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe (60 Punkte, TTS & TTD) Bitte alles LESBAR verfassen!!!. In welcher Weise ändern sich intensive und extensive Zustandsgrößen bei der Zerlegung eines Systems in Teilsysteme?. Welche Werte hat der

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung Thermodynamik Formelsammlung Helmut Hartmann 9. Januar 2014 Hochschule Amberg Weiden Fakultät Maschinenbau / Umwelttechnik Studiengang Umwelttechnik aus der Vorlesung Thermodynamik von Prof. Dr.-Ing. Univ.

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Thermodynamik des Kraftfahrzeugs Bearbeitet von Cornel Stan 1. Auflage 2012. Buch. xxiv, 598 S. Hardcover ISBN 978 3 642 27629 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 1087 g Weitere Fachgebiete > Technik

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch hermodynamik _ hermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch _ hermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3

Inhaltsverzeichnis. Formelzeichen...XIII. 1 Einleitung Einheiten physikalischer Größen...3 Inhaltsverzeichnis Formelzeichen...XIII 1 Einleitung...1 2 Einheiten physikalischer Größen...3 3 Systeme...6 3.1 Definition von Systemen...6 3.2 Systemarten...7 3.2.1 Geschlossenes System...7 3.2.2 Offenes

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

Thermodynamische Hauptsätze, Kreisprozesse Übung

Thermodynamische Hauptsätze, Kreisprozesse Übung Thermodynamische Hauptsätze, Kreisprozesse Übung Marcus Jung 14.09.2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Thermodynamische Hauptsätze 3 1.1 Aufgabe 1:.................................... 3 1.2 Aufgabe

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3

Inhaltsverzeichnis. Formelzeichen. 1 Einleitung 1. 2 Einheiten physikalischer Größen 3 Formelzeichen XIII 1 Einleitung 1 2 Einheiten physikalischer Größen 3 3 Systeme 7 3.1 Definition von Systemen 7 3.2 Systemarten 8 3.2.1 Geschlossenes System 8 3.2.2 Offenes System 9 3.2.3 Adiabates System

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis 1 Grundlagen 1 1.1 Mathe für Thermodynamiker und -innen 1 1.2 Deutsch für Thermodynamiker (m/w) 2 1.2.1 Hier geht nix verloren - die Sache mit der Energie 4 1.2.2 Erst mal Bilanz ziehen

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. September 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Kapitel IV Wärmelehre und Thermodynamik

Kapitel IV Wärmelehre und Thermodynamik Kapitel IV Wärmelehre und Thermodynamik a) Definitionen b) Temperatur c) Wärme und Wärmekapazität d) Das ideale Gas - makroskopisch e) Das reale Gas / Phasenübergänge f) Das ideale Gas mikroskopisch g)

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius

Physik I Mechanik der Kontinua und Wärmelehre Thomas Schörner-Sadenius Physik I Mechanik der Kontinua und Wärmelehre Thomas Universität Hamburg Wintersemester 2014/15 ORGANISATORISCHES Thomas : Wissenschaftler (Teilchenphysik) am Deutschen Elektronen-Synchrotron (DESY) Kontakt:

Mehr

Einführung in die Technische Thermodynamik

Einführung in die Technische Thermodynamik Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Klausur im Fach Thermodynamik I, SS 2013 am

Klausur im Fach Thermodynamik I, SS 2013 am e c o r e n e n o m g i y e c s n g i e n n v i e e r i n g..t. e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 :

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 : Musterlösung SS. Aufgabe Punkte a Energiebilanz für die Kammer A im Zeitintervall t : W A, + W V A U A U A W A, P el t U el I el t W V A 0 U A U A m A c v A A 5 m A A V A R A 6 c v κ R 7 A A A A 8 A B

Mehr

Übungsaufgaben Technische Thermodynamik

Übungsaufgaben Technische Thermodynamik Gernot Wilhelms Übungsaufgaben Technische Thermodynamik 2., aktualisierte Auflage Mit 36 Beispielen und 154 Aufgaben HANSER Inhaltsverzeichnis 1 Grundlagen der Thermodynamik 11 1.1 Aufgabe der Thermodynamik

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 1: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1Klassische Formulierungen 4.1.1Kelvin-Planck-Formulierung

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 8. September 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Aufgabe 1: Kolben. Allgemeine Hinweise:

Aufgabe 1: Kolben. Allgemeine Hinweise: Matrikelnummer Anzahl der bisherigen Antritte Familienname Vorname Allgemeine Hinweise: Alle Blätter sind mit Namen und Matrikelnummer zu versehen. Aus der Beschriftung muss deutlich ersichtlich sein,

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Thermodynamik I Klausur SS 2010

Thermodynamik I Klausur SS 2010 Thermodynamik I Klausur 00 Prof. Dr. J. Kuck, Prof. Dr. G. Wilhelms Aufgabenteil / 00 Minuten/eite Name: Vorname: Matr.-Nr.: Das Aufgabenblatt muss unterschrieben und zusammen mit den (nummerierten und

Mehr

Keine Panik vor Thermodynamik!

