Kompressor in CHEMCAD
|
|
|
- Dörte Lehmann
- vor 8 Jahren
- Abrufe
Transkript
1 Komressor in CHEMCAD Berechnungsmethoden Die im Menü des Komressors zu wählenden Berechnungsmethoden sollen hier näher besrochen werden: Die Auswahl besteht aus. Adiabatic,. Polytroic und 3. Polytroic with ideal C/C.. Adiabatic bedeutet adiabatisch reersibel isentroisch. D.h. bei der isentroen Komression bleibt die Entroie S konstant. Zum selben Ergebnis gelangt man mit einem Flash im isentroic mode. Chemcad simuliert den Ausgangszustand mit Hilfe der Zustandsgleichung SRK (oder der gewählten Zustandsgleichung z.b. PR) so, dass S konstant ist. Die allgemeine Komressionsformel wird also nicht erwendet. Die isentroe Komression ist ein Idealfall. Chemstations Deutschland GmbH Augustastr Wesel el Fax
2 . Polytroic die olytroe Komression ist nicht-adiabatisch, d.h. mit Wärmeerlust behaftet. Der olytroe Exonent n liegt zwischen dem isentroen Exonent und. Dies wird allein durch den Wirkungsgrad bestimmt, den man einzugeben hat. Ist n, läge isotherme Komression or. Die olytroe Komression wird im CHEMCAD Komressor daher durch Kombination der isentroen Komression und dem Wirkungsgrad berechnet. Dabei wird der isentroe Exonent C/C in der isentroen Komressionsformel erwendet. C wird auf Basis einer Zustandsgleichung (SRK) auf den Eingang oder den Mittelwert bezogen, berechnet. C ergibt sich aus dh/d. 3. Polytroic with ideal C/C bei diesem Modell wird im Gegensatz zum orherigen Modell C aus dem idealen Gasgesetz für den Eingangszustand berechnet. Mit dem Wirkungsgrad η erhält in guter Näherung dasselbe Ergebnis wie bei der isentroen Komression. Wirkungsgrad (Efficiency) Der Wirkungsgrad ist für die Methoden Polytroic und Polytroic with ideal C/C erforderlich. Der Wirkungsgrad in der adiabatischen Methode ist das Verhältnis der idealen zur realen Arbeit, sonst das Verhältnis der isentroen zur olytroen Arbeit. In der Methode Adiabatic ist bei einem Wirkungsgrad on z.b. 0,5, die reale Arbeit exakt doelt so groß wie die ideale Arbeit. Die reale Arbeit der Polytroic Methoden und 3 ist aber immer größer als die reale Arbeit der adiabatischen Methode. Aus der olytroen Arbeit und der Gas-Enthaliefunktion berechnet CHEMCAD die Endtemeratur. Die nachstehenden Gleichungen sind sicherlich on Interesse. CHEMCAD Hel: Chemstations Deutschland GmbH Augustastr Wesel el Fax
3 Darin muss der olytroic coefficient olyc (n-)/n in der. Gleichung durch k diidiert werden. Dies ist ein reiner Schreibfehler, der nicht in CHEMCAD zu finden ist. Ansonsten ist die Gleichung richtig. Sie stammt on Kayode Coker, S. 47, Nr und R ist natürlich die Gaskonstante 8,3447 kj/k.kmol. F sollte man daher in kmol eingeben. Nach den Autoren Stehan und Cerbe gilt folgender Zusammenhang zwischen Wirkungsgrad und Exonenten: n η Darin ist n der olytroe und der isentroe Exonent. Perry definiert den Wirkungsgrad η als Verhältnis des isentroen Koeffizienten zum olytroen Koeffizienten wie folgt n η ( ) ( n ) Perry nennt diesen den small stage Efficiency. Chemstations Deutschland GmbH Augustastr Wesel el Fax
