1. Thermodynamische Potentiale, Maxwellgleichungen

Größe: px
Ab Seite anzeigen:

Download "1. Thermodynamische Potentiale, Maxwellgleichungen"

Transkript

1 69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt, die die Summe von kinetischer und otentieller Energie aller Einzelteilchen ist, sowie die Enthalie, die z.b. beim Joule homson Prozeß mit orteil angewandt wird, weil sie bei ihm konstant bleibt. Wir führen in diesem Kaitel zwei weitere thermodynamische Potentiale ein, die Helmholtz Funktion F und die Gibbs Funktion G (Hermann v. Helmholtz , Josiah Willard Gibbs ). Beide sind für eine sezielle Klasse von thermodynamischen Prozessen nützlich. Aus den Darstellungen in Differentialform ergeben sich Zusammenhänge zwischen den Ableitungen der Zustandsvariablen,,, S untereinander, die sogenannten Maxwellschen Gleichungen der hermodynamik. a) Die innere Energie U Nach dem 1. Hautsatz ist nach der Definition von S also δq du + d δq ds du ds d Stellt man sich also U als Zustandsfunktion U(S, ) vor, so erhält man als Differential von U du U ds + U d S und durch ergleich der Koeffizienten U ; U S Die Unabhängigkeit der 2. Ableitung von der Reihenfolge der Differentiation ergibt dann 2 U S 2 U S S S Dies ist eine der Maxwellschen Gleichungen der hermodynamik (1) b) Die Enthalie H H ist durch die Definition als Funktion von Zustandsvariablen gegeben H U + Wir bilden das Differential und ersetzen du durch den oben gewonnenen Ausdruck

2 70 dh du + d + du ds d dh ds + Um hieraus eine Maxwellsche Gleichung zu gewinnen, betrachten wir H als Funktion von S und. dh H ds + H S und erhalten durch ergleich Da hier 2 H S 2 H H ; H S, ergibt sich eine Maxwellsche Gleichung der Form S S S c) Die Helmholtz-Funktion F F wird zuweilen auch Helmholtzsche freie Energie genannt. Die Bezeichnung "freie Energie" wird allerdings nicht einheitlich angewandt, so daß sie hier ganz vermieden wird. F ist definiert: F U S mit df du ds Sd Sd d. Für einen isothermen reversiblen Prozeß ist gerade df - d, d.h. die in das System gesteckte Arbeit. Wenn außerdem das olumen konstant bleibt, wie in vielen chemischen Prozessen, ist df 0. Wie oben gewinnt man eine Maxwellsche Gleichung S F ; F S Die Helmholtzfunktion hat die größte Bedeutung in der statistischen Mechanik, die es erlaubt, F aus einer mikroskoischen Betrachtung zu berechnen. (2) d) Die Gibbs Funktion G G wird auch die Gibbsche freie Enthalie genannt. Die Definition ist ähnlich wie von F nur, daß U durch H ersetzt wird. G H S dg dh ds Sd Sd + (3)

3 71 G sielt vor allem bei Phasenübergängen eine Rolle, weil hier und konstant sind. S ändert sich, da die Entroie ein Maß für diesen Ordnungszustand ist. S G ; G mit der Maxwellschen Gleichung S Man erkennt, daß der thermische Ausdehnungskoeffizient bei konstantem Druck mit der Änderung des Ordnungszustandes bei Druckänderung zusammenhängt. Bei einem Gas verringert sich die Entroie bei Komression, da der Bewegungssielraum eingeschränkt wird, daher ist der Ausdehnungskoeffizient ositiv. Bei Polymeren ist die Lage umgekehrt. Sie nehmen von alleine nicht ein möglichst großes olumen ein, sondern ein möglichst kleines, sie knäulen sich. Der Zustand mit größerer Entroie entsteht also durch erkleinern des olumens. Daher ist der Ausdehnungskoeffizient negativ. 2. Anwendungen on den zahlreichen Anwendungen werden im folgenden zwei herausgegriffen: Die Berechnung der inneren Energie aus der Form der Zustandsgleichung und die Berechnung der Damfdruckkurve. a) Innere Energie eines van der Waals Gases Bekannt sei die Zustandsgleichung (,). Als Beisiel betrachten wir die van der Waals Gleichung für ein Mol: + a (v b) R v 2 (, v) R v b a v 2 Das Differential der inneren Energie ist nach dem vorigen Abschnitt, wenn U als Funktion von und betrachtet wird du d + v dv ist die sezifische Wärme bei konstantem olumen: v δq du + dv ergibt für v const δq du nach Definition von c v ist δq c v d, daher du c v d wird aus der differentiellen Form von u(s, ) berechnet. du ds dv