Keine Panik vor Thermodynamik! Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen "Dickbrettbohrerfach" des Ingenieurstudiums Bearbeitet von Dirk Labuhn, Oliver Romberg 1. Auflage 2013. Taschenbuch. xii, 351 S. Paperback

Mehr

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse?

a) Wie nennt man den oben beschriebenen Vergleichsprozess in Bezug auf die Klassifizierung der Idealprozesse? Aufgabe 11: Das Betriebsverhalten eines Viertakt- Dieselmotors kann durch folgenden reversiblen Kreisprozess näherungsweise beschrieben werden, wobei kinetische und potenzielle Energien zu vernachlässigen

Mehr

Keine Panik vor Th e r m ody n a m i k!

Keine Panik vor Th e r m ody n a m i k! Dirk Labuhn Oliver Romberg Keine Panik vor Th e r m ody n a m i k! Erfolg und SpaB im klassischen,,dickbrettbohrerfach" des Ingenieurstudiums Mit Cartoons von Oliver Romberg vieweg Inhaltsverzeichnis 1

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - hermodynamische Maschinen - Prof. Dr. Ulrich Hahn WS 2008/09 Folge von Prozessen mit Z Ende = Z Anfang rechtsläufig pro Umlauf verrichtete Arbeit: W r = W + W

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach" des Ingenieurstudiums

Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach des Ingenieurstudiums Dirk Labuhn Oliver Romberg Keine Panik vor Thermodynamik! Erfolg und Spaß im klassischen Dickbrettbohrerfach" des Ingenieurstudiums \ 4., aktualisierte Auflage STUDIUM... V : ;; VIEWEG+ TEUBNER Inhaltsverzeichnis

Mehr

Aus Kapitel 18. Thermodynamik. Aufgaben. + gz. = h i + c2 i 2 + gz i. Resultat:

Aus Kapitel 18. Thermodynamik. Aufgaben. + gz. = h i + c2 i 2 + gz i. Resultat: Aufgaben Kap 8 4 Aus Kapitel 8 Aufgaben 8 Eine Kaffeemaschine nimmt im stationären Betrieb eine elektrische Heizleistung von Q el 2kW auf Diese Leistung wird dazu verwendet, kontinuierlich einen Wassermassenstrom

Mehr

Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!!

Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! Aufgabe 1 (10 Punkte, TTS & TTD1) Bitte alles LESBAR verfassen!!! 1.1. Wie erklärt man die dissipierte Energie in einem System? 1.. Kann man aus dieser noch etwas während der folgenden Prozesse in einer

Mehr

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen.

Änderungen der kinetischen Energien sind ausschließlich in der Düse zu berücksichtigen. Thermodynamik II - Lösung 3 Aufgabe 5: Auf den windreichen Kanarischen Inseln ist eine Kühlanlage geplant, die Kaltwasser (Massenstrom ṁ w = 5 kg/s) von t aus = 18 C liefern soll. Das Wasser wird der Umgebung

Mehr

Rainer Müller. Thermodynamik. Vom Tautropfen zum Solarkraftwerk. De Gruyter

Rainer Müller. Thermodynamik. Vom Tautropfen zum Solarkraftwerk. De Gruyter Rainer Müller Thermodynamik Vom Tautropfen zum Solarkraftwerk De Gruyter Inhaltsverzeichnis 1 Biologie und Chemie des Kochens 1 1.1 Was beim Garen geschieht 2 1.2 Gemüse... 2 1.3 Fleisch... 5 1.4 Spaghetti

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 25. Februar 2016 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

2. Hauptsatz der Thermodynamik

2. Hauptsatz der Thermodynamik Clausius (850): Wärme kann nie von selbst von einem Körper niederer emperatur auf einen Körper höherer emperatur übergehen Planck (905): Es ist unmöglich, eine periodisch arbeitende Maschine zu konstruieren,

Mehr

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme

Thermodynamik. Springer. Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger. Grundlagen und technische Anwendungen Band 1: Einstoffsysteme Peter Stephan Karlheinz Schaber Karl Stephan Franz Mayinger Thermodynamik Grundlagen und technische Anwendungen Band 1: Einstoffsysteme 16., vollständig neu bearbeitete Auflage Mit 195 Abbildungen und