4 Anhang Isotherme Komression. Die Komression findet in einem hermostaten statt. Real müsste man die Komression unendlich langsam durchführen, damit die Wärmeübertragung schnell genug ist, um die emeratur des Gases tatsächlich konstant zu halten und die Gasmoleküle keine Beschleunigung erfahren. Es gilt der erste Hautsatz der hermodynamik: du dq dv. Für ein Mol schreibt man du dq d. Da die emeratur des Gases konstant ist, ist die innere Energie U konstant und es gilt du 0 und damit QdV. Für Mol gilt VR. Da konstant ist, ist auch V konstant. Für die bei der Komression aufzubringende Arbeit gilt daher a d d Den zweiten eil nennt man die technische Arbeit. Für ein ideales Gas gilt R eingesetzt und integriert erhält man a R ln R ln Der isotherme Kurenerlauf - stellt beim idealen Gas eine Hyerbel dar. Daher sind beide Integrale identisch. Adiabatische Komression. Die adiabatische, reersible Komression findet in einem erfekt isolierten Zylinder statt. Dabei wird die Komression so durchgeführt, dass die Kolbenkraft stets ausgeglichen ist, d.h. der Kolben steht an jeder beliebigen Stellung im Kräftegleichgewicht mit dem Gasdruck. Dies lässt sich z.b. durch eine entsrechende Kurenscheibe mit anhängendem Gewicht erreichen. Die bei der Komression aufgewendete Arbeit, die gleich währe der Hubarbeit des an der Kurenscheibe hängenden Gewichtes, wird als innere Energie des Gases umgewandelt und geseichert. Dies führt zu einer Zunahme der inneren Energie u )molare Größe), was letztendlich eine emeraturzunahme d des Gases bewirkt. Ableitung nach Brdicka: Aus dem ersten Hautsatz der hermodynamik (q ist die molare mit der Umgebung ausgetauschte Wärme, a die erbrachte molare Volumenarbeit und u die innere molare Energie) du da + dq für reersible ausgetauschte molare Volumenarbeit gilt da -d und Chemstations Deutschland GmbH Augustastr Wesel el Fax
5 dq 0 Die innere, molare Energie u eines idealen Gases hängt nur om Druck und weder on der emeratur, noch om Volumen ab. Daher gilt du Cdt und damit Cd - d Mit R/ erhält man Cd Rd nach rennung der Variablen ergibt sich die Gleichung C d ln R d ln (Anm.: Indice werden der besseren Lesbarkeit wegen großgeschrieben) die Integration liefert R (Anm.: wegen des neg. Vorzeichen sind bei die Grenzen ertauscht) ln ln C da R C- C ist (ohne Ableitung) erhält man R C C C C C eingesetzt und aufgelöst erhält man oder const. oder const. Die Anwendung dieser Gleichungen bedeutet sowie die Poisson sche Gleichung const. Chemstations Deutschland GmbH Augustastr Wesel el Fax
6 und und Als Gebrauchsformel sind bekannt: oder x Die Arbeit ist ( ) a C Ableitung nach Prof. Dr. Feile (Internet): ducd d R C d C C C d d ) d d ln ( ) ln Chemstations Deutschland GmbH Augustastr Wesel el Fax