4 72 S s v wird aus der Maxwell-Gleichung (2) ersetzt, aus der Zustandsgleichung s R v v b R v b R v b + a v a 2 v 2 du c v d + a v 2 dv u c vd a v + u 0 Ein Ergebnis, das wir in Ka. E/2 schon einmal mit einer weniger genauen und allgemeinen Argumentation erhalten hatten. b) Die Clausius Claeyronsche Gleichung (Bendit Paul Emile Claeyron ) Die Clausius Claeyronsche Gleichung ist eine Differentialgleichung für die Änderung des Druckes in Abhängigkeit von der emeratur bei einem Phasenübergang. Als Beisiel kann Abb. 269: Zur Berechnung der Damfdruckkurve aus dem Gibbsschen Potential der Damfdruck betrachtet werden, d.h. der Druck, der über einer Flüssigkeit gemessen wird, wenn man den Raum über ihr ausumt. Wir gehen von der atsache aus, daß die Gibbsche Funktion sich beim Phasenübergang nicht ändert. Die Indizes 1 und 2 stehen für Punkte auf der Damfdruckkurve bei, bzw. + d, + ; die Indizes D und F für Damf und Flüssigkeit. Wegen der Gleichheit von G an beiden Seiten der Damfdruckkurve gilt G 2F G 2D G 1F G 1D G F G D Aus der differentiellen Form von G (Gl. 3) erhalten wir

5 73 Für ein Mol schreiben wir dafür dg Sd + g s +v s F +v F s D +v D (v F v D ) (s F s D ) s D s F v F v D Wir ersetzen die Entroiedifferenz durch die erdamfungswärme (im allgemeinen Fall durch die latente Wärme l) (s D s ) Q l und erhalten die Clausius Claeyronsche Gleichung d l (v D v F ) v D - v F ist die olumenänderung bei der Zustandsänderung. Zur Berechnung der Damfdruckkurve kann man näherungsweise v D - v F durch v D ersetzen, für v D das ideale Gasgesetz anwenden. v D R und die erdamfungswärme als konstant betrachten, dann wird aus Gl. (4) l R 2 ld R 2 ln l R (4) / 0 e l/r Zu einem ähnlichen Ergebnis kann man durch eine mikroskoische Betrachtung gelangen, indem man von der Boltzmann Gleichung ausgeht. Der Energieunterschied für ein eilchen im Damf und in der Flüssigkeit ist durch die erdamfungswärme gegeben W l N A Damit ist das Dichteverhältnis n D n e l/n Ak F Dies ist gleich dem Druckverhältnis e l/r 0 mit 0 n F k.

5. Die Thermodynamischen Potentiale

5. Die Thermodynamischen Potentiale 5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

5 Thermodynamische Potentiale

5 Thermodynamische Potentiale 3 Woche 5 hermodynamische Potentiale 51 Formale Einführung der Potentiale Es ist möglich, die extensiven Zustandsfunktionen (mit der Dimension der Energie) zu bilden, die die anderen ariablen als S,, N

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin W 006/007 Fachbereich Physik 8..006 tatistische Physik - heorie der Wärme (PD Dr. M. Falcke) Übungsblatt 9: hermodynamische Identitäten, hermische/kalorische Zustandsgleichung,

Mehr

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.

Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

Zur Thermodynamik des idealen Gases (GK Physik 1)

Zur Thermodynamik des idealen Gases (GK Physik 1) Zur hermodynamik des idealen Gases (GK Physik 1 Zusammenfassung im Hinblick auf Prozesse. Reinhard Honegger, im Januar 2012. 1 Grundbegriffe 1.1 Zustandsgleichung = Ideale Gasgleichung Druck, olumen, emeratur

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen

6 Thermodynamische Potentiale und Gleichgewichtsbedingungen 6 hermodynamische Potentiale und Gleichgewichtsbedingungen 6.1 Einführung Wir haben bereits folgende thermodynamische Potentiale untersucht: U(S,V ) S(U,V ) hermodynamische Potentiale sind Zustandsfunktionen

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 4 Lösung. P + a )

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 4 Lösung. P + a ) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter ogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 4 Lösung. van der Waals Gas, Adiabatengleichung

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen

Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen Prof. Dr. Norbert Ham 1/10 5. Zustandsfunktionen Idealer und Realer Gase ZustandsÄnderungen Die rennung zwischen unserem System und der ÅUmweltÇ wird durch eine Wand realisiert. WÄnde kånnen unterschiedliche

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/8 15. Chemische Thermodynamik. ZustandsÄnderungen

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/8 15. Chemische Thermodynamik. ZustandsÄnderungen Physikalische Chemie Physikalische Chemie I oe 2009 Prof. Dr. Norbert Ham 1/8 15. Chemische hermodynamik Zustandsnderungen Mit Hilfe des chemischen Potentials, knnen wir offene und kommunizierende ysteme

Mehr

Lösungen zur Übungsklausur Thermodynamik WS 2003/04

Lösungen zur Übungsklausur Thermodynamik WS 2003/04 Lösungen zur Übungsklausur hermodynamik WS 003/04 Name: Vorname: Matrikelnummer: Aufgabe 3 4 5 Gesamt Note mögliche Punkte 9 0 8 9 4 40 erreichte Punkte Die Klausur wird bei Erreichen von insgesamt 0 Punkten

Mehr

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:

Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt: Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände

Mehr

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.

GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung. GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: mail@sibbar.de 27. Setember 2004 GPH2 Thermodynamik Seite 2 on

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F Statistische Mechanik) SS 17 Prof. Dr. Alexander Mirlin Blatt 2 PD Dr. Igor Gornyi,

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

2. Hauptsätze der Thermodynamik

2. Hauptsätze der Thermodynamik . Hautsätze der hermodynamik ekannt sind vor allem der I. und II. Hautsatz der hermodynamik. Man sricht auch vom 0. Hautsatz und es gibt zusätzlich den III. Hautsatz. 0. HS: Einführung der emeratur als

Mehr

Mitschrift Thermodynamik

Mitschrift Thermodynamik Mitschrift hermodynamik Herleitung für den Gasdruck Berechnung des oberen Kreisradius d cosϕ dϕ dψ d N eilchen im Gesamtvolumen dn d N Aufschlagswahrscheinlichkeit eines eilchens Fläche df df sinϕ Gesamte

Mehr

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 :

I el U el. P el W V 23+W F23. Musterlösung SS Aufgabe (34 Punkte) a) Energiebilanz für die Kammer A im Zeitintervall t 12 : Musterlösung SS. Aufgabe Punkte a Energiebilanz für die Kammer A im Zeitintervall t : W A, + W V A U A U A W A, P el t U el I el t W V A 0 U A U A m A c v A A 5 m A A V A R A 6 c v κ R 7 A A A A 8 A B

Mehr

Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch

Werner Langbein. Thermodynamik. Gleichgewicht, Irreversible Prozesse, Schwankungen. Verlag Harri Deutsch Werner Langbein Thermodynamik Gleichgewicht, Irreversible Prozesse, Schwankungen Verlag Harri Deutsch Einleitung 1 1 Gleichgewichtsthermodynaimiik 3 1 Thermodynamische Systeme 5 1.1 Geometrie und Inventar

Mehr

Der Erste Hauptsatz der TD- Lernziele

Der Erste Hauptsatz der TD- Lernziele hermodynamik (D) Fundamentale heorie der makroskoischen Eigenschaften der Materie: - Sontane Prozesse - Konzet der emeratur - Phasenübergänge - Energetik makroskoischer Phasen und chemischer Reaktionen

