Theorie der Phasenübergänge: Eine Einführung

Größe: px
Ab Seite anzeigen:

Download "Theorie der Phasenübergänge: Eine Einführung"

Transkript

1 Michael Kastner, SS06, Universität Bayreuth heorie der Phasenübergänge: Eine Einführung Übersicht: Ein Phasenübergang ist ein Phänomen aus der physikalischen Disziplin der Statistischen Physik bzw. der hermodynamik. Im folgenden: kurze Wiederholung der Grundlagen der Statistischen Physik und der hermodynamik Phasenübergänge: Definition Beispiele Klassifikation, Charakteristika 1 Vorbemerkung Historische Entwicklung: (i) Klassische Mechanik (17. Jahrhundert) Beschreibungsebene: Zeitentwicklung von Phasenraumpunkten oder -verteilungen (ii) hermodynamik (Mitte des 19. Jahrhunderts) Relationen zwischen makroskopischen Variablen, p, V,... (iii) Statistische Physik (Ende 19./Anfang 20. Jahrhundert) Statistische Aussagen aus der Kenntnis der mikroskopischen Gesetzmäßigkeiten (iv) Quantenmechanik (Anfang des 20. Jahrhunderts) Zeitentwicklung von Zustandsvektoren oder -operatoren Logische Hierarchie: hermodynamik Statistische Physik Klassische Mechanik/Quantenmechanik 2 Statistische Physik Ziel: Gleichgewichtsverhalten makroskopischer Systeme (d. h. Anzahl der Freiheitsgrade N 1) beschreiben. Idee: Aufgrund der großen Anzahl an Freiheitsgraden kann und muss man Aussagen statistischer Natur machen. 1

2 rick: Gleichgewichtsverhalten lässt sich durch ein (Lang-)Zeitmittel ausdrücken. Dieses kann unter geeigneten Voraussetzungen wie z. B. Ergodizität durch ein Ensemblemittel ersetzt werden: lim O t t (E) = r[o δ (E H N(x))] =: O r[δ (E H N (x))] mik (E) (1) t: Zeit O: interessierende Observable H N : Hamilton-Funktion bzw. -Operator r: Phasenraumintegral bzw. Hilbert-Raum-Spur 2.1 Statistische Ensembles In Gleichung (1) werden Ensemblemittelwerte bei konstanter Energie, also mikrokanonisch betrachtet. Man könnte genauso noch n weitere sog. extensive Variablen konstant halten, d.h. Variablen, die linear mit der Systemgröße skalieren: 2E(N) = E(2N) (Vorsicht, nur symbolische Schreibweise!). Stattdessen kann man auch ein Ensemblemittel definieren, das die extensive(n) Variable(n) nur im Mittel konstant hält. Diese Zwangsbedingung lässt sich z. B. mittels Lagrange-Multiplikatoren implementieren. Der zu E korrespondierende Lagrange-Multiplikator β ist eine intensive Variable, d. h. β(n) = β(2n), und man identifiziert β = 1 k B (k B: Boltzmann-Konstante, : emperatur). E und β heißen thermodynamisch konjugierte Variablen. Der sog. kanonische Mittelwert lautet dann O kan (β) = r [ O e βh ] N r[e βh (2) N ] (Im allgemeinen kann man so beliebige statistische Ensembles, abhängig von k extensiven und l intensiven Variablen definieren.) Die fundamentalen Größen der jeweiligen statistischen Ensembles sind die Zustandssummen: Z (N) mik = r [δ (E H N (x))] (3) Z (N) kan = r e βh N = E Z (N) mik (E)e βe (4) (Z (N) mik und Z(N) kan gehen durch Laplace-ransformation auseinander hervor.) 2.2 hermodynamischer Limes Von der statistischen Physik gelangt man zur makroskopischen hermodynamik durch Ausführen des thermodynamischen Limes N. Aber: Wie genau? Von welchen Größen? In welchem Ensemble? Die Antworten auf diese Fragen hängen miteinander zusammen... 2