7 Ableitung nach Kortüm: Für die isentroe Arbeit gilt a C( ) d R d mit R Aus (-) erhält man durch Ableitung ln + (-)ln ln C Daraus durch Differenzieren d d ( ) eingesetzt in die Gleichung für a ergibt R a d R ( ) on P, V nach P, V und erhalten dadurch unmittelbar die Arbeit a oder a oder Ableitung nach Cerbe und Hering du +d dq 0 (du Cd) Cd + dv dq 0, d.h. Cd - dv (d - d/c) sowie dh du + d + d Cd (dh Cd) eingesetzt erhält man Cd d mit d -d/c erhält man C d C d Chemstations Deutschland GmbH Augustastr Wesel el Fax
8 daraus erhält man γ ln ln und schließlich Durch Einsetzen on R/ ergibt sich wieder die o.g. Gleichung mit und. Ableitung nach Stehan: d +du dq 0 d +Cd 0 mit R C C wird d + R dt 0 mit der Ableitung des idealen Gasgesetze dv Rd erhält man d + d R Beide Gleichung durch Ersetzen on d zusammengefaßt ergibt d d + 0 Durch Integration erhält man das o.g. bekannte Ergebnis V const. Ableitung nach Lüdecke: Cd R d d R d C mit C C und C C R Chemstations Deutschland GmbH Augustastr Wesel el Fax
9 d d ( ) ln )ln Literatur:. Brdicka: Grundlagen der hysikalischen Chemie, VEB Deutscher Verlag, 5. Auflage, 965, S. 8. Kortüm: Einführung in die chemische hermodynamik, Verlag Chemie, 5. Auflage, 966, S Cerbe und Hoffmann: Einführung in die hermodynamik, Hanser Lehrbuch,. Auflage 999, S Stehan, Mayinger: hermodynamik, Sringer, 5 Auflage, 998, S Hering, Martin, Stohrer: Physik für Ingenieure, Sringer, 0. Auflage, 007, S Lüdecke: hermodynamik, Sringer, 000, S Perrys Chemical Handbook, 7. Auflage, S Kayode Coker: Fortran rograms for chemical rocess design, analysis and simulation, Gulf ublishing, 995, S.40 ff. Chemstations Deutschland GmbH, No. 00 Autor: Wolfgang Schmidt Chemstations Deutschland GmbH Augustastr Wesel el Fax
wegen adiabater Kompression, d.h. kein Wärmeaustausch mit der Umgebung, gilt:
Ü 7. Adiabate Komression on Luft Luft wird in einem adiabaten Zylinder on. bar, T 5 C solange erdichtet bis eine Endtemeratur on T 00 C erreicht wird. Gesucht sind die zur Verdichtung erforderliche Arbeit
Thermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden.
Wärmemenge: hermische Energie kann nicht mehr beliebig in andere Energieformen umgewandelt werden. Sie kann aber unter gewissen oraussetzungen von einem Körer auf einen nderen übertragen werden. Dabei
Polytrope Zustandsänderung
Sowohl isotherme als auch isentroe Zustandsänderungen werden in Maschinen nie streng erreicht. Reale Komressions- und Exansionsrozesse lassen sich aber oft recht gut durch allgemeine Hyerbeln darstellen,
Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz
Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze
5. Die Thermodynamischen Potentiale
5. Die hermodynamischen Potentiale 5.1. Einführung der Potentiale Gibbs'sche Fundamentalgleichung. d = du + d, du + d δ Q d = = Ist die Entroie als Funktion von U und bekannt, = ( U, ) dann lassen sich
GPH2 Thermodynamik. 27. September Dieser Entwurf ist weder vollständig oder fehlerfrei noch ein offizielles Script zur Vorlesung.
