Tutorium: Analysis und lineare Algebra

Größe: px
Ab Seite anzeigen:

Download "Tutorium: Analysis und lineare Algebra"

Transkript

1 Tutorium: Analysis und lineare Algebra Vorbereitung der Abschlussklausur (Teil 2) Steven Köhler mathe.stevenkoehler.de 2

2 Determinanten 3 Determinanten Determinanten kleiner Matrizen Zur Berechnung der Determinanten kleiner Matrizen käonnen die folgenden Formeln verwendet werden: det det a 11 = a11 a11 a 12 a 21 a 22 = a 11 a 22 a 12 a 21 2 det 4 a 3 11 a 12 a 13 a 21 a 22 a 23 5 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 31 a 32 a 33 a 13 a 22 a 31 a 11 a 23 a 32 a 12 a 21 a 33 4

3 Determinanten Laplacescher Entwicklungssatz Mithilfe des Laplaceschen Entwicklungssatzes kann die Determinante einer Matrix nach einer Zeile oder Spalte entwickelt werden. ² Entwicklung nach der j-ten Spalte: det A = nx ( 1) i+j a ij det A ij i=1 ² Entwicklung nach der i-ten Zeile: det A = nx ( 1) i+j a ij det A ij j=1 Bei den Matrizen A ij handelt es sich um dijenigen Matrizen, die man erhäalt,wennmanindermatrixa die i-te Zeile und die j-te Spalte streicht. 5 Determinanten Aufgabe 1 Gegeben sei die folgende Matrix: 2 A = : a) Berechne die Determinante der Matrix A (i) durch Entwicklung nach der zweiten Spalte; (ii) mithilfe der Regel von Sarrus; (iii) durch UberfÄuhren Ä der Matrix A in eine obere Dreiecksmatrix. b) Welche Aussage Äuber die Invertierbarkeit der Matrix ist anhand der Determinante mäoglich? c) Wie lautet die Determinante der inversen Matrix A 1? 6

4 Determinanten Zusammenhänge mit Determinanten Im Folgenden sei eine quadratische n n -MatrixA betrachtet: ² det (A) =0() rg (A) <n ² det (A) =0() dim (N(A)) > 0 ² det (A) 6= 0() rg (A) =n ² det (A) 6= 0() dim (N(A)) = 0 ² det (A) =0() A 1 existiert nicht ² det (A) 6= 0() A 1 existiert 7 Newton-Verfahren 8

5 Das Newton-Verfahren Beschreibung des Verfahrens I Das Newtonsche Verfahren dient zur näaherungsweisenberechnung von Nullstellen einer Funktion f :[a; b]! R. Die Funktion f unterliegt dabei den folgenden Bedingungen: (i) f 0 (x) 6= 0fÄur alle x 2 [a; b]; (ii) f 00 (x) ist auf ganz [a; b] vorhanden und stetig; (iii) f(a) f(b) < 0. Nach(i)giltalsof 0 (x) > 0fÄur alle x 2 [a; b] oderf 0 (x) < 0 fäur alle x 2 [a; b], d.h., (i) sorgt dafäur, dass f streng monoton (steigend oder fallend) ist. Bedingung (iii) sichert, dass (nach dem Zwischenwertsatz) Äuberhaupt eine Nullstelle c 2 [a; b] vorhanden ist. 9 Das Newton-Verfahren Beschreibung des Verfahrens II Dem Newtonschen Verfahren liegt eine einfache geometrische Idee zugrunde. Man geht von einer ersten NÄaherung x 0 fäur die Nullstelle c aus, legt im Punkt (x 0 ;f(x 0 )) die Tangente an den Graphen von f und bestimmt den Schnittpunkt x 1 der Tangente mit der x-achse (siehe Zeichnung). 10