Mehr

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen

3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3 Grundlegende strömungstechnische und thermodynamische Voraussetzungen 3.1 Stationär durchströmte offene Systeme - Grundlegende Beziehungen - nergiesatz stationär durchströmter offener Systeme - nwendung

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 19. Februar 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

Klausur im Fach Thermodynamik I, SS 2012 am 06.08.2012

Klausur im Fach Thermodynamik I, SS 2012 am 06.08.2012 e r e n e g y e n g i n e e r i n g..t c o n o m i c s. e n v i e n r o n m Technische Universität Berlin INSTITUT FÜR ENERGIETECHNIK Prof. Dr.-Ing. G. Tsatsaronis. Klausur im Fach Thermodynamik I, SS

Mehr

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur

Theoretische Luftverflüssigungsanlage. Reversibler Kälteprozess. - Isotherme Verdichtung des Gases bei Umgebungstemperatur Lösung Aufgabe 6.2 Gaserflüssigung nach Linde heoretische Lufterflüssigungsanlage Reersibler Kälteprozess - Isotherme Verdichtung des Gases bei Umgebungstemperatur 1 2 2 1 - adiabate und reibungsfreie

Mehr

Zweiter Hauptsatz der Thermodynamik

Zweiter Hauptsatz der Thermodynamik Thermodynamik I Kapitel 4 Zweiter Hauptsatz der Thermodynamik Prof. Dr.-Ing. Heinz Pitsch Kapitel 4: Ü bersicht 4 Zweiter Hauptsatz der Thermodynamik 4.1 Klassische Formulierungen 4.1.1 Kelvin-Planck-Formulierung

Mehr

Grundsätzliche Überlegungen zur Messung von Enthalpiedifferenzen

Grundsätzliche Überlegungen zur Messung von Enthalpiedifferenzen ARC Seibersdorf research Grundsätzliche Überlegungen zur Messung von Enthalpiedifferenzen Dipl.Ing. Alfons Witt, ARC Seibersdorf research GmbH 26 Seibersdorf research - Bereiche Werkstoffe & Produktionstechnik

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. März 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen.

Thermodynamik 1 Klausur 02. März Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner sind als Hilfsmittel zugelassen. Institut für Energie- und Verfahrenstechnik Thermodynamik und Energietechnik Prof. Dr.-Ing. habil. Jadran Vrabec ThEt Thermodynamik 1 Klausur 02. März 2011 Bearbeitungszeit: 120 Minuten Umfang der Aufgabenstellung:

Mehr

Nachklausur zum Modul Physikalische Chemie 1

Nachklausur zum Modul Physikalische Chemie 1 Nachklausur zum Modul Physikalische Chemie 1 Sommersemester 2007 Wintersemester 2007 / 08 29. Januar 2008 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort...

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Allgemeine Vorgehensweise

Allgemeine Vorgehensweise Allgemeine Vorgehensweise 1. Skizze zeichnen und Systemgrenze ziehen 2. Art des Systems festlegen (offen, geschlossen, abgeschlossen) und Eigenschaften charakterisieren (z.b. adiabat, stationär, ruhend...)

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Dr. Manuel Kühner und Veit Hammerstingl. SS 2008 Letzte Änderung:

Dr. Manuel Kühner und Veit Hammerstingl. SS 2008 Letzte Änderung: Private Formelsammlung für Thermodynamik 1 TU München Dr. und Veit Hammerstingl SS 2008 Letzte Änderung: 18.03.2016 Internetseite: www.manuelkuehner.de 1 cm3 = 10 6 m3 1 Hektoliter = 1 hl = 100 l = 100

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Notizen zur statistischen Physik

Notizen zur statistischen Physik Notizen zur statistischen Physik Kim Boström Begriffe der hermodynamik System: Gedanklich und im Prinzip operativ abtrennbarer eil der Welt. Physik ist das Studium der Eigenschaften von Systemen. Umgebung:

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße?

a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? Übung 1 Aufgabe 2.6: Zustandsgrößen, Systeme und Hauptsätze a) Was ist der Unterschied zwischen einer intensiven und einer extensiven Zustandsgröße? b) G sei eine Zustandsgröße mit der Einheit [G] = J.

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

-aus theoretischen Ansätzen - Approximationen

-aus theoretischen Ansätzen - Approximationen 2.3 Bestimmung von Zustandsgrößen Zustand wird bestimmt durch zwei unabhängige, intensive Zustandsgrößen Bestimmung anderer Zustandsgrößen aus Stoffmodellen Zustandsgleichungen Stoffmodelle aus - Experimenten

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - Einführung in die Wärmelehre - Prof. Dr. Ulrich Hahn WS 2008/09 Entwicklung der Wärmelehre Sinnesempfindung: Objekte warm kalt Beschreibung der thermische Eigenschaften

Mehr