GPH2 Thermodynamik Dieser Entwurf ist weder ollständig oder fehlerfrei noch ein offizielles Scrit zur Vorlesung. Für Anregungen und Kritik: [email protected] 27. Setember 2004 GPH2 Thermodynamik Seite 2 on
1. Thermodynamische Potentiale, Maxwellgleichungen
69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,
Physikalische Chemie Physikalsiche Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/10 5. Zustandsfunktionen Idealer und Realer Gase. ZustandsÄnderungen
Prof. Dr. Norbert Ham 1/10 5. Zustandsfunktionen Idealer und Realer Gase ZustandsÄnderungen Die rennung zwischen unserem System und der ÅUmweltÇ wird durch eine Wand realisiert. WÄnde kånnen unterschiedliche
Aufgaben Kreisprozesse. 1. Ein ideales Gas durchläuft den im V(T)- Diagramm dargestellten Kreisprozess. Es ist bekannt:
Aufgaben Kreisrozesse. Ein ideales Gas durchläuft den im ()- Diagramm dargestellten Kreisrozess. Es ist bekannt: 8 cm 6 cm 00 K 8MPa MPa a) Geben Sie die fehlenden Zustandsgrößen, und für die Zustände
5.5 Zustandsänderungen idealer Gase
5.5 Zustandsänderungen idealer Gase iele Gase verhalten sich bei technischen Anwendungen in guter Näherung wie ideale Gase (siehe Ka. 5..3). Bei einem technischen Prozess ändert sich nun der Zustand des
Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3
Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm
Physik 2 (B.Sc. EIT) 2. Übungsblatt
Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,
1 Thermodynamik allgemein
Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der
4.6 Hauptsätze der Thermodynamik
Thermodynamik.6 Hautsätze der Thermodynamik.6. Erster Hautsatz: Energieerhaltungssatz In einem abgeschlossenen System bleibt der gesamte Energievorrat, also die Summe aus Wärmeenergie, mechanischer Energie
Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen)
Analysis III Gewöhnliche Differentialgleichungen 3. Übungsblatt (mit Lösungshinweisen) Fachbereich Mathematik Wintersemester 0/0 Prof. Dr. Burkhard Kümmerer./3. November 0 Andreas Gärtner Walter Reußwig
ST Der Stirling-Motor als Wärmekraftmaschine
ST Der Stirling-Motor als Wärmekraftmaschine Blockpraktikum Herbst 2007 Gruppe 2b 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Stirling-Kreisprozess............................. 2 1.2 Technische
FAQ Entropie. S = k B ln W. 1.) Ist die Entropie für einen Zustand eindeutig definiert?
FAQ Entroie S = k B ln W 1.) Ist die Entroie für einen Zustand eindeutig definiert? Antwort: Nein, zumindest nicht in der klassischen Physik. Es sei an die Betrachtung der Ortsraum-Entroie des idealen
Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.
Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,
Die zugeführte Wärmemenge bei isochorer Zustandsänderung berechnet sich aus
Ü 9. Aufheizung einer Preßluftflasche Eine Preßluftflasche, in der sich.84 kg Luft bei einem Druck on.74 bar und einer Temeratur on T 0 C befinden, heizt sich durch Sonneneinstrahlung auf 98 C auf. Gesucht
Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)
Freie Universität Berlin W 006/007 Fachbereich Physik 8..006 tatistische Physik - heorie der Wärme (PD Dr. M. Falcke) Übungsblatt 9: hermodynamische Identitäten, hermische/kalorische Zustandsgleichung,
Physikalische Chemie: Kreisprozesse
Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................
Einführung in die Verbrennungskraftmaschine
Institut für erbrennungskraftmaschinen Einführung in die erbrennungskraftmaschine,.05.0 Institut für erbrennungskraftmaschinen Ed-Übung Übersicht Grundlagen der hermodynamik Prozess und thermischer Wirkungsgrad
2 Grundbegriffe der Thermodynamik
2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch
2. Hauptsätze der Thermodynamik
. Hautsätze der hermodynamik ekannt sind vor allem der I. und II. Hautsatz der hermodynamik. Man sricht auch vom 0. Hautsatz und es gibt zusätzlich den III. Hautsatz. 0. HS: Einführung der emeratur als
Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj
Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3
U. Nickel Irreversible Volumenarbeit 91
U. Nickel Irreversible Volumenarbeit 91 geben, wird die bei unterschiedlichem Innen- und Außendruck auftretende Arbeit als irreversible Volumenarbeit irr bezeichnet. Die nachfolgend angegebene Festlegung
Verbrennungsrechnung als kinetischer Simulationsansatz
Verbrennungsrechnung als kinetischer Simulationsansatz Simulationsansatz mit CHEMCAD Die Daten für Flammpunkt, Zündtemperatur, Explosionsgrenzen diverser Stoffe sind weitestgehend bekannt. Methoden zur
4. Freie Energie/Enthalpie & Gibbs Gleichungen
4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition
Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer
Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen
Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18)
2. Übung (KW 17/18) Aufgabe 1 (T 3.1 Sauerstoffflasche ) Eine Sauerstoffflasche, die das Volumen hat, enthält ab Werk eine Füllung O 2, die bei Atmosphärendruck p 1 das Volumen V 1 einnähme. Die bis auf