6 Das Newton-Verfahren Beschreibung des Verfahrens III Indem man y = 0 setzt, erhäalt man aus der Tangentengleichung y = f(x 0 )+f 0 (x 0 )(x x 0 ): x 1 = x 0 f(x 0) f 0 (x 0 ) Allgemein erhäalt man eine Folge von fortlaufend verbesserten NÄaherungswerten durch: x n+1 = x n f(x n) f 0 (x n ) 11 Das Newton-Verfahren Aufgabe 2 Bestimme mithilfe des Newton-Verfahrens einen auf vier Nachkommastellen genauen NÄaherungswert von p 3. Verwende x 0 =3alsStartwert. (Zum Vergleich: p 3=1: :::) 12

7 Die Regeln von de l Hospital 13 Die Regeln von de l Hospital Die Regeln von de l Hospital I Der Typ 0 0 Es sei I ein Intervall und x 0 2 I. Die Funktionen f und g seien fäur alle x 2 I mit x 6= x 0 di erenzierbar. Es gelte g(x) 6= 0 und g 0 (x) 6= 0 fäur alle x 2 I, x 6= x 0. Ferner sei lim f(x) = lim g(x) =0. x!x 0 x!x 0 Dann gilt: μ μ f(x) f 0 (x) lim = lim ; x!x 0 g(x) x!x 0 g 0 (x) falls der rechte Grenzwert existiert bzw. gleich +1 oder 1 ist. Analog fäur x!1. 14

8 Die Regeln von de l Hospital Die Regeln von de l Hospital II Der Typ 1 1 Es sei I ein Intervall und x 0 2 I. Die Funktionen f und g seien fäur alle x 2 I mit x 6= x 0 di erenzierbar. Es gelte g(x) 6= 0 und g 0 (x) 6= 0 fäur alle x 2 I, x 6= x 0. Ferner sei lim f(x) = lim g(x) = 1. x!x 0 x!x 0 Dann gilt: μ μ f(x) f 0 (x) lim = lim ; x!x 0 g(x) x!x 0 g 0 (x) falls der rechte Grenzwert existiert bzw. gleich +1 oder 1 ist. Analog fäur x!1. 15 Die Regeln von de l Hospital Die Regeln von de l Hospital III Der Typ 0 1 Es seien lim f(x) =0und lim g(x) = 1. x!x 0 x!x 0 Dann gilt: ³ lim f(x) g(x) = lim x!x 0 x!x 0 Ã! Ã! f(x) g(x) 1 = lim x!x 1 : 0 g(x) f(x) 16

9 Die Regeln von de l Hospital Die Regeln von de l Hospital IV Der Typ 1 1 Es sei lim f(x) = lim g(x) = 1. x!x 0 x!x 0 Dann gilt: 0 ³ lim f(x) g(x) = lim x!x 0 x!x 0 1 B g(x) 1 1 f(x) 1 A : f(x) g(x) 17 Die Regeln von de l Hospital Die Regeln von de l Hospital V Die Typen 0 0,1 1 und 1 0 ² Typ 0 0 :Esseien lim x!x 0 f(x) = 0 und lim x!x 0 g(x) =0. ² Typ 1 1 : Es seien lim x!x 0 f(x) =1und lim x!x 0 g(x) = 1. ² Typ 1 0 : Es seien lim f(x) = 1 und lim g(x) =0. x!x 0 x!x 0 Dann gilt: ³ g(x) ³ g(x) ln lim f(x) = lim e f(x) = e lim g(x) ln f(x) x!x 0 x!x 0 x!x 0 18

10 Die Regeln von de l Hospital Aufgabe 3 Bestimme die folgenden Grenzwerte: ³ a) lim x 1 x x!1 μ 1 b) lim x!0 ln (x +1) 2 x μ x 2 4x +2 c) lim x!5 2x +4 μ 2 x 1 d) lim x!1 2 3 x+1 19 Die Regeln von de l Hospital Aufgabe 3 20 Skizze der Funktion f(x) = 1 ln (x+1) 2 x

