Mathematik Q1 - Analysis INTEGRALRECHNUNG
|
|
|
- Günter Schräder
- vor 9 Jahren
- Abrufe
Transkript
1 Mathematik Q1 - Analysis INTEGRALRECHNUNG
2 ZIELE Einführung der neuen Begrifflichkeiten orientierter Flächeninhalt Integral Integralfunktion anhand der Badetag-Aufgabe Berechnung von Integralen mittels des 1. Hauptsatzes der Differential- und Integralrechnung
3 Fließgeschwindigkeit in l pro min BADETAG Herr Schmitz bereitet sich auf sein geliebtes Wannenbad vor und lässt Wasser ein. Das folgende Diagramm stellt die zeitliche Entwicklung von Zufluss und Abfluss dar: Zeit t in min 1) Beschreibe in 3-4 Sätzen, wie Herr Schmitz das Wasser in die Wanne einlässt.
4 Fließgeschwindigkeit in l pro min BADETAG Zeit t in min 2a) Wie viel Liter waren maximal in der Wanne?
5 Fließgeschwindigkeit in l pro min BADETAG Zeit t in min Maximaler Inhalt: W(9) = = 86 Liter
6 Fließgeschwindigkeit in l pro min BADETAG Zeit t in min 2b) Inhalt nach 16 Minuten: W(16) = W(9) 4 10 = = 46 Liter
7 3) Ab t=12 gelte konstant v(t) = -10l/min Wann ist die Wanne leer? nach 16 min noch 46 l, 46 l : 10 l/min = 4,6 min, also ist die nach 20 min und 36 sec. leer
8 Wasserstand in Litern WASSERSTANDSFUNKTION W(T) 4) Skizziere die Funktion W(t), die für jeden Zeitpunkt den Wasserstand in der Wanne angibt Zeit t in min
9 ORIENTIERTER FLÄCHENINHALT Die Funktion W(t) gibt für jeden Zeitpunkt an, wie viel Wasser in der Wanne ist Offensichtlich berechnet man einen solchen Wert, indem man die Flächeninhalte (zwischen Graph und x-achse), die oberhalb der x-achse liegen, addiert die Flächeninhalte, die unterhalb der x-achse liegen, subtrahiert. Man spricht daher vom ORIENTIERTEN FLÄCHENINHALT
10 Fließgeschwindigkeit in l pro min BADETAG Zeit t in min Inhalt nach 16 Minuten: W(16) = = = 46 Liter
11 INTEGRALBEGRIFF Die Summe dieser (orientierten) Flächen wird als Integral bezeichnet: Das Integral von a bis b einer Funktion f ist die Summe der orientierten Flächeninhalte zwischen Graph und x-achse, kurz y Exact: Integral: Beim orientierten Flächeninhalt sind die Flächeninhalte oberhalb der x-achse mit einem positiven und unterhalb der x-achse mit einem negativen Vorzeichen versehen. a + A 1 + A3 - A 2 - A 4 b x
12 Fließgeschwindigkeit in l pro min BADETAG Zeit t in min Inhalt nach 16 Minuten: 16 0 v t dt = = 46 Liter
13 INTEGRALFUNKTION 46
14 DEFINTION INTEGRALFUNKTION Gegeben ist eine Funktion f. Für eine fest gewählte Zahl a heißt die Funktion x I a x = f t dt a Integralfunktion von f mit der unteren Grenze a. Die Integralfunktion ordnet jeder Stelle x den Wert des Integrals f t dt zu, d.h. x a die Summe der orientierten Flächeninhalte zwischen a und x.