3 Voraussetzungen: Sei H N = N i=1 2m i + V N ({q i }) ein Standard- Hamiltonian und sei außerdem V N ({q i }) = i,j ϕ(q i q j ) stabil und temperiert. Stabilität: B Ê so dass V N ({q i }) BN q = (q 1,...,q N ) Γ N (Γ N : Konfigurationsraum des Systems), d.h. Existenz einer unteren Schranke an V N, die geeignet mit N skaliert.. emperiertheit: C, x, R > 0 so dass p 2 i ϕ(q q ) C q q d x (5) für q q > R (dabei ist d die Raumdimension). Also: Wechselwirkung hinreichend kurzreichweitig! Satz: dann existieren die Grenzwerte s(u) = k B lim N N f(β) = lim N ln Z(N) mik (un), (6) 1 Nβ s und f heißen thermodynamische Funktionen. hermodynamische Interpretation: ln Z(N) kan (β). (7) s Entropie f freie Energie (8) (jeweils pro eilchen). Ganz genauso kann man auch thermodynamische Funktionen von zwei oder mehr Variablen erhalten, z. B. s(u,v), f(β,v), g(β,p),... Welches Ensemble ist jetzt aber das richtige? Wir haben ja s aus dem mikrokanonischen und f aus dem kanonischen abgeleitet! Satz: Unter den oben genannten Voraussetzungen an V N (Stabilität, emperiertheit) ist s konkav. Dann sind die statistischen Ensembles im thermodynamischen Limes äquivalent, d. h. es ergeben sich dieselben Werte für physikalische Größen, unabhängig vom verwendeten Ensemble. 3 hermodynamik hermodynamik ist das Studium von mathematischen Identitäten zwischen partiellen Ableitungen der thermodynamischen Funktionen. Wichtige Eigenschaften dieser thermodynamischen Funktionen können dabei entweder in Form der Hauptsätze der hermodynamik angegeben werden, oder direkt (z. B. Konkavität und Extensivität der Entropie,...). 3

4 ransformation zwischen thermodynamischen Funktionen: Die verschiedenen thermodynamischen Funktionen gehen durch Legendre- ransformation auseinander hervor, z. B. βf(β,v) = sup[s(u,v) βu] (9) u (dies ist eine Konsequenz des Übergangs zwischen den Zustandssummen durch Laplace-ransformation, vgl. Kap. 2.1). Antwortfunktionen: Physikalisch bedeutsam da experimentell am besten zugänglich sind die Antwortfunktionen. Sie charakterisieren die Antwort des Systems auf eine Änderung von außen. So charakterisiert z. B. die isochore spezifische Wärme c v = u = 2 f v 2 (10) v die Änderungsrate der Energie eines Systems bei Variation der emperatur. 4 Phasenübergänge Beobachtung: hermodynamische Funktionen sind stückweise C - Funktionen; es existieren aber u. U. auch gewisse Punkte, an denen eine thermodynamische Funktion nicht unendlich oft differenzierbar (auch: nicht-analytisch) ist. Definition: Ein Phasenübergang ist eine Nicht-Analytizität in der (Gibbsschen) freien Energie g. Warum sind solche Nicht-Analytizitäten interessant? Nicht- Analytizitäten signalisieren eine sprunghafte Veränderung der physikalischen Eigenschaften eines Systems (z. B. zweite Ableitung von f() unstetig Sprung in der spezifischen Wärme)! Beispiele von Phasenübergängen gibt es zuhauf und in allen Bereichen der Physik. Diese Häufigkeit und Verbreitung ist auch einer der Gründe für das große Interesse, das Phasenübergängen zuteil wird: fest flüssig gasförmig, Supraleitung, -fluidität, Ferromagnetismus, Galaxienbildung, Vereinheitlichung der fundamentalen Wechselwirkungen, u.v.m. Bei dieser Vielfalt versucht man den Überblick zu behalten durch eine geeignete 4

5 4.1 Charakterisierung von Phasenübergängen Dazu als Motivation erst mal ein paar typische Graphen von thermodynamischen Größen bei Auftreten eines Phasenübergangs, hier anhand zweier Beispiele von Ferromagneten (modelliert z. B. durch Ising-artige Modelle) bei verschwindendem äußerem Magnetfeld h = 0. g g g g c = 2 g 2 c = 2 g 2 m = g h h=0 m = g h h=0 c c kontinuierlicher Phasenübergang (Ordnungsparameter sowie erste Ableitung der thermodynamischen Funktion sind stetig) Nomenklatur: 5 diskontinuierlicher Phasenübergang (Ordnungsparameter sowie erste Ableitung der thermodynamischen Funktion sind unstetig)

6 (Alternativ spricht man auch von Phasenübergängen zweiter bzw. erster Ordnung.) Möglichkeiten der Charakterisierung von Phasenübergängen: Ordnung des Phasenübergangs Übergangstemperatur c Symmetrien der Phasen unterhalb bzw. oberhalb von c Phasendiagramme: Informativ sind außerdem sog. Phasendiagramme, d. h. Linien im Parameterraum (hier: (, h)-ebene), an denen Phasenübergänge auftreten. Für einen Ferromagneten (bzw. Ising-Modell): h kritischer Punkt ( c, 0) (oder auch das bekannte Phasendiagramm von Wasser). 4.2 Kontinuierliche Phasenübergänge & kritische Phänomene Kritische Punkte und die an diesen Punkten auftretenden kontinuierlichen Phasenübergänge sind von ganz besonderem Interesse und ihre Untersuchung hat zu faszinierenden Entwicklungen im Grenzbereich zwischen Mathematik und Physik geführt. Um dieses Interesse zu begründen benötigen wir noch den Begriff des kritischen Exponenten. Kritische Exponenten: Man definiert die reduzierte emperatur t = c c, die den Abstand vom kritischen Punkt c quantifiziert. Asymptotisch in der Umgebung von t 0 findet man u.a. folgende Potenzgesetze spezifische Wärme: c t α, (11) Ordnungsparameter: m Θ( t)t β, (12) Suszeptibilität: χ t γ, (13) wobei α, β und γ kritische Exponenten heißen. Man kann noch etliche weitere kritische Exponenten definieren. Wichtig ist vor allem noch ein weiterer namens ν, der das Verhalten der räumlichen Korrelationen (in d Dimensionen) des Ordnungsparameters beschreibt: g( r ) = m( r )m( 0 ) r d 2 η e r/l, (14) 6

7 wobei die Korellationslänge l skaliert wie l t ν. (15) Die kritischen Exponenten sind nicht alle unabhängig voneinander, sondern es existieren Relationen zwischen verschiedenen Exponenten. Interessant sind kritische Phänomene unter anderem aus folgenden Gründen (Details dazu in Vortrag 5, Skalentheorie & Renormierung ): (i) Universalität: Viele physikalisch sehr unterschiedliche Systeme zeigen identisches kritisches Verhalten, d. h. beispielsweise identische Werte der kritischen Exponenten (Beispiel: easy-axis Ferromagneten und binäre Legierungen sind in der selben Universalitätsklasse). Das kritische Verhalten hängt dabei nur von der Raumdimension des Systems und der Symmetrie des Ordnungsparameters ab. (ii) Skalenverhalten: In der Umgebung des kritischen Punktes ist das System invariant unter der ransformation r λ r mit λ Ê, auch wenn der Hamiltonian keine solche Symmetrie besitzt. Das mit dieser Invarianz einhergehende Fehlen einer charakteristischen Längenskala am kritischen Punkt bildet die Basis für die (iii) Renormierungsgruppentheorie: Elegante Rechenmethode, die die Hintergründe zu (i) und (ii) sowie die Relationen zwischen den kritischen Exponenten liefert, aber auch explizites Berechnen kritischer Größen erlaubt. Entwickelt von K. Wilson (Nobelpreis 1982) im Zusammenhang mit kritischen Phänomenen, hat die Renormierungsgruppentheorie auch wichtige Anwendungen in anderen Gebieten, z. B. der Chaostheorie. 5 Ausblick Angewandt wird der Begriff Phasenübergang inzwischen auch in einem weiteren Sinne, z.b. auch auf Phänomene, bei denen die emperatur nicht der relevante Parameter ist (also außerhalb der hermodynamik im eigentlichen Sinne), siehe z. B. Vortrag 6, Perkolation. auf Nichtgleichgewichtsphänomene, z.b. zelluläre Automaten oder Kontaktprozesse, siehe auch Vortrag 10, Epidemien. Gemeinsam haben all diese Phänomene sowohl gewisse Charakteristika (Nicht- Analytizitäten, sprunghafte Änderung gewisser Eigenschaften, evtl. Universalität) als auch die verwendeten Methoden (z. B. Renormierungsgruppentheorie,...). 7

8 Literatur [1]. C. Dorlas, Statistical Mechanics: Fundamentals and Model Solutions, IoP publishing (1999). [2] D. C. Mattis, Statistical Mechanics Made Simple, World Scientific (2003) [3] M. Le Bellac, F. Mortessagne und G. G. Batrouni, Equilibrium and Non-Equilibrium Statistical hermodynamics, Cambridge University Press (2004) [4] L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization, World Scientific (2000) 8

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Theoretische Physik F Statistische Physik

Theoretische Physik F Statistische Physik Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Theoretische Physik F Statistische Physik Sommersemester 2010 2 Statistische Physik, G. Schön, Karlsruher Institut für Technologie (Universität)

Mehr

Phasengleichgewichte und Phasenübergänge

Phasengleichgewichte und Phasenübergänge Kapitel 5 Phasengleichgewichte und Phasenübergänge 5.1 Beispiele für Phasenübergänge (siehe auch: Einleitung) Bereits kennengelernt: Bose-Einstein-Kondensation (Kapitel??. Exakt berechenbar, in mancher

Mehr

Supraleitung - Ginzburg-Landau-Theorie

Supraleitung - Ginzburg-Landau-Theorie Supraleitung - Ginzburg-Landau-Theorie Stefan Nagel 11.05.006 Zusammenfassung Die Ginzburg-Landau-Theorie zur Beschreibung der Supraleitung ist eine phänomenologische Theorie, welche die makroskopischen

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

4. Strukturänderung durch Phasenübergänge

4. Strukturänderung durch Phasenübergänge 4. Strukturänderung durch Phasenübergänge Phasendiagramm einer reinen Substanz Druck Phasenänderung durch Variation des Drucks und/oder der Temperatur Klassifizierung Phasenübergänge 1. Art Phasenübergänge

Mehr

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =?

Kapitel 4. Thermodynamisches Gleichgewicht zwischen zwei Systemen. 4.1 Systeme im thermischen Kontakt 1; E 1 =? 2; E 2 =? Kapitel 4 hermodynamisches Gleichgewicht zwischen zwei Systemen Im letzten Abschnitt haben wir am Beispiel des idealen Gases die Entropie (S(E)) bestimmt, und zwar im Rahmen des mikrokanonischen Ensembles

Mehr

4. DIE ABLEITUNG (DERIVATIVE)

4. DIE ABLEITUNG (DERIVATIVE) 31 Dieses Skript ist ein Auszug mit Lücken aus Einführung in die mathematische Behandlung der Naturwissenschaften I von Hans Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie das Buch auch

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

2. Mathematische Grundlagen

2. Mathematische Grundlagen 2. Mathematische Grundlagen Erforderliche mathematische Hilfsmittel: Summen und Produkte Exponential- und Logarithmusfunktionen 21 2.1 Endliche Summen und Produkte Betrachte n reelle Zahlen a 1, a 2,...,

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

2. Stetigkeit und Differenzierbarkeit

2. Stetigkeit und Differenzierbarkeit 2. Stetigkeit Differenzierbarkeit 9 2. Stetigkeit Differenzierbarkeit Wir wollen uns nun komplexen Funktionen zuwenden dabei zunächst die ersten in der Analysis betrachteten Eigenschaften untersuchen,

Mehr

1. Systematik der Werkstoffe 10 Punkte

1. Systematik der Werkstoffe 10 Punkte 1. Systematik der Werkstoffe 10 Punkte 1.1 Werkstoffe werden in verschiedene Klassen und die dazugehörigen Untergruppen eingeteilt. Ordnen Sie folgende Werkstoffe in ihre spezifischen Gruppen: Stahl Holz

Mehr

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik

Einführung in die Physikalische Chemie Teil 2: Makroskopische Phänomene und Thermodynamik Einführung in die Phsikalische Chemie Teil 2: Makroskopische Phänomene und Thermodnamik Kapitel 7: Boltzmann-Verteilung Kapitel 8: Statistische Beschreibung makroskopischer Grössen Kapitel 9: Thermodnamik:

Mehr

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie:

Einführung in die Physikalische Chemie: Inhalt. Einführung in die Physikalische Chemie: Einführung in die Physikalische Chemie: Inhalt Einführung in die Physikalische Chemie: Inhalt Kapitel 9: Prinzipien der Thermodynamik Inhalt: 9.1 Einführung und Definitionen 9.2 Der 0. Hauptsatz und seine

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

11. Der Phasenübergang

11. Der Phasenübergang 11. Der Phasenübergang - Phasendiagramme, Kritischer Punkt und ripelpunkt - Gibbssche Phasenregel - Phasenübergänge 1. und 2. Ordnung - Das Phasengleichgewicht - Clausius-Clapeyron-Gleichung - Pictet-routon-Regel,

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, (

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, ( Kapitel 4 Konfidenzbereiche Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden Teil-Parameter

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Formelsammlung zum Starterstudium Mathematik

Formelsammlung zum Starterstudium Mathematik Formelsammlung zum Starterstudium Mathematik Universität des Saarlandes ¼ Version.3 Inhaltsverzeichnis. Potenzgesetze. Vollständige Induktion 3. Betragsgleichungen, Betragsungleichungen 4 4. Folgen und

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Mathematik I Herbstsemester 2014

Mathematik I Herbstsemester 2014 Mathematik I Herbstsemester 2014 www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 32 1 Stetigkeit Grenzwert einer

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück,

100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück, 100 Jahre nach Boltzmann - wie steht es um die Grundlagen der Thermodynamik? Jochen Gemmer Osnabrück, 28.10.2004 Primäres Gesetz oder angepaßte Beschreibung? Quantenmechanik: Klassische Mechanik: i h h2

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

Kapitel 6. Exponentialfunktion

Kapitel 6. Exponentialfunktion Kapitel 6. Exponentialfunktion 6.1. Potenzreihen In Kap. 4 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

5 DIFFERENZIALRECHNUNG EINFÜHRUNG

5 DIFFERENZIALRECHNUNG EINFÜHRUNG M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten

3.5 Glattheit von Funktionen und asymptotisches Verhalten der Fourierkoeffizienten Folgerung 3.33 Es sei f : T C in einem Punkt x T Hölder stetig, d.h. es gibt ein C > und ein < α 1 so, dass f(x) f(x ) C x x α für alle x T. Dann gilt lim N S N f(x ) = f(x ). Folgerung 3.34 Es f : T C

Mehr

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x.

Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x. Der Primzahlsatz Zusammenfassung Im Jahr 896 wurde von Hadamard und de la Vallée Poussin der Primzahlsatz bewiesen: Die Anzahl der Primzahlen kleiner gleich verhält sich asymptotisch wie / log. Für ihren

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Phasengleichgewicht und Phasenübergänge. Gasförmig

Phasengleichgewicht und Phasenübergänge. Gasförmig Phasengleichgewicht und Phasenübergänge Siedetemperatur Flüssig Gasförmig Sublimationstemperatur Schmelztemperatur Fest Aus unserer Erfahrung mit Wasser wissen wir, dass Substanzen ihre Eigenschaften bei

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Fixpunkte und Stabilitätsanalyse

Fixpunkte und Stabilitätsanalyse Fixpunkte und Stabilitätsanalyse 1 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen

Grundlagen der Elektrotechnik I Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Grundlagen der Elektrotechnik I 17 11.01.01 Einführung eines Einheitensystems.1 Physikalische Größen, physikalische Größenarten, Einheiten und Werte physikalischer Größen Physikalische Größen: Meßbare,

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:

Mehr

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen Wellen Crashkurs PDG anhand von Beispielen Eine Welle ist ein erkennbares Signal, welches innerhalb eines Mediums von einer Seite zur anderen übertragen wird, mit einer erkennbaren Ausbreitungsgeschwindigkeit.

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalpie & Gibbs Gleichungen 1. Eigenschaften der Materie in der Gasphase 2. Erster Hauptsatz: Arbeit und Wärme 3. Entropie und Zweiter Hauptsatz der hermodynamik 4. Freie Enthalpie G,

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Kapitel 7. Exponentialfunktion

Kapitel 7. Exponentialfunktion Kapitel 7. Exponentialfunktion 7.1. Potenzreihen In Kap. 5 haben wir Reihen ν=0 a ν studiert, wo die Glieder feste Zahlen sind. Die Summe solcher Reihen ist wieder eine Zahl, z.b. die Eulersche Zahl e.

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Einführung in die statistische Testtheorie II

Einführung in die statistische Testtheorie II 1 Seminar: Simulation und Bildanalyse mit Java Einführung in die statistische Testtheorie II Guntram Seitz Sommersemester 2004 1 WIEDERHOLUNG 2 1 Wiederholung Grundprinzip: Annahme: Beobachtungen bzw.

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Die Harmonische Reihe

Die Harmonische Reihe Die Harmonische Reihe Wie stellt sich Determinismus in der Mathematik dar? Wie stellt man Daten dar? Wie findet man das Resultat von unendlich vielen Schritten? Mehrere Wege können zu demselben Ziel führen

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient.

Die Steigung m ist ein Quotient zweier Differenzen und heißt daher Differenzenquotient. Seite Definition lineare Funktion Eine Funktion f mit dem Funktionsterm f(x) = m x + b, also der Funktionsgleichung y = m x + b, heißt lineare Funktion. Ihr Graph G f ist eine Gerade mit der Steigung m

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 1- Dampfdruckdiagramm Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Dampfdruckdiagramm wird dieses Vorgespräch durch einen Multiple-Choice

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome

Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Proseminar Lineare Algebra SS10 Symmetrische Polynome,Diskriminante und Resultante, Fermatscher Satz für Polynome Natalja Shesterina Heinrich-Heine-Universität ASymmetrische Polynome Definition 1 Sei n

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Statistische Mechanik ungeordneter Systeme, SoSe 2005

Statistische Mechanik ungeordneter Systeme, SoSe 2005 Statistische Mechanik ungeordneter Systeme, SoSe 005 Timo Aspelmeier, Alexander K. Hartmann, Universität Göttingen 1. Juni 005 7 Fortgeschrittene Monte Carlo Verfahren 7.1 Phasenübergang im (ungeordneten)

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach

Mehr

Quantisierung des elektromagnetischen Feldes

Quantisierung des elektromagnetischen Feldes 18. Juni 2008 1 Energiewerte Maxwell-Gleichungen Wellengleichung Lagrange-Funktion Hamilton-Funktion 1 Kanonische Helmholtzsche freie Energie Innere Energie Übersicht Behandelt wird die im Vakuum. Das

Mehr

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik

Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der Thermodynamik Statistische Zustandsgröße Entropie Energieentwertung bei Wärmeübertragungen II. Hauptsatz der hermodynamik Die nachfolgenden Ausführungen stellen den Versuch dar, die zugegeben etwas schwierige Problematik

Mehr