11 Die Regeln von de l Hospital Aufgabe 4 Zeige, dass die Funktion f(x) =a x (fäur a>1) schneller wäachst als die Funktion g(x) =x n (mit n 2 N). 21 Taylorpolynome & -reihen 22

12 Taylorpolynome & -reihen Satz von Taylor I Die Funktion f sei im Intervall [a; b](n+1)-mal di erenzierbar und die (n + 1)-te Ableitung sei stetig auf [a; b]. Es gelte x 0 2 (a; b). Dann folgt fäur alle x 2 [a; b]: f(x) =T n (x)+r n (x): P Dabei ist T n (x) = n ³ k f (k) (x 0 ) k! (x x 0 ) das n-te Taylorpolynom (an der Stelle x 0 )undfäur das Restglied k=0 gilt: R n (x) = 1 n! Z x x 0 (x t) n f (n+1) (t) dt: 23 Taylorpolynome & -reihen Satz von Taylor II Die Formel fäur die AbschÄatzung des Restglieds lautet fäur ein beliebiges x 0 : f(x) T n (x) = R n (x) Mn+1 (n +1)! jx x 0j n+1 : M n+1 ist wie zuvor eine Konstante, fäur die M n+1 jf (n+1) (t)j fäur alle t 2 [a; b] gilt. 24

13 Taylorpolynome & -reihen Satz von Taylor III Skizze der Taylorpolynome T 1 ;:::;T 25 fäur die Funktion sin x 25 Taylorpolynome & -reihen Taylorreihen Die Funktion f sei im Intervall [a; b] beliebig oft di erenzierbar. Es gelte 0 2 (a; b). Dann hei¼t die Potenzreihe 1X k=0 f (k) (0) k! x k die Taylorreihe von f. (Genauer mäusste man sagen: Taylorreihe mit Entwicklungspunkt x 0 = 0. Statt Taylorreihe sagt man auch Taylor-Entwicklung.) 26

14 Taylorpolynome & -reihen Einige Potenzreihen e x = sin x = cos x = ln (1 + x) = arctan x = 1X k=0 1X k=0 1X k=0 x k k! = 1+ x 1! + x2 2! + x3 3! + x4 4! + ::: ( 1) k (2k +1)! x2k+1 = x x3 3! + x5 5! x7 7! + ::: ( 1) k (2k)! 1X ( 1) i+1 i=1 1X i=0 i x 2k x i ( 1) i 2i +1 x2i+1 = 1 x2 2! + x4 4! x6 6! + ::: = x x2 2 + x3 3 x4 + ::: (fäur x 2 ( 1; 1]) 4 = x x3 3 + x5 5 x7 + ::: (fäur x 2 [ 1; 1]) : 7 27 Taylorpolynome & -reihen Aufgabe 5 Gegeben sei die Funktion f(x) =sinhx = 1 2 ³e x e x : a) Bestimme die Taylorpolynome T 0 (x), :::, T 5 (x) fäur den Entwicklungspunkt x 0 =0. b) Bestimme die Taylorreihe der Funktion f(x) fäur den Entwicklungspunkt x 0 =0. 28

15 Taylorpolynome & -reihen Aufgabe 6 Benutze die Ergebnisse aus Aufgabe 7, um eine Potenzreihe fäur die folgende Funktion zu bestimmen: f(x) =coshx = 1 2 ³e x + e x : 29 Taylorpolynome & -reihen Aufgabe 7 Gegeben sei die folgende Funktion: f(x) =(3x 1) 2 a) Bestimme die ersten 4 Ableitungen der Funktion f(x). b) Stelle eine Vermutung fäur die n-te Ableitung der Funktion f(x) auf. c) ÄUberprÄufe mit vollstäandiger Induktion, ob es sich bei deiner Vermutung aus b) tatsäachlich um die n-te Ableitung handelt. d) Gib eine Taylorreihe fäur die Funktion f(x) an. 30