15 2. ZIEL: INTEGRALFUNKTIONEN BESTIMMEN Oft ist es sehr mühsam/unmöglich, die orientierten Flächeninhalte auszurechnen Wir suchen daher nach einer Möglichkeit, die Integralfunktion (hier I 0,5 (x)) direkt aus der gegebenen Funktion f zu bestimmen Dann wäre es sehr einfach, das Integral zu bestimmen (Einsetzen!): f x dx = I 0.5 (2. 5) A 1 A 2
16 Wasserstand in Litern BADETAG Gib für die Funktion W(t) im Bereich 0 bis 4 min eine Funktionsvorschrift an. Wie könnte man die Funktion v(t) aus der Funktion W(t) zurückgewinnen? Zeit t in min
17 BADETAG v(t) = 10, denn pro Minute fließen 10 Liter Wasser ein. Für t Minuten berechnen wir also den Flächeninhalt (d.h. das Integral!) durch: t 0 t 0 v x dx = 10 dx = t 10 = 10 t Also: W(t) = 10t im Intervall [0;4] Zusammenhang zwischen W(t) und v(t): W (t) = 10 = v(t)
18 BADETAG II (ARBEITSBLATT) Stellt euch nun vor, Herr Schmitz dreht den Wasserhahn ganz langsam und gleichmäßig auf, so dass der Wasserhahn erst nach 10 min voll aufgedreht ist (also 10 l/min fließen). Der Zulauf in den ersten 10 Minuten werde also durch die Funktion v(t) = t beschrieben. 1) Berechne, wie viel Liter Wasser nach 10 min in der Wanne sind. 2) Du hast in der letzten Aufgabe ein Integral berechnet. Welches? Notiere die Rechnung von 2. nochmal mit Hilfe der Integral- Schreibweise. 3) Bestimme eine Formel, die zu einem beliebigen Zeitpunkt t zwischen 0 und 10 min angibt, wie viel l Wasser in der Wanne sind. Fällt dir etwas auf? Vergleiche die Formel mit der Funktion v(t).
19 LÖSUNG 1) W(10) = ½ = ½ 10 2 = 50 Liter ) W(10) = v t dt = t dt = t 0 3) W(t) = v x dx = x dx = W (t) = ½ 2 t = t = v(t), d.h. t 0 50 Liter ½ t t = ½ t 2 Vermutung: Die Ableitung der Integralfunktion ist wieder die Ausgangsfunktion!
20 HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG integrieren, hochleiten f(x) differenzieren, ableiten
21 KONSEQUENZEN
22 LÖSUNG Wir bestimmen I 1 (x) 6 Dann gilt f x dx = I Um I 1 (x) zu bestimmen, müssen wir f x = x 3 + 3x 2 + 5x 3 hochleiten : I 1 x = 1 4 x4 + x x2 3x + c
23 LÖSUNG Wir müssen noch die Konstante c bestimmen Dazu nutzen wir aus, dass gelten muss: 1 I 1 1 = f x dx = 0 1 I 1 1 = c = 0 0,25 + c = 0 c = 0, 25
24 LÖSUNG I 1 x = 1 4 x4 + x x2 3x 0, 25 6 f x dx = I = 36,5 Negativ??
25 LÖSUNG JA!!! Wir bestimmen bei der Integralberechnung die Summe der orientierten Flächeninhalte!
26 WAS MAN WISSEN MUSS: Was versteht man unter einem Integral? Warum kann ein Integral auch negativ sein? Was ist eine Integralfunktion? (Denkt an die Wasserstandsfunktion der Badewanne) Was sagt der Hauptsatz aus? (Denkt an das Schaubild mit den Pfeilen) Wie berechnet man ein Integral mit Hilfe der Integralfunktion?
27 AUFGABEN Arbeitsblatt, Aufgabe 1
f(x) dx = A 1 A 2 + A 3
Was ist anschaulich Integralrechnung? Berechnung von Flächeninhalten zwischen (i. A. krummlinigen) Kurven und der Rechtsachse, wobei Flächen unterhalb der Rechtsachse negativ in die Berechnung eingehen.