Mehr

Theoretische Physik IVa Thermodynamik und Statistik

Theoretische Physik IVa Thermodynamik und Statistik Institut für heoretische Physik echnische Universität Berlin heoretische Physik Ia hermodynamik und Statistik Udo Scherz Wintersemester 2006/07 1 emeratur und Wärmemenge Wir untersuchen in dieser orlesung

Mehr

DAMPFDRUCK EINER REINEN FLÜSSIGKEIT. 1. Versuchsplatz. 2. Allgemeines zum Versuch

DAMPFDRUCK EINER REINEN FLÜSSIGKEIT. 1. Versuchsplatz. 2. Allgemeines zum Versuch DAMPFDRUCK EINER REINEN FLÜSSIGKEI 1. ersuchslatz Komonenten: - hermostat - Woulffsche Flasche - Dreihalskolben mit ersuchssubstanz - hermometer - Druckmesser - Druckanzeige 2. Allgemeines zum ersuch Befindet

Mehr

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0

Q i + j. dτ = i. - keine pot. und kin. Energien: depot. - adiabate ZÄ: Q i = 0 - keine technische Arbeit: Ẇ t,j = 0 Institut für hermodynamik hermodynamik - Formelsammlung. Hauptsätze der hermodynamik (a. Hauptsatz der hermodynamik i. Offenes System de = de pot + de kin + du = i Q i + j Ẇ t,j + ein ṁ ein h tot,ein aus

Mehr

Theoretische Physik 4 Thermodynamik und Statistische Physik

Theoretische Physik 4 Thermodynamik und Statistische Physik Theoretische Phsik 4 Thermodnamik und Statistische Phsik Prof. Dr. Eric Lutz Universität Erlangen-Nürnberg Inhaltsverzeichnis 1 Thermodnamische Konzete 3 1.1 Was ist Thermodnamik?...........................

Mehr

Temperaturabhängigkeit von Enthalpie H und Entropie S

Temperaturabhängigkeit von Enthalpie H und Entropie S Prof. Dr. Norbert Ham 1/5 8. emeraturabhängigkeit von Enthalie und Entroie emeraturabhängigkeit von Enthalie H und Entroie S In abellenwerken sind Enthalien und Entroien in der Regel bezogen auf Standardbedingungen,

Mehr

7 Thermodynamik. 7.1 Kinetische Energie des idealen Gases

7 Thermodynamik. 7.1 Kinetische Energie des idealen Gases 7 hermodynamik Wärme: ungeordnete Molekülbewegung Wärmeenergie: kinetische Energie dieser Bewegung emeratur: lineares Maß für den Mittelwert der Energie 7. Kinetische Energie des idealen Gases ρgas ρ Festk.

Mehr

3 Diskussion und Beispiele

3 Diskussion und Beispiele Woche 2 3 Diskussion und Beispiele 31 Abhängigkeit zwischen kalorischer und thermischer Zustandsgleichung Die kalorische und die thermische Zustandsgleichungen sind nicht unabhängig Aus den Integrabilitätsbedingungen

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

14 Massenwirkungsgesetz

14 Massenwirkungsgesetz 14 Massenwirkungsgesetz Im vorherigen Abschnitt haben wir uns mit der Mischungsentroie beschäftigt, die aber nur einen Asekt der Mischung von idealen Gasen berücksichtigt, nämlich des Mischens und rennens

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 ladimir Dyakonov #13 am 30.01.2007 Folien im PDF Format unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Zur Erinnerung. p isotherm. Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: Kreisprozesse:

Zur Erinnerung. p isotherm. Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: Kreisprozesse: Zur Erinnerung Stichworte aus der 20. Vorlesung: Poisson sche leichungen/adiabaten- Gleichungen: T V V 1 const. const. adiabatisch ( V ) 0 V V 0 R T0 isotherm ( V ) V Kreisrozesse: Ein thermodynamisches

Mehr

Notizen zur statistischen Physik

Notizen zur statistischen Physik Notizen zur statistischen Physik Kim Boström Begriffe der hermodynamik System: Gedanklich und im Prinzip operativ abtrennbarer eil der Welt. Physik ist das Studium der Eigenschaften von Systemen. Umgebung:

