Notizen zur statistischen Physik
|
|
|
- Matilde Fromm
- vor 8 Jahren
- Abrufe
Transkript
1 Notizen zur statistischen Physik Kim Boström Begriffe der hermodynamik System: Gedanklich und im Prinzip operativ abtrennbarer eil der Welt. Physik ist das Studium der Eigenschaften von Systemen. Umgebung: Alle mit dem zu untersuchenden System in Wechselwirkung stehenden Systeme, über die bis auf wirklich relevante Eigenschaften meist nur sehr wenig bekannt ist. Systeme werden charakterisiert durch folgende Attribute: Geschlossenes System: Kein Austausch von Materie mit der Umgebung Abgeschlossenes System: Kein Austausch von Energie und Materie mit der Umgebung Offenes System: Austausch von Materie oder Energie mit der Umgebung Nach Ablauf der Relaxationszeit geht ein abgeschlossenes System in einen Gleichgewichtszustand über. Ein System im Nichtgleichgewichtszustand kann oft in kleine, aber immer noch makroskopische eilsysteme zerlegt werden, die sich in guter Näherung in einem Gleichgewichtszustand befinden. Solch ein Nichtgleichgewichtszustand heißt lokaler Gleichgewichtszustand. hermodynamik ist die Physik von Systemen im lokalen Gleichgewichtszustand.
2 emperatur hermodynamik Zusammenhang Erklärung ualität 0. Hauptsatz Definition der empirischen emperatur ϑ als intensive Zustandsgröße. Diese induziert eine Äquivalenzrelation: Systeme sind genau dann äquivalent, wenn sie (im th-dyn. Gl.gew.) dieselbe emperatur haben. Die Äquivalenzklassen lassen sich durch ϑ anordnen. Ei- Anordnungsparameter, genschaft des Systems. Hauptsatz Definition der absoluten emperatur, so daß ds = δ exaktes Differential ist. Integrierender Faktor, Eigenschaft des Systems Statistische Physik Zusammenhang Erklärung ualität Mikrokanonisches Ensemble ist Observable und kann aus den gegebenen Zustandsvariablen E und N bestimmt werden: Observable, des Systems Eigenschaft β k = ln Ω(E, N) E Kanonisches Ensemble ist vorgegebene Zustandsvariable, aus der (zusammen mit N) der Erwartungswert der Energie bestimmt werden kann: < H >= ln Z(β, N) β orgegebener Parameter, Eigenschaft der Umgebung
3 3 hermodynamische Ensembles auf einen Blick mikrokanonisch (E,,N) bzw. (S,,N) - System hd. Potential E innere Energie Fundamentalform de = ds pd + µdn erteilung ρ(x) = Ω δ (E H(x)) Zustandssumme Ω = Dx δ (E H(x)) = e k S kanonisch (,,N) - System hd. Potential F = E S freie Energie Fundamentalform df = Sd pd + µdn erteilung ρ(x) = Z e βh(x) Zustandssumme Z = Dx e βh(x) = e βf Legendre-rafo aus mikrokanonisch durch S großkanonisch (,,µ) - System hd. Potential K = F µn Fundamentalform dk = Sd pd Ndµ erteilung ρ(x) = Y e β(h(x) µn) Zustandssumme Y = Dx e β(h(x) µn) = e βk N=0 Legendre-rafo aus kanonisch durch N µ mikrokanonisch harmonisch (S,p,N) - System hd. Potential H = E + p (innere) Enthalpie Fundamentalform dh = ds + dp + µdn Legendre-rafo aus mikrokanonisch durch p kanonisch harmonisch (,p,n) - System hd. Potential G = F + p freie Enthalpie Fundamentalform dg = Sd + dp + µdn Legendre-rafo aus kanonisch durch p großkanonisch harmonisch (allg. kanonisch) (,p,µ) - System hd. Potential K = K + p Fundamentalform d K = Sd + dp Ndµ Legendre-rafo aus großkanonisch durch p x := (p,..., p N, q,..., q N ) { ; z [0, ] δ (z) := 0 ; sonst Dx := d 3N p d 3N q β = k
4 4 Wichtige Gleichungen Allgemein du = ds pd + µdn S E c = = S H c p = = c d = ds = δ γ := c p c p p Ideales Gas U = f Nk ( ) S = Nk ln N f/ + S 0 p = Nk c = f Nk c p c = Nk p γ = const γ = const 5 Das Guggenheim-uadrat hermodynamische Potentiale, z.b. U = U(S, ) F = F (, ) Potential-Ableitungen, z.b. F = S U S = Maxwell-Relationen, z.b. p = S S S p = - + S U H F p G SU Hilft Fysikern pei Großen aten 6 Wärmemaschinen Waermepumpe A Waermekraftmaschine A + = A + 0 η W K = A η W P = A η KS = A Das Gleichheitszeichen gilt für reversible Carnot- Maschinen.