Zugänge zum Integral Überblick Integration als Rekonstruktion von Beständen
Neumann/Rodner 1 Didaktik der Mathematik der Sekundarstufe II Der Integralbegriff/ Integralrechnung Zugänge zum Integral Überblick Integration als Rekonstruktion von Beständen Neumann/Rodner 2 Mögliche
Didaktik der Mathematik der Sekundarstufe II
Didaktik der Mathematik der Sekundarstufe II Teil 10: Integralrechnung Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/
Didaktik der Analysis
Jürgen Roth Didaktik der Analysis Modul 12a: Fachdidaktische Bereiche 4.1 Inhalt Didaktik der Analysis 0 Organisatorisches 1 Ziele und Inhalte 2 Folgen und Vollständigkeit in R 3 Ableitungsbegriff 4 Integralbegriff
Hauptsatz der Differential- und Integralrechnung (HDI)
Hauptsatz der Differential- und Integralrechnung (HDI) Thema Stoffzusammenhang Jahrgangsstufe 12 Einführung des HDI Verbinden von Differentiation und Integration Inhaltsbezogene Kompetenzbereiche Funktionale
Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31
Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3
Didaktik der Mathematik der Sekundarstufe II
Didaktik der Mathematik der Sekundarstufe II Teil 10: Integralrechnung Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2010/11 Internetseite zur Vorlesung: http://www.mathematik.hu-berlin.de/
3.* Klausur Pflichtteil
EI M5 2010-11 MATHEMATIK 3.* Klausur Pflichtteil In diesem Teil sind weder GTR noch die Formelsammlung erlaubt. Um den Wahlteil zu erhalten, gib bitte diesen Pflichtteil bearbeitet ab. 1. Aufgabe light
Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen
1 Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen [email protected] www.elearning-freiburg.de 2 Aufgabe A 2.1 Ein zunächst leerer Wassertank
3. Probeklausur - Lösung
EI M5 2010-11 MATHEMATIK 3. Probeklausur - Lösung 1. Aufgabe light up! (8 Punkte) Berechne die folgenden Integrale mit dem Hauptsatz. 2 ³ ² cos 3 ² Für die a) werden wir bald ein einfaches Verfahren kennen
Mehrfachintegrale 1-E1. Ma 2 Lubov Vassilevskaya
Mehrfachintegrale 1-E1 1-E2 Mehrfachintegrale c Die Erweiterung des Integralbegriffs führt zu den Mehrfachintegralen, die in den naturwissenschaftlich-technischen Anwendungen u.a. bei der Berechnung der
Einführung Differenzialrechnung
Einführung Differenzialrechnung Beispiele: (1 Ein Auto fährt fünf Sekunden lang mit konstanter Geschwindigkeit Wertetabelle: Zeit in Sekunden 1 2 3 4 5 Strecke in Meter 28 56 84 112 14 Graph (s-t-diagramm:
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben und Übungsklausur
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben und Übungsklausur Das komplette Material finden Sie hier: School-Scout.de Thema: Die
Abitur 2013 Mathematik Infinitesimalrechnung II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich
Integrale. Mathematik Klasse 12. Fläche 1. Fläche 4. Fläche 2. Fläche 5 Fläche 3. Fläche 6. Ditmar Bachmann / Eurokolleg.
Fläche 1 Fläche 4 Fläche 2 Fläche 5 Fläche 3 Fläche 6 aus Google maps Begriff des Integrals Die Wurzeln zur Integralrechnung reichen bis ins Altertum zurück. Damals ist man auf das Problem gestoßen, Flächen
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 5 Folie 1 /38 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 5. Integralrechnung A. Filler
Arbeitsteilige Gruppenarbeit mit Museumsgang
Arbeitsteilige Gruppenarbeit mit Museumsgang Ein Museumsgang (gallery tour) ist eine sehr effektive Methode mit Schülerinnen und Schülern das Präsentieren von Ergebnissen zu üben. Die Idee ist, dass im
Abitur 2017 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.