16 Differenzieren von Funktionen mit mehreren Variablen 31 Differenzieren von Funktionen mit mehreren Variablen Aufgabe 8 Bestimme die partiellen Ableitungen erster Ordnung fäur die folgende Funktion: f(x; y; z) =sin x 2 y cos y p z e xz 32

17 Differenzieren von Funktionen mit mehreren Variablen Einführung Beispielfunktion: f(x; y) =cos p x sin (y) 33 Differenzieren von Funktionen mit mehreren Variablen (Extremstellen) Bestimmung des Gradienten I ZunÄachst werden die stationäaren Stellen der Funktion bestimmt: Dazu wird der Gradient grad ³f x 1 ;:::;x n gebildet und gleich 0 gesetzt. grad ³f x 1 ;:::;x n n ³ = 0;:::;0 34

18 Differenzieren von Funktionen mit mehreren Variablen (Extremstellen) Bestimmung des Gradienten II Dies läasst sich auch als Gleichungssystem n = 0. = 0: Die LÄosungen x (i) dieses Gleichungssystem sind die gesuchten stationäaren Stellen. 35 Differenzieren von Funktionen mit mehreren Variablen (Extremstellen) Aufstellen der Hesse-Matrix I Anschlie¼end werden die Hesse-Matrizen H i wie folgt erstellt: 2 H i = 2 1 ³x 1 x n n x (i) ³x (i)

19 Differenzieren von Funktionen mit mehreren Variablen (Extremstellen) Aufstellen der Hesse-Matrix II Abschlie¼end muss die De nitheit der Hesse-Matrizen bestimmt werden, um die Art des Extremums zu ermitteln. Dazu werden zunäachst die Abschnittsdeterminanten 1, :::, n bestimmt: ² Sind alle i > 0(i 2f1;:::;ng), so ist die Matrix positiv de nit und es liegt ein Minimum vor. ² Haben die i ein alternierendes Vorzeichen, beginnend mit \-", so ist die Matrix negativ de nit und es liegt ein Maximum vor. Formal ausgedräuckt: 2m+1 < 0und 2m > 0 fäur m 2 N. 37 Differenzieren von Funktionen mit mehreren Variablen (Extremstellen) Aufstellen der Hesse-Matrix III FÄur Funktionen mit 2 Variablen ergibt sich der folgende Spezialfall: ² Gilt 2 =deth<0, so ist die Matrix inde nit und es liegt kein Extremum vor. ² FÄur 2 =deth>0gilt: { Ist 1 = f xx < 0, so ist die Matrix negativ de nit; es liegt ein Maximum vor. { Ist 1 = f xx > 0, so ist die Matrix positiv de nit; es liegt ein Minimum vor. 38

20 Differenzieren von Funktionen mit mehreren Variablen (Extremstellen) Aufstellen der Hesse-Matrix IV Ist die Matrix weder positiv noch negativ de nit, so kann (mit Ausnahme von Matrizen) ohne weitere Untersuchung keine genaue Aussage Äuber die De nitheit getro en werden. Dazu wird z.b. die Bilinearform b A benutzt: b A (x; y) =x A y T Eine Alternative stellt die quadratische Form dar: Q A (x) = nx i=1 j=1 nx a ij x i x j = x A x T Gibt es nun Vektoren x und y, sodassb A (x; x) =Q A (x) > 0und b A (y;y) =Q A (y) < 0, so ist die Matrix inde nit und es liegt kein Extremum vor. 39 Differenzieren von Funktionen mit mehreren Variablen (Extremstellen) Aufgabe 9 Bestimme die Extremstellen der folgenden Funktionen a) f(x; y) = 6xy + x 2 +2y 3 b) f(x; y) = x 2 +2x + xy 2y 2 c) f(x; y; z) = 2x 2 3y 2 z 2 +2xz +2x +8y 40