Probeklausur STATISTISCHE PHYSIK PLUS
DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben
10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess
Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit
2.11. Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008)
2.11 Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008) 271 2.11. Heißluftmotor (neuer Aufbau von Phywe mit PC seit Oktober 2008) Ziel Der Versuch soll das Verständnis für die Funktionsweise
25. Adiabatische Expansion eines idealen Gases 1
25. Adiabatische Exansion eines idealen Gases 1 25. ADABASHE EXPANSON ENES DEALEN GASES 1. Aufgabe Für Luft als annähernd ideales Gas sollen sowohl die Molwäre bei konstante Druck, d.h.,, als auch das
4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:
Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar
Musterlösung zu Übung 7
PCI hermodynamik G. Jeschke FS 05 Musterlösung zu Übung 7 08.04.05 a Der Goldbarren wird beim Einbringen in das Reservoir sprunghaft erwärmt. Der Wärmeaustausch erfolgt daher auf irreversiblem Weg. Um
Allgemeine Gasgleichung und technische Anwendungen
Allgemeine Gasgleichung und technische Anwendungen Ziele i.allgemeine Gasgleichung: Darstellung in Diagrammen: Begriffsdefinitionen : Iso bar chor them Adiabatische Zustandsänderung Kreisprozess prinzipiell:
Wärmelehre/Thermodynamik. Wintersemester 2007
Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 ladimir Dyakonov #0 am 4.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E43, Tel. 888-5875,
Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur
Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen
Hauptsatz der Thermodynamik
0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren
Grundlagen der Physik II
Grundlagen der Physik II Othmar Marti 12. 07. 2007 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Wärmelehre Grundlagen der Physik II 12. 07. 2007 Klausur Die Klausur
Die innere Energie eines geschlossenen Systems ist konstant
Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative
Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen
3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.
Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik
Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik
Thermodynamik I Formeln
Thermodynamik I Formeln Tobi 4. September 2006 Inhaltsverzeichnis Thermodynamische Systeme 3. Auftriebskraft........................................ 3 2 Erster Hauptsatz der Thermodynamik 3 2. Systemenergie........................................
4 Hauptsätze der Thermodynamik
I Wärmelehre -21-4 Hauptsätze der hermodynamik 4.1 Energieformen und Energieumwandlung Innere Energie U Die innere Energie U eines Körpers oder eines Systems ist die gesamte Energie die darin steckt. Es
Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester
Verbundstudium TBW Teil 1 Wärmelehre 1 3. Semester 1. Temperaturmessung Definition der Temperaturskala durch ein reproduzierbares thermodynam. Phänomen, dem Thermometer Tripelpunkt: Eis Wasser - Dampf
Lehrbuch der Thermodynamik
Ulrich Nickel Lehrbuch der Thermodynamik Eine verständliche Einführung Ж HANSER Carl Hanser Verlag München Wien VII Inhaltsverzeichnis 1 GRUNDBEGRIFFE DER THERMODYNAMIK 1 Einführung 1 Systeme 3 offene
Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen
Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14
Chemisches Potential und Nernstgleichung Carsten Stick
Chemisches Potential und Nernstgleichung Carsten Stick Definition der mechanischen Arbeit: Kraft mal Weg W = F! ds W = Arbeit oder Energie; F = Kraft; s = Weg Diese Definition lässt sich auch auf die Kompression
Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler
TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)
Reale Gase. Versuch: RG. Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: E. Beyer Aktualisiert: am Physikalisches Grundpraktikum
Versuch: RG Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: E. Beyer Aktualisiert: am 01. 10. 2010 Bearbeitet: J. Kelling F. Lemke S. Majewsky M. Justus Reale Gase Inhaltsverzeichnis 1 Aufgabenstellung
Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 8 (Abgabe Di 3. Juli 2012)
U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter Vogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 8 Abgabe Di 3. Juli 202). Extremalprinzip
2 Wärmelehre. Reibungswärme Reaktionswärme Stromwärme
2 Wärmelehre Die Thermodynamik ist ein Musterbeispiel an axiomatisch aufgebauten Wissenschaft. Im Gegensatz zur klassischen Mechanik hat sie die Quantenrevolution überstanden, ohne in ihren Grundlagen
Allgemeine Vorgehensweise
Allgemeine Vorgehensweise 1. Skizze zeichnen und Systemgrenze ziehen 2. Art des Systems festlegen (offen, geschlossen, abgeschlossen) und Eigenschaften charakterisieren (z.b. adiabat, stationär, ruhend...)