Prüfungsteil 1, Aufgabe 2. Analysis. Nordrhein-Westfalen 2012LK. Aufgabe a (1) Aufgabe a (2) Aufgabe a (3) Abitur Mathematik: Musterlösung
Abitur Mathematik: Prüfungsteil 1, Aufgabe 2 Nordrhein-Westfalen 2012LK Aufgabe a (1) Anhand der Graphen ist erkennbar, dass sowohl in der Stadt als auch auf Land die Ozonbelastung im Verlauf des Morgens
Mathematik Übungsklausur 2013 Ausführliche Lösungen
Mathematik Übungsklausur 0 Ausführliche Lösungen Analysis Aufgabe Die Nullstellen einer Funktion f mit Definitionsbereich D f sind die Lösungen der Gleichung f(x) = 0 in D f. Damit erhält man: a) f: x
Lösungen lineare Funktionen
lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.
Integralrechnung. Mit der Integralrechnung können Flächen unterhalb eines Graphen in festgelegten Grenzen, hier 1 und 2, exakt berechnet werden.
Integralrechnung Mit der Integralrechnung können Flächen unterhalb eines Graphen in festgelegten Grenzen, hier und, eakt berechnet werden. 3 f() = Wir betrachten zunächst Flächeninhalte, die elementar
Abitur 2017 Mathematik Infinitesimalrechnung II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben
Der Begriff des bestimmten Integrals
Der Begriff des bestimmten Integrals Das ursprüngliche Problem, das zum Begriff des bestimmten Integrals führte, war ein geometrisches, die Bestimmung von Flächeninhalten. 1-E Archimedes von Syrakus Infinite
A Differenzialrechnung
A Differenzialrechnung Seite 1 Stetigkeit und Differenzierbarkeit... 2 Nullstellensatz und Intervallhalbierung... Newton - Verfahren... 8 Funktionsverkettung... 1 5 Kettenregel... 11 Produktregel... 1
K2 MATHEMATIK KLAUSUR 2
K2 MATHEMATIK KLAUSUR 2 12.12.2018 Aufgabe 1 2 3 4 5 9 Punkte (max) 2 2 2 4 4 1 Punkte Wahlteil A a b c d Punkte (max) 4 5 3 3 Punkte Wahlteil B 6 7a b c Punkte (max) 7 4 1 3 Punkte Gesamtpunktzahl /30
Einführung in die Integralrechnung. Mag. Mone Denninger 13. November 2005
Einführung in die Integralrechnung Mag. Mone Denninger. November 5 INHALTSVERZEICHNIS 8. Klasse Inhaltsverzeichnis Einleitung Berechnung einfacher Stammfunktionen. Integrationsregeln.........................
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 1. Dezember 21 1 Integralrechnung Flächeninhalt Stammfunktion Rechenregeln 2 Dichten von Erwartungswert und Varianz
Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich
Abitur 2010 Mathematik GK Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der
K2 KLAUSUR 2. Aufgabe Punkte (max) Punkte. (1) Bestimmen Sie die Ableitung von f(x) = 2 x
K2 KLAUSUR 2 PFLICHTTEIL 202 Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () Bestimmen Sie die Ableitung von f(x) = 2 x 2 + 4. (2) Berechnen Sie das Integral 4 ( ) x 2 dx. (3) Lösen Sie die
1 Q12: Lösungen bsv 2.2
Q: Lösungen bsv... 3. 4. Graphisches Bestimmen einer Integralfunktion a) Nullstellen (laut Graph): x = 0; x = VZT x < 0 x = 0 0 < x < x > f(x) - 0 + 0 - G Io TIP HOP b) Aus der Abbildung ergibt sich: VZT
M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x
Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt
III. Integralrechnung 7. Übungen für die Klausur Teil 1 - Integralrechnung
III. Integralrechnung 7. Übungen für die Klausur Teil - Integralrechnung Beachten Sie auch die Materialien aus dem Unterricht. Hier finden Sie viele Übungen, die Sie entweder noch nicht gemacht haben oder
ANALYSIS. 3. Extremwertaufgaben (folgt)
ANALYSIS 1. Untersuchung ganzrationaler Funktionen 1.1 Symmetrie 2 1.2 Ableitung 2 1.3 Berechnung der Nullstellen 3 1.4 Funktionsuntersuchung I 4 1.5 Funktionsuntersuchung II 6 2. Bestimmung ganzrationaler
stellt eine fallende Gerade dar mit Nullstelle bei x = 5/3. 1/3
Aufgabe 4) Gegeben sind die Funktionen f mit f (x)= 4 x2 + 2 x+ 4 und g mit 3 g ( x)= 4 x2 + 5 2 x 3 4. a) Weisen Sie rechnerisch nach, dass der Graph Gf folgende Eigenschaften besitzt: Der Scheitelpunkt
Referat Integralrechnung. Kathrin Amme (für Rückfragen:
Referat Integralrechnung Kathrin Amme (für Rückfragen: [email protected]) Gliederung (1) Was muss vermittelt werden? (2) Einstieg in die Integralrechnung - Klassisches Vorgehen und Alternativen (3) Eine
Lösungen zur Klausur zur Analysis 1, WiSe 2016/17
BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:
Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen
14 Integralrechnung Einführung des Integrals Stammfunktionen Hauptsatz Flächen Mittelwerte Rotationsvolumen E-Mail: [email protected], Internet: www.elearning-freiburg.de Einführung des Integrals 15
K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 2 27.11.2014 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 4 5 5 3 2 1 WT Ana A.1a) b) c) Summe P. (max) 6 4 5 15
Skript Analysis. sehr einfach. Erstellt: Von:
Skript Analysis sehr einfach Erstellt: 2017 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Funktionen... 3 2. Geraden... 6 3. Parabeln... 9 4. Quadratische Gleichungen... 11 5. Ableitungen...
7. Integralrechnung. Literatur: [SH, Kapitel 9]
7. Integralrechnung Literatur: [SH, Kapitel 9] 7.. Was sind Integrale? 7.2. Unbestimmte Integrale 7.3. Flächen und bestimmte Integrale 7.4. Eigenschaften und bestimmte Integrale 7.5. Partielle Integration
Erfolg im Mathe-Abi. Trainingsheft Analysis wissenschaftlicher Taschenrechner
Gruber I Neumann Erfolg im Mathe-Abi Trainingsheft Analysis wissenschaftlicher Taschenrechner 18 Aufgaben aus der Analysis zur Bearbeitung mit dem wissenschaftlichen Taschenrechner Inhaltsverzeichnis Erfolg
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.
Arbeitsblatt 1. Ergebnisse: a) Schätzen:... b) Abzählen:... c) Berechnen: (unter Angabe der geometrischen Figuren)
Arbeitsblatt 1 Für das nächste Frequency-Festival pachtet der Veranstalter zusätzliche Fläche für die Besucherzelte beim benachbarten Landwirt. Zur Ermittlung des Pachtpreises muss die Fläche ausgemessen
Mehrdimensionale Integralrechnung 1
Mehrdimensionale Integralrechnung Im - dimensionalen Fall wurde die Integralrechnung eingeführt, um Flächen unter Kurven zu berechnen. Eine ähnliche Fragestellung führt uns auf die mehrdimensionale Integralrechnung.