21 Integration von Funktionen mit zwei Variablen 41 Integrieren von Funktionen mit zwei Variablen Einführungsbeispiel I Halbkugel, angenäahert durch 5 5SÄaulen 42

22 Integrieren von Funktionen mit zwei Variablen Einführungsbeispiel II Halbkugel, angenäahert durch SÄaulen 43 Integrieren von Funktionen mit zwei Variablen Einführungsbeispiel III Halbkugel, angenäahert durch SÄaulen 44

23 Integrieren von Funktionen mit zwei Variablen Einführungsbeispiel IV Halbkugel, angenäahert durch SÄaulen 45 Integrieren von Funktionen mit zwei Variablen Berechnung eines Volumens I Oftmals interessiert uns das von der Grund Äache G, der Funktion f(x; y) sowie den senkrechten SeitenwÄanden eingeschlossene Volumen. Dieses kann ZZ mithilfe des Doppelintegrals f(x; y) d(x; y) berechnet werden. G 46

24 Integrieren von Funktionen mit zwei Variablen Berechnung eines Volumens II y Die Integrationsgrenzen werden durch die Grund Äache G bestimmt: 0 1 Z x 2 Z' f(x; y) dya dx x 1 ' 1 ' 2 ' 1 x 1 x 2 x 47 Integrieren von Funktionen mit zwei Variablen Berechnung eines Volumens III Spezialfall: ' 1 und ' 2 sind konstante Funktionen. In diesem Fall kann das Integral auf zwei Arten bestimmt werden: 0 1 Z x Z y 2 x 1 y 1 Z y 2 Z x 2 y 1 x 1 f(x; y) dya dx 1 f(x; y) dxa dy y 2 y 1 y ' 2 ' 1 x 1 x 2 x 48

25 Integrieren von Funktionen mit zwei Variablen Aufgabe 10 ZZ Berechne f(x; y) d(x; y) auf zwei G Arten. Hierbei gelte y f(x; y) =(x +1) 2 y und die Grund Äache G sei de niert durch die Punkte (1; 1), (3; 1) und (5; 5). 1 1 x 49 Viel Erfolg bei der Klausur 50

Tutorium: Analysis und lineare Algebra. Vorbereitung der Abschlussklausur (Teil 1)

Tutorium: Analysis und lineare Algebra. Vorbereitung der Abschlussklausur (Teil 1) Tutorium: Analysis und lineare Algebra Vorbereitung der Abschlussklausur (Teil 1) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Konvergenz, Stetigkeit und Differenzierbarkeit 3 Konvergenz

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

Tutorium: Analysis und lineare Algebra. Vorbereitung der Abschlussklausur (Teil 1)

Tutorium: Analysis und lineare Algebra. Vorbereitung der Abschlussklausur (Teil 1) Tutorium: Analysis und lineare Algebra Vorbereitung der Abschlussklausur (Teil 1) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Konvergenz Definition der Konvergenz I Eine Folge (a n )

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Vorbereitung der Abschlussklausur (Teil 2) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Komplexe Zahlen 3 Komplexe Zahlen Komplexe Zahlen I Es sei

Mehr

Tutorium: Analysis und lineare Algebra. Vorbereitung der zweiten Bonusklausur (Teil 1)

Tutorium: Analysis und lineare Algebra. Vorbereitung der zweiten Bonusklausur (Teil 1) Tutorium: Analysis und lineare Algebra Vorbereitung der zweiten Bonusklausur (Teil 1) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Ungleichungen 3 Ungleichungen Aufgabe 1a a) Bestimme

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Tutorium: Analysis und lineare Algebra. Konvergenz, Stetigkeit & Differenzierbarkeit

Tutorium: Analysis und lineare Algebra. Konvergenz, Stetigkeit & Differenzierbarkeit Tutorium: Analysis und lineare Algebra Konvergenz, Stetigkeit & Differenzierbarkeit Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 2011 Steven Köhler Definition der Konvergenz Eine Folge

Mehr

Steven Köhler. Tutorium: Analysis und lineare Algebra. Konvergenz, Stetigkeit & Differenzierbarkeit. mathe.stevenkoehler.