Mehr

Auswahl von Prüfungsfragen für die Prüfungen im September 2011

Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Auswahl von Prüfungsfragen für die Prüfungen im September 2011 Was ist / sind / bedeutet / verstehen Sie unter... Wie nennt man / lautet / Wann spricht man von / Definieren Sie... Die anschließenden Fragen

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & B.M. Mladek (E136) Statistische Physik I Kapitel 2 5. März 2012 1 / 25 2.1 Grundbegriffe

Mehr

Experimentalphysik II: Thermodynamik

Experimentalphysik II: Thermodynamik Exerimentalhysik II: Thermodynamik Zweitversuch-Ferienkurs Sommersemester 09 William Hefter 11/09/2009 Inhaltsverzeichnis 1 Temeratur, Wärme und Arbeit 2 1.1 Einschub zur mathematischen Schreibweise.........................

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

4.6 Hauptsätze der Thermodynamik

4.6 Hauptsätze der Thermodynamik Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie

Mehr

3 Der 1. Hauptsatz der Thermodynamik

3 Der 1. Hauptsatz der Thermodynamik 3 Der 1. Hauptsatz der Thermodynamik 3.1 Der Begriff der inneren Energie Wir betrachten zunächst ein isoliertes System, d. h. es können weder Teilchen noch Energie mit der Umgebung ausgetauscht werden.

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/hermodynamik Wintersemester 7 ladimir Dyakonov #3 am..7 Folien unter: htt://www.hysik.uni-wuerzburg.de/ep6/teaching.html.3 Ideales Gas Exerimentelle Bestimmung der

Mehr

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen

2. Thermodynamik Grundbegriffe Hauptsätze Thermodynamische Potentiale response -Funktionen 2. Thermodynamik 1 2.1 Grundbegriffe 2 2.2 Hauptsätze 3 2.3 Thermodynamische Potentiale 4 2.4 response -Funktionen G. Kahl & F. Libisch (E136) Statistische Physik I Kapitel 2 5. April 2016 1 / 25 2.1 Grundbegriffe

Mehr

9. Wärmelehre. 9.1 Temperaturskala. statistisch verteilte kinetische und potentielle Energie in einem System (relativ zum Grundzustand)

9. Wärmelehre. 9.1 Temperaturskala. statistisch verteilte kinetische und potentielle Energie in einem System (relativ zum Grundzustand) 8 8 9. Wärmelehre Wärmeenergie: emeratur: statistisch verteilte kinetische und otentielle Energie in einem System (relativ zum Grundzustand) Maß für mittlere kinetische Energie eines Systems (im Schwerunktssystem)

Mehr

Wärmelehre Zustandsänderungen ideales Gases

Wärmelehre Zustandsänderungen ideales Gases Wärmelehre Zustandsänderungen ideales Gases p Gas-Gleichung 1.Hauptsatz p V = N k B T U Q W p 1 400 1 isobar 300 200 isochor isotherm 100 p 2 0 2 adiabatisch 0 1 2 3 4 5 V V 2 1 V Bemerkung: Mischung verschiedener

Mehr

Thermodynamik un Statistische Mechanik

Thermodynamik un Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik un Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispiele n und Aufgaben mit ausführlichen

Mehr

6.2 Zweiter HS der Thermodynamik

6.2 Zweiter HS der Thermodynamik Die Änderung des Energieinhaltes eines Systems ohne Stoffaustausch kann durch Zu-/Abfuhr von Wärme Q bzw. mechanischer Arbeit W erfolgen Wird die Arbeit reversibel geleistet (Volumenarbeit), so gilt W

Mehr

1. Klausur in "Technischer Thermodynamik II" (SoSe2014, ) - VERSION 1 -

1. Klausur in Technischer Thermodynamik II (SoSe2014, ) - VERSION 1 - UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Al. Professor Dr.-Ing. K. Sindler. Klausur in "Technischer Thermodynamik II" (SoSe04, 03.06.04) - VERSION - Name: Fachr.: Matr.-Nr.: Es

Mehr

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik

Winter-Semester 2017/18. Moderne Theoretische Physik IIIa. Statistische Physik Winter-Semester 2017/18 Moderne Theoretische Physik IIIa Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Do 11:30-13:00, Lehmann Raum 022, Geb 30.22 http://www.tkm.kit.edu/lehre/

Mehr

Theorie der Wa rme Musterlo sung 3.