5. Vorlesung Wintersemester
5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode
W2 Gasthermometer. 1. Grundlagen: 1.1 Gasthermometer und Temperaturmessung
W2 Gasthermometer Stoffgebiet: Versuchsziel: Literatur: emperaturmessung, Gasthermometer, Gasgesetze Mit Hilfe eines Gasthermometers ist der Ausdehnungs- und Druckkoeffizient von Luft zu bestimmen. Beschäftigung
2.6 Zweiter Hauptsatz der Thermodynamik
2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen
Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt
1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei
Bei der Wärmeübertragung handelt es sich um die Veränderung des thermischen Anteils der inneren Energie. Thermische Energie ist definiert als
Prof. r.-ing. Matthias ind Institut für hermische Verfahrenstechnik r.-ing. homas etzel ärmeübertragung I Lösung r 1. Übung (inleitung: Bilanz, inetik ie innere nergie U ist eine extensive Zustandsgröße,
4.6.5 Dritter Hauptsatz der Thermodynamik
4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden
Grundlagen der Physik 2 Schwingungen und Wärmelehre
Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti [email protected] Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.
II. Wärmelehre. II.2. Die Hauptsätze der Wärmelehre. Physik für Mediziner 1
II. Wärmelehre II.2. Die auptsätze der Wärmelehre Physik für Mediziner 1 1. auptsatz der Wärmelehre Formulierung des Energieerhaltungssatzes unter Einschluss der Wärmenergie: die Zunahme der Inneren Energie
(ohne Übergang der Wärme)
Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression
Übungsblatt 2 ( )
Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung
Nachklausur zum Modul Physikalische Chemie 1
Nachklausur zum Modul Physikalische Chemie 1 Sommersemester 2007 Wintersemester 2007 / 08 29. Januar 2008 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort...
April (Voll-) Klausur Analysis I für Ingenieure. Rechenteil
April (Voll-) Klausur Analysis I für Ingenieure en Rechenteil Aufgabe 7 Punkte (a) Skizzieren Sie die 4-periodische Funktion mit f() = für und f() = für (b) Berechnen Sie für diese Funktion die Fourierkoeffizienten
Versuch: Sieden durch Abkühlen
ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg
Kapitel 8: Thermodynamik
Kapitel 8: Thermodynamik 8.1 Der erste Hauptsatz der Thermodynamik 8.2 Mechanische Arbeit eines expandierenden Gases 8.3 Thermische Prozesse des idealen Gases 8.4 Wärmemaschine 8.5 Der zweite Hauptsatz
Vorlesung Statistische Mechanik: N-Teilchensystem
Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung
Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?
Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles
Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik
Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:
Spezifische Wärmekapazität
Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am
Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:
Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine
Physikalische Aspekte der Respiration
Physikalische Aspekte der Respiration Christoph Hitzenberger Zentrum für Biomedizinische Technik und Physik Themenübersicht Physik der Gase o Ideale Gasgleichung o Atmosphärische Luft o Partialdruck Strömungsmechanik
Hauptsätze der Thermodynamik
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Hauptsätze der Thermodynamik Dominik Pfennig, 31.10.2012 Inhalt 0. Hauptsatz Innere Energie 1. Hauptsatz Enthalpie Satz von Hess 2. Hauptsatz
1 Funktionen und ihre Ableitungen
1 Funktionen und ihre Ableitungen 1.1 Funktionen Wir nennen eine Grösse y eine Funktion von x, wenn der Wert von y von demjenigen von x abhängt: Zu jedem x wird in eindeutiger Weise ein Wert von y zugeordnet.
TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf
TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T
Physikalische Grundlagen der Hygrometrie
Den Druck der durch die verdampfenden Teilchen entsteht, nennt man auch Dampfdru Dampfdruck einen gewissen Wert, so können keine weiteren Teilchen aus der Flüssigk Physikalische Grundlagen der Hygrometrie
Füllstand eines Behälters
Füllstand eines Behälters Der Behälter ist eines der häufigsten Apparate in der chemischen Industrie zur Aufbewahrung von Flüssigkeiten. Dabei ist die Kenntnis das Gesamtvolumens als auch des Füllvolumens
8.1. Kinetische Theorie der Wärme
8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung
11.2 Die absolute Temperatur und die Kelvin-Skala
11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor
Theoretische Physik IV
Sommersemester 2011 heoretische hysik IV hermodynamik und statistische hysik I Skriptum zur Vorlesung von Helmuth Hüffel Umgesetzt in L A EX von Horak Johannes LYX-Version von Bernhard Reiter Kapitel 1
1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)
1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip
Erinnerung an die Thermodynamik
2 Erinnerung an die Thermodynamik 2.1 Erinnerung an die Thermodynamik Hauptsätze der Thermodynamik Thermodynamische Potentiale 14 2 Erinnerung an die Thermodynamik 2.1 Thermodynamik: phänomenologische
Skizze zur Veranschaulichung der Legendretransformation
9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.
Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2
Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................
1 Lambert-Beersches Gesetz
Physikalische Chemie II Lösung 6 23. Oktober 205 Lambert-Beersches Gesetz Anhand des idealen Gasgesetzes lässt sich die Teilchenkonzentration C wie folgt ausrechnen: C = N V = n N A V pv =nrt = N A p R
Einführung in die Physik I. Wärme 2 Kinetische Gastheorie
Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung
Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler
U München Reinhard Scholz Physik Department, 33 homas Eissfeller, Peter Greck, illmann Kubis, Christoph Schindler http://www.wsi.tum.de/33/eaching/teaching.htm Übung in heoretischer Physik 5B (hermodynamik)
Mathematik Q1 - Analysis INTEGRALRECHNUNG
Mathematik Q1 - Analysis INTEGRALRECHNUNG ZIELE Einführung der neuen Begrifflichkeiten orientierter Flächeninhalt Integral Integralfunktion anhand der Badetag-Aufgabe Berechnung von Integralen mittels
Vorlesung Physik für Pharmazeuten PPh Wärmelehre
Vorlesung Physik für Pharmazeuten PPh - 07 Wärmelehre Aggregatzustände der Materie im atomistischen Bild Beispiel Wasser Eis Wasser Wasserdampf Dynamik an der Wasser-Luft Grenzfläche im atomistischen Bild
Technische Thermodynamik
Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen von Günter Cerbe, Gernot Wilhelms 5., aktualis. Aufl Technische Thermodynamik Cerbe / Wilhelms schnell und portofrei erhältlich
Kleine Formelsammlung Technische Thermodynamik
Kleine Formelsammlung Technische Thermodynamik on Hans-Joachim Kretzschmar, Ingo Kraft überarbeitet Kleine Formelsammlung Technische Thermodynamik Kretzschmar / Kraft schnell und ortofrei erhältlich bei