Steven Köhler. Tutorium: Analysis und lineare Algebra. Konvergenz, Stetigkeit & Differenzierbarkeit. mathe.stevenkoehler. Tutorium: Analysis und lineare Algebra Konvergenz, Stetigkeit & Differenzierbarkeit Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 2011 Steven Köhler Definition der Konvergenz Eine Folge

Mehr

KLAUSUR. Analysis (E-Techniker/Mechatroniker/W-Ingenieure) Dr. habil. Sebastian Petersen Dr. Anen Lakhal. Version mit Lösungsskizzen

KLAUSUR. Analysis (E-Techniker/Mechatroniker/W-Ingenieure) Dr. habil. Sebastian Petersen Dr. Anen Lakhal. Version mit Lösungsskizzen KLAUSUR Analysis (E-Techniker/Mechatroniker/W-Ingenieure) 4.3.27 Dr. habil. Sebastian Petersen Dr. Anen Lakhal Version mit Lösungsskizzen Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur sollten

Mehr

Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler

Tutorium: Analysis und lineare Algebra. Differentialrechnung. Steven Köhler. mathe.stevenkoehler.de Steven Köhler Tutorium: Analysis und lineare Algebra Differentialrechnung Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Differenzenquotient Der Di erenzenquotient ist de niert als f(x) x f(x) f(x 0)

Mehr

Wirtschaftsmathematik: Formelsammlung (V1.40)

Wirtschaftsmathematik: Formelsammlung (V1.40) Wirtschaftsmathematik: Formelsammlung (V.40) Grundlagen n! = 2 3... n = 0! = n i für n N, n 0, i= pq-formel Lösung von x 2 + px + q = 0 x /2 = p p 2 ± 2 4 q abc-formel Lösung von ax 2 + bx + c = 0 Binomische

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Prüfungklausur HM 1 (Ing), Lösungshinweise

Prüfungklausur HM 1 (Ing), Lösungshinweise Aufgabe : a Welche komplexen Zahlen erfüllen die Gleichung z + i z =? Skizzieren Sie die Lösungsmenge in der Gaussschen Zahlenebene. 6 Punkte b Für welche komplexen Zahlen z gilt (z + i = 8 e π i? Die

Mehr

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf

KLAUSUR. Analysis (E-Technik/Mechatronik/W-Ing) Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf KLAUSUR Analysis (E-Technik/Mechatronik/W-Ing).9.7 Prof. Dr. Werner Seiler Dr. Matthias Fetzer, Dominik Wulf Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Unterschrift: In der Klausur können Sie insgesamt

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2015 (a + b) 2 = a 2 +2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) =a 2 b 2 Fakultät (Faktorielle) n! =1 2 3 4 (n 1) n Intervalle Notation

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2019 (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) = a 2 b 2 Fakultät (Faktorielle) n! = 1 2 3 4 (n 1) n Intervalle

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 26/7 (2.3.27). (a) Bestimmen Sie die kartesische Form von z = 5i 2i und z 2 = ( ) 9 3 2 2 i. (b) Bestimmen Sie sämtliche

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Schein-Klausur HM II F 2003 HM II : S-1

Schein-Klausur HM II F 2003 HM II : S-1 Schein-Klausur HM II F 3 HM II : S- Aufgabe : Berechnen Sie die folgenden Grenzwerte: a) lim x ln ( + x) x b) lim (coshx) sin x Lösung: Wir verwenden in beiden Fällen die Regel von de l Hospital. a) Es

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( )

a,b,c a,b,d a,d,e b,c,e c,d,e ( ) ( ) ( ) ( ) ( ) Klausur, Mathematik, Juli 2012, A 1 [ 1 ] Bestimmen Sie Y und C in dem makroökonomischen Modell Y = C + Ī C = a + by mit a = 300, b = 0.7 und Ī = 600. Y = C = [ 2 ] Die folgenden Aussagen befassen sich

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Stetigkeit und Dierenzierbarkeit im R n

Stetigkeit und Dierenzierbarkeit im R n Stetigkeit und Dierenzierbarkeit im R n 1 Stetigkeit Wir übertragen den Stetigkeitsbegri auf mehrstellige reellwertige Funktionen. Denition 1. Sei M R n. Eine Funktion f : M R heiÿt stetig in a M gdw.