Theorie der Wa rme Musterlo sung 3. heorie der Wa rme Musterlo sung 3 U bung 1 FS 2014 Prof Renner Ideales Gas (i) Zeige, dass fu r ein ideales Gas in einem adiabatischen Prozess die Gleichung /C /C = 0 0, gilt, wobei n die Stoffmenge, R

Mehr

Thermodynamik ist eine Theorie, in der, wie der Name sagt, die Begriffe Temperatur und. Länge, Zeit, Masse

Thermodynamik ist eine Theorie, in der, wie der Name sagt, die Begriffe Temperatur und. Länge, Zeit, Masse Biologische Thermodynamik (I) Wintersemester 007/08 orlesungen: Wolfram Liebermeister Literatur: G. Kluge & Neugebauer: Grundlagen der Thermodynamik, Sektrum Akadem. erlag, 994 R. Heinrich & S. Schuster,

Mehr

Einführung in die Verbrennungskraftmaschine

Einführung in die Verbrennungskraftmaschine Institut für erbrennungskraftmaschinen Einführung in die erbrennungskraftmaschine,.05.0 Institut für erbrennungskraftmaschinen Ed-Übung Übersicht Grundlagen der hermodynamik Prozess und thermischer Wirkungsgrad

Mehr

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie

Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Sommer-Semester 2011 Moderne Theoretische Physik III Statistische Physik Dozent: Alexander Shnirman Institut für Theorie der Kondensierten Materie Di 09:45-11:15, Lehmann HS 022, Geb 30.22 Do 09:45-11:15,

Mehr

Modul Chemische Thermodynamik: Verdampfungsgleichgewicht

Modul Chemische Thermodynamik: Verdampfungsgleichgewicht Modul Chemische hermodynamik: Verdampfungsgleichgewicht M. Broszio, F. Noll, Oktober 2007, Korrekturen September 2008 Lernziele Ziel dieses Versuches ist es einen Einblick in die Beschreibung von Phasengleichgewichten

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

Vorbereitungshilfe zum Versuch Ideales und Reales Gas

Vorbereitungshilfe zum Versuch Ideales und Reales Gas orbereitungshilfe zum ersuch Ideales und Reales Gas Dieser ersuch soll zur Beschäftigung mit der Wärmelehre anregen. Insbesondere bei Gasen sind die drei Größen Temeratur, Druck und olumen voneinander

Mehr

Theoretische Physik IV

Theoretische Physik IV Sommersemester 2011 heoretische hysik IV hermodynamik und statistische hysik I Skriptum zur Vorlesung von Helmuth Hüffel Umgesetzt in L A EX von Horak Johannes LYX-Version von Bernhard Reiter Kapitel 1

Mehr

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00

Informationen. Anmeldung erforderlich: ab :00 bis spätestens :00 10 Informationen Anmeldung erforderlich: ab 1.3. 16:00 bis spätestens 8. 3. 09:00 online im TISS (i (tiss.tuwien.ac.at) i Tutorium: Fr. 10:00 11:00, 11:00, Beginn: 15.3.2013 Gruppeneinteilung wird auf

Mehr

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt:

wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt: Ü 7. Adiabate Komression on Luft Luft wird in einem adiabaten Zylinder on. bar, T 5 C solange erdichtet bis eine Endtemeratur on T 00 C erreicht wird. Gesucht sind die zur Verdichtung erforderliche Arbeit

Mehr

Thermodynamik und Statistische Mechanik

Thermodynamik und Statistische Mechanik Theoretische Physik Band 9 Walter Greiner Ludwig Neise Horst Stöcker Thermodynamik und Statistische Mechanik Ein Lehr- und Übungsbuch Mit zahlreichen Abbildungen, Beispielen und Aufgaben mit ausführlichen

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Erinnerung an die Thermodynamik

Erinnerung an die Thermodynamik 2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische

Mehr

5.5 Zustandsänderungen idealer Gase

5.5 Zustandsänderungen idealer Gase 5.5 Zustandsänderungen idealer Gase iele Gase verhalten sich bei technischen Anwendungen in guter Näherung wie ideale Gase (siehe Ka. 5..3). Bei einem technischen Prozess ändert sich nun der Zustand des

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 05. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 05. 07. 2007 Klausur Die Klausur

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

25. Adiabatische Expansion eines idealen Gases 1

25. Adiabatische Expansion eines idealen Gases 1 25. Adiabatische Exansion eines idealen Gases 1 25. ADABASHE EXPANSON ENES DEALEN GASES 1. Aufgabe Für Luft als annähernd ideales Gas sollen sowohl die Molwäre bei konstante Druck, d.h.,, als auch das

Mehr

2.1 Bestimmung einiger Isothermen von Schwefelhexafluorid SF 6

2.1 Bestimmung einiger Isothermen von Schwefelhexafluorid SF 6 Atom- und Kernphysi-Versuch 31 AKP-31-1 Zustandsgrößen realer Gase 1 Vorbereitung Koexistenz von Flüssigeiten und Dampf, Dampfdruc, Verdampfungswärme, Koexistenz von Festörper und Flüssigeit, Koexistenz

Mehr

Inhalt 1 Grundlagen der Thermodynamik

Inhalt 1 Grundlagen der Thermodynamik Inhalt 1 Grundlagen der Thermodynamik..................... 1 1.1 Grundbegriffe.............................. 2 1.1.1 Das System........................... 2 1.1.2 Zustandsgrößen........................

Mehr

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17

Moderne Theoretische Physik III (Theorie F Statistische Mechanik) SS 17 Karlsruher Institut für echnologie Institut für heorie der Kondensierten Materie Moderne heoretische Physik III (heorie F tatistische Mechanik) 17 Prof Dr lexander Mirlin Musterlösung zu latt 3 PD Dr Igor

Mehr

Theorie der Wärme 2015

Theorie der Wärme 2015 2015 gehalten von Professor Dr. homas Gehrmann, in L A EX gesetzt von 3. Juli 2015 Inhaltsverzeichnis 1 Einführung 3 1.1 Begriffsbildung der hermodynamik...................... 3 1.2 Ideales Gas....................................

Mehr

Physikalische Chemie I:

Physikalische Chemie I: Physikalische Chemie I: Thermodynamik Elektrochemie SS 017 Vorlesungstermine : Mi 13:15-15:00 OSZ H3 Do 11:15-1:00 OSZ H Nina Morgner Morgner@chemie.uni-frankfurt.de http://www.lilbid.de/teaching.html

Mehr

Kompressor in CHEMCAD

Kompressor in CHEMCAD Komressor in CHEMCAD Berechnungsmethoden Die im Menü des Komressors zu wählenden Berechnungsmethoden sollen hier näher besrochen werden: Die Auswahl besteht aus. Adiabatic,. Polytroic und 3. Polytroic

Mehr

Thermodynamik der Gase. Joule-Thomson-Prozeß (PHYWE)

Thermodynamik der Gase. Joule-Thomson-Prozeß (PHYWE) hermodynamik der Gase Joule-homson-Prozeß (PHYWE) Ziel des Versuches ist es, den Joule-homson-Koeffizienten µ J für zwei verschiedene Gase zu bestimmen. Vorbereitung: - hermodynamik idealer/ realer Gase

Mehr

Grundlagen der Physik II

Grundlagen der Physik II Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

erster Hauptsatz der Thermodynamik,

erster Hauptsatz der Thermodynamik, 1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. B. Binninger Institut für Technische Verbrennung

Thermodynamik II. für den Studiengang Computational Engineering Science. B. Binninger Institut für Technische Verbrennung Thermodynamik II für den Studiengang Computational Engineering Science B. Binninger Institut für Technische Verbrennung Eine Theorie ist desto eindrucksvoller, je größer die Einfachheit ihrer Prämissen

Mehr

Theoretische Physik 4 Thermodynamik und Statistische Physik

Theoretische Physik 4 Thermodynamik und Statistische Physik heoretische Phsik 4 hermodnamik und Statistische Phsik Prof. Dr. Eric Lutz Universität Erlangen-Nürnberg Inhaltsverzeichnis 1 hermodnamische Konzepte 3 1.1 Was ist hermodnamik?...........................