Übungsaufgaben zu linearen Funktionen
Übungsaufgaben zu linearen Funktionen Aufgabe 1: Erstelle eine Wertetabelle und zeichne den dazugehörigen Graphen zur folgenden Funktionen: a) f(x) = 4x + 6 b) f(x) = 2x + 4 c) f(x) = 2 3 x + 4 5 d) f(x)
Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:
Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen
Thema aus dem Bereich Analysis Funktionen 1.Grades
Thema aus dem Bereich Analysis -.3 Funktionen.Grades Inhaltsverzeichnis Checkliste Einführung in den Funktionsbegriff 3 Der Funktionsgraph und die Wertetabelle 3 Was ist eine Funktion.Grades? 5 Die Steigung
1. Aufgabe Niederschlag Diagramm I
1. Aufgabe Niederschlag Diagramm I a) Die Gesamtmenge entspricht der Fläche zwischen Graphen und x-achse. Diese kann durch entweder durch Kästchenzählen ermittelt werden oder durch ein Dreieck angenähert
n=10! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! Lösung: Wir zerlegen das Intervall [a,b]=[1,2] in n Streifen der Breite h=.
Lösungen zu Übungsblatt (Integralrechnung) Zu Aufgabe ) Berechnen Sie das Integral e x dx n! Vergleichen Sie Ihr Ergebnis mit der exakten Lösung! näherungsweise nach der rapezformel für n, n5, Wir zerlegen
K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte
K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7
Thema aus dem Bereich Analysis Funktionen 1.Grades
Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems
Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik
K2 MATHEMATIK KLAUSUR 3
K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3
Momentane Änderungsrate
Momentane Änderungsrate Der freie Fall (im Vakuum) eines Körpers wird durch die Funktion f(x) = gx beschrieben, ist die Fallstrecke in m, x die Zeit in sec, g = 9,8. Die Ableitung an der Stelle x 0 f (x
Teil 3 -Analysis TEIL 3: ANALYSIS
Mathematik Workshop TEIL 3: ANALYSIS Basis Funktionen Funktionsuntersuchung Nullstellen pq-formel, Diskriminanten Polynomdivision Mehrere Veränderliche Differenzieren Idee Regeln zum Rechnen Anwendung
Konstante Zu- und Abflüsse (Veränderungen)
Konstante Zu- und Abflüsse (Veränderungen) Unser erstes Modell: Ein (großer) Eimer wird unter einen Wasserhahn gestellt. Der Wasserhahn wird geöffnet und ein konstanter Wasserstrom von 2 Litern pro Minute
Flächen zwischen zwei Kurven
Flächen zwischen zwei Kurven 1 E Flächen zwischen zwei cc Kurven: Beispiel 1 Abb. B1: Die Fläche zwischen zwei Kurven f (x) und g (x) im Intervall [a, b], f (x) ist die obere Kurve und g (x) ist die untere
Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs
Seite 1 von 5 Unterlagen für die Lehrkraft Abiturprüfung 27 Mathematik, Grundkurs 1. Aufgabenart 1 Analysis 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage 4. Bezüge zu den Vorgaben 27 1.
Uneigentliche Integrale
Uneigentliche Integrale -E Ma Lubov Vassilevskaya Integrierbarkeit ccvon Funktionen Folgende Gründe können die Integrierbarkeit verhindern: Die Funktion f (x) ist im endlichen Integrationsintervall [a,
Einführung in die Integralrechnung. Teil 1. Verwendung der Potenzregel. zur Berechnung von DEMO. Stammfunktionen. Datei Nr Stand 12.
ANALYSIS Einführung in die Integralrechnung Teil Verwendung der Potenzregel zur Berechnung von Stammfunktionen Datei Nr. 80 Stand. Juni 07 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SHULMATHEMATIK www.mathe-cd.schule
Kapitel 8 Einführung der Integralrechnung über Flächenmaße
8. Flächenmaße 8.1 Flächenmaßfunktionen zu nicht negativen Randfunktionen Wir wenden uns einem auf den ersten Blick neuen Thema zu, der Ermittlung des Flächenmaßes A von Flächen A, die vom nicht unterhalb
Substitution bei bestimmten Integralen. 1-E1 Ma 1 Lubov Vassilevskaya
Substitution bei bestimmten Integralen -E Ma Lubov Vassilevskaya -E Ma Lubov Vassilevskaya Substitution bei bestimmten Integralen: Lernziele Was wir wissen: Wann berechnet man Integrale mit Hilfe einer
Analysis II. Abitur Mathematik Bayern 2012 Musterlösung. Bayern Teil 1. Aufgabe 1. Aufgabe 2. Abitur Mathematik: Musterlösung.