5 7 Übergang M Klassik Ort sei auf beschränkt Impuls ist gequantelt. ( n x p = π, n, n ) 3 a a a 3 der Impulsraum zerfällt in uader mit dem olumen p = h3. in p gibt es genau einen Impulszustand. Ortsraum Impulsraum Für Operatorfunktionen f(, P ), für die o.b.d.a. die s links und die P s rechts stehen und die innerhalb von p nicht wesentlich variieren, läßt sich die Summation über p in eine Integration verwandeln: p d 3 p d 3 p = p p p h 3 d 3 p Jede Spur r{f(, P )} läßt sich also durch ein Integral approximieren. Innerhalb von sind die Eigenfunktionen von P normierbar und lauten q p = e i pq, also folgt r{f(, P )} = p = p = p p f(, P ) p d 3 q p q q f(, P ) p d 3 q p q f(q, p) h 3 d 3 q d 3 p f(q, p) Für N eilchen ist die Wellenfunktion entweder symmetrisch (Bosonen) oder antisymmetrisch (Fermionen). Erwartungswerte von Observablen bleiben daher von Permutationen der eilchen unbeeinflußt (Prinzip der Ununterscheidbarkeit). Da es N! Permutationen gibt, die denselben makroskopischen Zustand bilden, lautet das Integrationsmaß auf dem klassischen Phasenraum Dx = N!h 3N d 3N q d 3N p
6 8 Gibbssches Paradoxon Ideales Gas als kanonisches Ensemble Z = Dx e βh(x) = N!h 3N ( ) N d 3N q d 3N p e β P p m Z N = N! mit λ t := λ 3 t h πmk thermische de Broglie-Wellenlänge mit der Stirling-Näherung ln N! N(ln N ) + ln πn ergibt sich ( ) v ln Z N N ln λ 3, mit v = t N Die freie Energie pro eilchen lautet also f = F N = Nβ ln Z N ( v Nβ N ln λ 3 t ) ( ) = k ln Nλ 3 t F Der Limes lim existiert. Ohne das Prinzip der Ununterscheidbarkeit würde der Faktor /N! fehlen N N und damit die freie Energie pro eilchen divergieren. Dieses ohne uantenmechanik nicht auflösbare Problem nennt man das Gibbssche Paradoxon. 9 Das van der Waals-System hermische Zustandsgleichung (p + a v ) (v b) = k, wobei p = P/N, v = /N. Kalorische Zustandsgleichung E N = 3 k a v. Interpretation Der erm b berücksichtigt die abstoßende Wechselwirkung für kleine Abstände in Form eines harten Kerns und entspricht einem effektiven olumen pro eilchen. v ist eine Korrektur zum Druck, bedingt durch den schwach attraktiven Anteil des Potentials. irialentwicklung
7 Eine kurzreichweitige Wechselwirkung zwischen den eilchen eines Gases sollte, unabhängig von ihrer Stärke, bei hinreichender erdünnung vernachlässigbar werden. Die irialentwicklung ist eine Entwicklung nach Potenzen der eilchenzahldichte, die diese orstellung genauer faßt. Die irialentwicklung lautet allgemein pv k = + n= a n ( ) v n. Die thermische Zustandgleichung des van der Waals-Systems schließt erme bis zur zweiten Ordnung in dieser Reihe ein.
Repetitorium QM 1 - Tag 5
Thermodynamik und 4. März 2016 Inhaltsverzeichnis 1 Thermodynamik Hauptsätze der Thermodynamik 2 Zustandsgrößen Thermodynamik Hauptsätze der Thermodynamik Ziel: Beschreibung des makroskopischen Gleichgewichtszustandes
Theoretische Physik F: Zwischenklausur SS 12
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie heoretische Physik F: Zwischenklausur SS 1 Prof. Dr. Jörg Schmalian Lösungen Dr. Igor Gornyi esprechung 18.05.01 1. Quickies:
2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen
2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & F. Libisch (E136) Statistische Physik I Kapitel 2 5. April 2016 1 / 25 2.1 Grundbegriffe
Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik
Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/
2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen
2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe
Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie
Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,
Übungen zu Theoretische Physik IV
Physikalisches Institut Übungsblatt 4 Universität Bonn 02. November 2012 Theoretische Physik WS 12/13 Übungen zu Theoretische Physik IV Priv.-Doz. Dr. Stefan Förste http://www.th.physik.uni-bonn.de/people/forste/exercises/ws1213/tp4
Vorlesung Statistische Mechanik: N-Teilchensystem
Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung
Auswahl von Prüfungsfragen für die Prüfungen im September 2011
Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen
Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)
Freie Universität Berlin W 006/007 Fachbereich Physik 8..006 tatistische Physik - heorie der Wärme (PD Dr. M. Falcke) Übungsblatt 9: hermodynamische Identitäten, hermische/kalorische Zustandsgleichung,
Übungen zu Moderne Theoretischen Physik III SS Maxwell-Verteilung: (30 Punkte, schriftlich)
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 4 PD Dr. B. arozhny, P. Schad Lösungsvorschlag.
Thermodynamik und Statistische Physik
Thermoynamik un Statistische Physik (Kompenium Herausgegeben von Jeffrey Kelling Felix Lemke Stefan Majewsky Stan: 14. Februar 2009 1 Inhaltsverzeichnis Statistische Operatoren 3 Zustäne 3 Darstellung
Thermodynamik un Statistische Mechanik
Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen
Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 4 Lösung. P + a )
U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter ogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 4 Lösung. van der Waals Gas, Adiabatengleichung
Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.
Fakultät für Physik der LMU München Prof. Ilka Brunner Michael Kay Vorlesung T4, WS11/12 Klausur am 18. Februar 2012 Name: Matrikelnummer: Erreichte Punktzahlen: 1 2 3 4 5 6 Hinweise Die Bearbeitungszeit
6 Thermodynamische Potentiale und Gleichgewichtsbedingungen
6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen
Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0
Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus
Ferienkurs Experimentalphysik II Elektro- und Thermodynamik. Thermodynamik Teil II. 12. September 2011 Michael Mittermair
Ferienkurs Experimentalphysik II Elektro- und Thermodynamik Thermodynamik Teil II 12. September 2011 Michael Mittermair Inhaltsverzeichnis 1 Allgemeines 3 1.1 Kategorisierung von Systemen..................
Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik
Ruprecht-Karls-Universität Heidelberg Vorbereitung zur Diplomprüfung Theoretische Physik begleitend zur Vorlesung Statistische Mechanik und Thermodynamik WS 2006/2007 Prof. Dr. Dieter W. Heermann erstellt
Thermodynamik und Statistische Mechanik
Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen
Übungen zu Moderne Theoretischen Physik III SS Curie-Paramagnetismus ( =30 Punkte, schriftlich)
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Übungen zu Moderne heoretischen Physik III SS 06 Prof. Dr. A. Shnirman Blatt 5 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag.
Übungen zu Moderne Theoretischen Physik III SS Maxwell-Boltzmann-Gas: großkanonisches Ensemble (5+5+5=15 Punkte, schriftlich)
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zu Moderne Theoretischen Physik III SS 016 Prof. Dr. A. Shnirman Blatt 6 PD Dr. B. Narozhny, P. Schad Lösungsvorschlag
Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.
Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit
Erinnerung an die Thermodynamik
2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische
5. Die Thermodynamischen Potentiale
5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich
Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale
Die Warum Fakultät für Physik, LMU München 14.06.2006 Die Warum 1 Die Der zweite Virialkoeffizient 2 Hard-Sphere-Potential Lennard-Jones-Potential 3 Warum 4 Bsp. Hard-Sphere-Potential Asakura-Oosawa-Potential
5 Thermodynamische Potentiale
3 Woche 5 hermodynamische Potentiale 51 Formale Einführung der Potentiale Es ist möglich, die extensiven Zustandsfunktionen (mit der Dimension der Energie) zu bilden, die die anderen ariablen als S,, N
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,
Kapitel 5. Kanonisches Ensemble. 5.1 Herleitung 1; E 1 =? 2; E 2 =?
Kapitel 5 Kanonisches Ensemble 5.1 Herleitung Abgesehen von der Legendre-Transformation S(E,, N) F (T,, N) besteht noch eine weitere Möglichkeit, die freie Energie zu berechnen, und zwar wiederum mittels
Statistik und Thermodynamik
Klaus Goeke Statistik und Thermodynamik Eine Einführung für Bachelor und Master STUDIUM VIEWEG+ TEUBNER Inhaltsverzeichnis I Grundlagen der Statistik und Thermodynamik 1 1 Einleitung 3 2 Grundlagen der
Statistische Thermodynamik I Lösungen zur Serie 11
Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich
Theoretische Physik 6: Thermodynamik und Statistik
Rainer J.Jelitto Theoretische Physik 6: Thermodynamik und Statistik Eine Einführung in die mathematische Naturbeschreibung 2. korrigierte Auflage Mit 82 Abbildungen, Aufgaben und Lösungen dulfc AU LA-Verlag
1. Thermodynamische Potentiale, Maxwellgleichungen
69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 6
Klausur-Musterlösungen
Klausur-Musterlösungen 9.7.4 Theoretische Physik IV: Statistische Physik Prof. Dr. G. Alber Dr. O. Zobay. Der in Abb. dargestellte Kreisprozess wird mit einem elektromagnetischen Feld ausgeführt. Abb..
Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15
Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................
Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?
Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles
STATISTISCHE PHYSIK. Prof. Dr. G. Münster. Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik
STATISTISCHE PHYSIK Prof. Dr. G. Münster Westfälische Wilhelms-Universität Münster Institut für Theoretische Physik Zusammenfassung und Stichwort-Sammlung April 2003 Teil I Thermodynamik 1 Grundbegriffe
Statistische Physik I
Statistische Physik I 136.020 SS 2010 Vortragende: C. Lemell, S. YoshidaS http://dollywood.itp.tuwien.ac.at/~statmech Übersicht (vorläufig) 1) Wiederholung Begriffsbestimmung Eulergleichung 2) Phänomenologische
2 Grundbegriffe der Thermodynamik
2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch
Moderne Theoretische Physik IIIa WS 18/19
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik IIIa WS 8/9 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 7 Dr. Stefan Rex Besprechung: 9..9.
Thermodynamik und Statistische Mechanik WS2014/2015
Thermodynamik und Statistische Mechanik WS2014/2015 Martin E. Garcia Theoretische Physik, FB 10, Universität Kassel Email: [email protected] Vorlesungsübersicht 1) Einführung: -Makroskopische
Moderne Theoretische Physik IIIa WS 18/19
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik IIIa WS 18/19 Prof. Dr. Alexander Mirlin Lösungen zu Blatt 2 Dr. Stefan Rex Besprechung: 06.11.2018
Die innere Energie and die Entropie
Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir
Thermodynamik und Statistische Physik
Jürgen Schnakenberg Thermodynamik und Statistische Physik Einführung in die Grundlagen der Theoretischen Physik mit zahlreichen Übungsaufgaben 2., durchgesehene Auflage )WILEY-VCH Inhaltsverzeichnis 1
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt
4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz
4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz 4.1 Formulierung des 2. Hauptsatzes Es ist unsere Alltagserfahrung, dass man physikalischen Prozessen in der Regel eine natürliche Zeitabfolge
Wärmelehre Zustandsänderungen ideales Gases
Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener
Probeklausur STATISTISCHE PHYSIK PLUS
DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben
Lernhilfe zur Diplomprüfung Thermodynamik
Lernhilfe zur Diplomprüfung Thermodynamik Diese Zusammenfassung wurde für die Vorbereitung auf meine Diplomprüfung erstellt. Bei Fehlern bitte ich um Korrekturhinweise. Inhaltsverzeichnis I Thermodynamik
Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)
U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip
2 Die mikrokanonische Gesamtheit
2 Die mikrokanonische Gesamtheit Für ein isoliertes makroskopisches System mit der Gesamtenergie E können wir die Werte von makroskopischen Observablen in einem Gleichgewichtsszustand nach unserer Grundannahme
Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet
Freie Universität Berlin WS 2006/2007 Fachbereich Physik 26.01.2007 Statistische Physik - heorie der Wärme PD Dr. M. Falcke) Übungsblatt 12: Ferromagnet Aufgabe 1 6 Punkte) Ein ferromagnetisches System
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 7 Prof. Dr. Alexander Mirlin Musterlösung: Blatt
Theorie der Wärme Musterlösung 11.
Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen
T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag
T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein
5 Bose-Einstein-Kondensation. Suprafluidität
Prof. Dr. A. Muramatsu Fortgeschrittene Quantentheorie WS / 9 5 Bose-Einstein-Kondensation. Suprafluidität Wie im Fall der Fermionen betrachten wir in diesem Kapitel zunächst nicht wechselwirkende Bosonen.
Potenzieller Klausur- und Prüfungsstoff zur Theoretischen Physik V (Statistische Physik, Dozent: Thomas Filk)
Potenzieller Klausur- und Prüfungsstoff zur Theoretischen Physik V (Statistische Physik, Dozent: Thomas Filk) 1. Observable und Zustände (a) Klassische Observable als Funktionen auf dem Phasenraum; Quantenobservable
Theorie der Phasenübergänge: Eine Einführung
Michael Kastner, SS06, Universität Bayreuth heorie der Phasenübergänge: Eine Einführung Übersicht: Ein Phasenübergang ist ein Phänomen aus der physikalischen Disziplin der Statistischen Physik bzw. der
Theoretische Physik IV
Sommersemester 2011 heoretische hysik IV hermodynamik und statistische hysik I Skriptum zur Vorlesung von Helmuth Hüffel Umgesetzt in L A EX von Horak Johannes LYX-Version von Bernhard Reiter Kapitel 1
Repetition Carnot-Prozess
Wärmelehre II Die Wärmelehre (bzw. die Thermodynamik) leidet etwas unter den verschiedensten Begriffen, die in ihr auftauchen. Diese sind soweit noch nicht alle aufgetreten - Vorhang auf! Die neu auftretenden
Übungen zur Statistischen Mechanik Wintersemester 2007/08 Übungsblatt 9, Ausgabe , abzugeben bis
UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Matthias Fuchs Raum P 907, Tel. (07531)88-4678 E-mail: [email protected] Übungen zur Statistischen Mechanik Wintersemester 2007/08 Übungsblatt
Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17
Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F tatistische Mechanik) 17 Prof Dr lexander Mirlin Musterlösung zu latt 3 PD Dr Igor
Statistische Thermodynamik I
Statistische hermodynamik I Universität Bern FS 2017 R SUSANNE REFFER Institut für theoretische Physik Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 2 1 Einführung in die klassische hermodynamik 4
Formelsammlung Theoretische Physik IV: Statistische Physik
Formelsammlung Theoretische Physik IV: Statistische Physik Stand: 21.07.2006 - Version: 0.0.13 Erhältlich unter http://privat.macrolab.de Diese Formelsammlung basiert auf der
Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie
30.11.2007 Paarverteilungsfunktion und Strukturfaktor Seminar: Weiche Materie Johanna Flock Gliederung Einleitung Kurze Wiederholung Statistischer Mechanik Ensemble Statistische Beschreibung von Kolloid
Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch
Werner Langbein Thermodynamik Gleichgewicht, Irreversible Prozesse, Schwankungen Verlag Harri Deutsch Einleitung 1 1 Gleichgewichtsthermodynaimiik 3 1 Thermodynamische Systeme 5 1.1 Geometrie und Inventar
T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 10 Lösungsvorschlag
4: hermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 10 Lösungsvorschlag 1. Joule-homson-Effekt Ein Gasstrom wird von Bereich 1 (siehe Abbildung) mit einem Kolben durch eine oröse Wand
Grundlagen der Physik II
Grundlagen der Physik II Othmar Marti 05. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 05. 07. 2007 Klausur Die Klausur
k B T de + p k B T dv µ k B T dn oder de = T ds pdv + µdn (1) Enthalpie I = E + pv zu betrachten und es gilt di = T ds + V dp + µdn (3)
III. hermodynamik 14. Wärme und Arbeit 14.1 Wiederholung Ziffer 4: Reversible Zustandsänderungen (a) Zustandsgrößen im thermodynamischen Gleichgewicht: Extensive Zustandsgrößen: E, V, N; ln Φ(E, V, N)
3 Der 1. Hauptsatz der Thermodynamik
3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.
Vorlesung Statistische Mechanik: N-Teilchensystem
Response-Funktionen Bisher haben wir vorwiegend Eigenschaften des thermodynamischen Gleichgewichts untersucht. Diese stellen aber nur einen beschränkten Ausschnitt der interessierenden Phänomene dar. Zur
Hauptsatz der Thermodynamik
0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren
E 3. Ergänzungen zu Kapitel 3
E 3. Ergänzungen zu Kapitel 3 1 E 3.1 Kritisches Verhalten des van der Waals Gases 2 E 3.2 Kritisches Verhalten des Ising Spin-1/2 Modells 3 E 3.3 Theorie von Lee und Yang 4 E 3.4 Skalenhypothese nach
Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)
Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben
Einführung in die Technische Thermodynamik
Arnold Frohn Einführung in die Technische Thermodynamik 2., überarbeitete Auflage Mit 139 Abbildungen und Übungen AULA-Verlag Wiesbaden INHALT 1. Grundlagen 1 1.1 Aufgabe und Methoden der Thermodynamik
Übungen zur Theoretischen Physik F SS Ideales Boltzmann-Gas: ( =25 Punkte, schriftlich)
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Theoretischen Physik F SS 2016 Prof. Dr. A. Shnirman Blatt 2 Dr. B. Narozhny, Dipl.-Phys. P. Schad Lösungsvorschlag
Die Renormierungsgruppe
Die Renormierungsgruppe Jens Langelage 14.12.2005 1 1 Vorbemerkungen 1.1 Problemstellung Die Renormierungsgruppe wurde für Probleme mit (unendlich) vielen Freiheitsgraden entwickelt. Dies ist notwendig,
Klausur Thermodynamik E2/E2p SoSe 2019 Braun. Formelsammlung Thermodynamik
Klausur Thermodynamik E2/E2p SoSe 2019 Braun Name: Matrikelnummer: O E2 O E2p (bitte ankreuzen) Die mit Stern (*) gekennzeichneten Aufgaben sind für E2-Kandidaten vorgesehen - E2p-Kandidaten dürfen diese
Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler
U München Reinhard Scholz Physik Department, 33 homas Eissfeller, Peter Greck, illmann Kubis, Christoph Schindler http://www.wsi.tum.de/33/eaching/teaching.htm Übung in heoretischer Physik 5B (hermodynamik)
Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt
Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012 Theorie der kondensierten Materie Fraktionaler Quanten-Hall-Effekt Seite 2 Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012
Physik 2 (B.Sc. EIT) 2. Übungsblatt
Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,