Mehr

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik

Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Lüdecke Lüdecke Thermodynamik Physikalisch-chemische Grundlagen der thermischen Verfahrenstechnik Grundlagen der Thermodynamik Grundbegriffe Nullter und erster Hauptsatz der Thermodynamik Das ideale Gas

Mehr

4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz

4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz 4 Der 2. Hauptsatz, Entropie und Gibbs scher Fundamentalsatz 4.1 Formulierung des 2. Hauptsatzes Es ist unsere Alltagserfahrung, dass man physikalischen Prozessen in der Regel eine natürliche Zeitabfolge

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus

Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus Ü 9. Aufheizung einer Preßluftflasche Eine Preßluftflasche, in der sich.84 kg Luft bei einem Druck on.74 bar und einer Temeratur on T 0 C befinden, heizt sich durch Sonneneinstrahlung auf 98 C auf. Gesucht

Mehr

Die absolute Temperaturskala und der 3. Hauptsatz der Thermodynamik

Die absolute Temperaturskala und der 3. Hauptsatz der Thermodynamik Kapitel 1 Die absolute emperaturskala und der 3. Hauptsatz der hermodynamik 1.1 Die allgemeine Definition der absoluten emperatur Bisher haben wir die emperatur über die thermische Zustandsgleichung pv

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr

Gruppe 46 Christine Albrecht. Protokoll. Versuch T2: Dampfdruck von Flüssigkeiten

Gruppe 46 Christine Albrecht. Protokoll. Versuch T2: Dampfdruck von Flüssigkeiten .10.007 Grue 46 Christine Albrecht Betreuer: Dr. Gaonik Jörg Kluge Protokoll ersuch : Damfdruck von Flüssigkeiten Aufgabe: Es war der Damfdruck einer Flüssigkeit bei verschiedenen emeraturen zu bestimmen.

Mehr

Vorlesung PC I Thermodynamik Teil B: Thermodynamische Funktionen, Berechnungen und mathematische Methoden

Vorlesung PC I Thermodynamik Teil B: Thermodynamische Funktionen, Berechnungen und mathematische Methoden Vorlesung PC I hermodynamik eil B: hermodynamische Funktionen, Berechnungen und mathematische Methoden Martin Quack, Jürgen Stohner Sommer 2006 2 PC I, hermodynamik, Martin Quack, Jürgen Stohner, SS 2006

Mehr

Vorlesung Statistische Mechanik: Ising-Modell

Vorlesung Statistische Mechanik: Ising-Modell Phasendiagramme Das Phasendiagramm zeigt die Existenzbereiche der Phasen eines Stoffes in Abhängigkeit von thermodynamischen Parametern. Das einfachste Phasendiagramm erhält man für eine symmetrische binäre

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme

2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme 2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen

Mehr

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden.

Erreichte Punktzahlen: Die Bearbeitungszeit beträgt 3 Stunden. Fakultät für Physik der LMU München Prof. Ilka Brunner Vorlesung T4p, WS08/09 Klausur am 11. Februar 2009 Name: Matrikelnummer: Erreichte Punktzahlen: 1.1 1.2 1.3 2.1 2.2 2.3 2.4 Hinweise Die Bearbeitungszeit

Mehr

PHYSIKALISCHE CHEMIE: Eine Einführung

PHYSIKALISCHE CHEMIE: Eine Einführung 1 PHYSIKALISCHE CHEMIE: Eine Einführung makroskoische Phänomene statische Phänomene Gleichgewichte in makroskoischen Systemen HERMODYNAMIK ELEKROCHEMIE dynamische Phänomene Änderung der Konzentration als

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

1 Massenwirkungsgesetz

1 Massenwirkungsgesetz 1 Massenwirkungsgesetz Zeige: Bei konstantem Druck und konstanter emperatur gilt für chemische Reaktionen der Art a 1 A 1 + a A + : : : a L A L b 1 B 1 + b B + : : : b R B R : K c (A i ) ai c (B j ) bj

Mehr