Abitur Mathematik: Musterlösung Bayern 2012 Teil 1 Aufgabe 1 2x + 3 f(x) = x² + 4x + 3 DEFINITIONSMGE Nullstellen des Nenners:! x² + 4x + 3=0 Lösungen x 1,2 = 4 ± 16 12 2 = 2 ± 1, d.h. x 1 = 3 und x 2
Analysis: Klausur Analysis
Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com
Teil 2. Ganzrationale und Gebrochen rationale Funktionen. Unbestimmte Integrale und Stammfunktionen auch mit Substitution
Teil Ganzrationale und Gebrochen rationale Funktionen ANALYSIS Einführung in die Integralrechnung Unbestimmte Integrale und Stammfunktionen auch mit Substitution Kurze Theorie und dann Viel Praxis Datei
Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende
A n a l y s i s Differentialrechnung I
A n a l y s i s Differentialrechnung I BlueGene von IBM und dem LLNL ist gegenwärtig der schnellste Computer der Welt. Er soll ein PetaFLOP erreichen, das sind 0 5 = '000'000'000'000'000 Rechnungen pro
FK03 Mathematik I: Übungsblatt 9 Lösungen
FK03 Mathematik I: Übungsblatt 9 Lösungen Verständnisfragen. Welche zwei Beispiele sind in der Vorlesung für die Anwendung von transzendenten Funktionen behandelt worden? Schnittpunktsbestimmung zwischen
Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:
Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x
Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.
1 Abiturprüfung Mathematik 2017 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Analysis A 2 Lösungen der Aufgaben A 2.1 und A 2.2 [email protected] www.elearning-freiburg.de 2 Aufgabe A 2.1
Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:
K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden
Prüfungsteil B, Aufgabengruppe 2, Analysis. Bayern Aufgabe 1. Bundesabitur Mathematik: Musterlösung. Abitur Mathematik Bayern 2014
Bundesabitur Mathematik: Prüfungsteil B, Aufgabengruppe, Bayern 014 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSBEREICH BESTIMMEN Bei einem Bruch darf der Nenner nicht null werden, d.h. es muss gelten: x 5 0 x
Hauptprüfung 2007 Aufgabe 3
Hauptprüfung 7 Aufgabe. Gegeben sind die Funktionen f, g und h mit f (x) = sin x g (x) = sin(x) +, x h(x) = sin x Ihre Schaubilder sind Beschreiben Sie, wie hervorgehen.. Skizzieren Sie K g. K f, K f,
Skizzieren Sie das Schaubild von f einschließlich der Asymptote.
G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4
Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss
Analysis -BAUG r. Cornelia Busch F 6 erie. Überprüfen ie die Gültigkeit des atzes von Gauss F d div F dv, () anhand des Beispiels F(x, y, z) (3x, xy, xz), [, ] [, ] [, ] (Einheitswürfel im R 3 ). Wir berechnen
Mathematik 1 für Bauingenieurwesen
Mathematik 1 für Bauingenieurwesen Name (bitte ausfüllen): Prüfung am 28.1.2019 Reinhard Winkler Matrikelnummer (bitte ausfüllen): Wichtige Hinweise bevor Sie beginnen: Die Prüfung besteht aus vier Aufgaben
Pflichtteil - Exponentialfunktion
Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()
[A] = c(a) in den Einheiten mol/l (1) Eine tiefgestellte Null wie bei [A] 0 zeigt an, dass es sich um eine Anfangskonzentration
1 Ableitung des Massenwirkungsgesetzes Mit dem Umfüllexperiment haben wir herausgefunden, dass die Stoffmengen oder die Stoffmengenkonzentrationen im Gleichgewicht auf einen Grenzwert zulaufen. Außerdem
Partielle Integration
Partielle Integration 1 Motivation Eine der wichtigsten Methoden der Integralrechnung ist die partielle Integration. Mit ihr lassen sich Funktionen integrieren, die ein Produkt zweier Funktionen sind.
5.3. Abstrakte Anwendungsaufgaben
Aufgabe.. Abstrakte Anwendungsaufgaben In den Raum zwischen der x-achse und dem Graphen von f(x) = x x + soll ein Rechteck möglichst großer Fläche gelegt werden, dessen Ecken auf dem Graphen liegen. Wie
Abitur 2015 Mathematik Infinitesimalrechnung I
Seite 1 Abiturloesung.de - Abituraufgaben Abitur 215 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion f : x ( x 3 8 ) (2 + ln x) mit maximalem Definitionsbereich D. Teilaufgabe Teil A 1a (1
7 Integralrechnung für Funktionen einer Variablen
7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare
Lernspirale zum Thema. Einführung in die Integralrechnung. 8. Klasse. von Evelyn Stepancik und Markus Hohenwarter
Lernspirale zum Thema Einführung in die Integralrechnung 8. Klasse von Evelyn Stepancik und Markus Hohenwarter zum Lernpfad von Markus Hohenwarter, Gabriele Jauck und Andreas Lindner Voraussetzungen: Themenbereich/Inhalte:
Einführung in die Integralrechnung
Inhaltsverzeichnis 1. Das Problem der Flächenberechnung... 2 1.1 Problemstellung... 2 1.2 Abschätzung einer Fläche mit Vielecken... 3 1.3 Abschätzung einer Fläche mit einfachen Flächen... 4 1.4 Fläche
Tutorium: Analysis und lineare Algebra
Tutorium: Analysis und lineare Algebra Vorbereitung der Abschlussklausur (Teil 2) Steven Köhler [email protected] mathe.stevenkoehler.de 2 Determinanten 3 Determinanten Determinanten kleiner Matrizen
Wiederholungsklausur zur Analysis I
Wiederholungsklausur zur Analysis I Prof. Dr. C. Löh/M. Blank 5. Oktober 2011 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten
Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen
Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x
Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog
Vorlesungsprüfung Differential- und Integralrechnung (PHY.C30) Fragenkatalog Im folgenden finden Sie eine Liste von typischen Prüfungsfragen für die Vorlesungsprüfung Differential- und Integralrechnung
= 4 0 = 4. Hinweis: Dieses Ergebnis folgt auch aus der Punktsymmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ].
73. a) dx = d x = [x] = = b) sin x dx = [ cos x] = cos + cos ( ) = ( ) + ( ) = Hinweis: Dieses Ergebnis folgt auch aus der Punktsmmetrie zum Ursprung des Graphen der Funktion f: x sin x; D f = [ ; ]. e
Aufgabensammlung Oberstufe Mathematik zur Vorbereitung für Prüfungen von StR Markus Baur Werdenfels- Gymnasium
Aufgabensammlung - Mathematik - Oberstufe Aufgabensammlung Oberstufe Mathematik zur Vorbereitung für Prüfungen von StR Markus Baur Werdenfels- Gymnasium 1 1 Aufgaben zur Analysis 1 Aufgaben zum bestimmten
Analysis: Klausur Analysis
Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com
Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1
9.2 Aufgaben Aufgabe 16.39 aus dem Buch. 1. f (x) = x4 + 1 x 3 + x 4. f (x) = x4 1 2 x 3 8 x 2. f (x) = x3 + 1 x 3 4 x 5. f (x) = x5 + 1 5 x 3 20 x 3. f (x) = 4 x2 x 2 + 1 6. f (x) = x2 2 x 2 7. f (x)