Mehr

Mathematik zum Mitnehmen

Mathematik zum Mitnehmen Mathematik zum Mitnehmen Zusammenfassungen und Übersichten aus Arens et al., Mathematik Bearbeitet von Tilo Arens, Frank Hettlich, Christian Karpfinger, Ulrich Kockelkorn, Klaus Lichtenegger, Hellmuth

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Abschlussklausur am 5.0.01 Lösungen der Aufgaben Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 01 Steven Köhler 0. Februar 01 Aufgabe 1a-b a)

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt

Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt Algebra, Analytische Geometrie. 1. Sei 1, 0, 9 A := 1, 2, 3,. 2, 2, 2, Zeige, daß A nichtsingulär ist und berechne die Inverse Matrix. Lösung: A ist nicht singulär, wenn det A 0. Ist das der Fall, so gilt

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Höhere Mathematik II. Variante C

Höhere Mathematik II. Variante C Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante C Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Definition Als lineare Gleichungssysteme bezeichnet man in der linearen Algebra Gleichungssysteme der folgenden

Mehr

Lösungen zu Aufgabenblatt 10P

Lösungen zu Aufgabenblatt 10P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 05 9. Juni 05 Lösungen zu Aufgabenblatt 0P Aufgabe (Funktionsgrenzwerte) Berechnen Sie die folgenden Grenzwerte: cos(x) x cos( x )

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Vorkurs Analysis und lineare Algebra. Teil 4

Vorkurs Analysis und lineare Algebra. Teil 4 Vorkurs Analysis und lineare Algebra Teil 4 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Inhaltsverzeichnis Teil 1 Teil 2 Teil 3 Teil 4 Abbildungen & Funktionen Potenz, Wurzel, Exponential

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Teil I Auswahlfragen

Teil I Auswahlfragen UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Grundlagen der Analysis Sommersemester 010 Klausur vom 07.09.010 Teil I Auswahlfragen Name: Hinweise: Bei den folgenden Auswahlfragen

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik II SoSe 01 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter Vorder- und Rückseite

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Vorbereitung der ersten Bonusklausur Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Matrizen 3 Matrizen Definition I Eine Matrix ist eine rechteckige

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Tutorium: Analysis und lineare Algebra. Vorbereitung der ersten Bonusklausur

Tutorium: Analysis und lineare Algebra. Vorbereitung der ersten Bonusklausur Tutorium: Analysis und lineare Algebra Vorbereitung der ersten Bonusklausur Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Matrizen 3 Matrizen Definition I Eine Matrix ist eine rechteckige

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

Höhere Mathematik für Ingenieure , Uhr (1. Termin)

Höhere Mathematik für Ingenieure , Uhr (1. Termin) Studiengang: Matrikelnummer: 1 3 4 5 6 Z Punkte Note Prüfungsklausur A zum Modul Höhere Mathematik für Ingenieure 1 17.. 14, 8. - 11. Uhr 1. Termin Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 25.06.2018 20. Juni 2018 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2018 Steven Köhler 20. Juni 2018 Konvergenz

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler. (a) Bestimmen Sie die kartesische Form von Wintersemester 7/8 (..8) z = ( + i)( i) + ( + i). (b) Bestimmen Sie sämtliche komplexen Lösungen

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Übungen zum Ferienkurs Analysis II 2014

Übungen zum Ferienkurs Analysis II 2014 Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr