5 DIFFERENZIALRECHNUNG EINFÜHRUNG
|
|
|
- Ella Richter
- vor 9 Jahren
- Abrufe
Transkript
1 M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient, auch (mittlere) Änderungsrate genannt Momentane Änderungsrate an einer Stelle x, auch Ableitung an einer Stelle x genannt Ableitungsfunktion 5 Differenzenquotient, (mittlere) Änderungsrate Erschrick an dem Ausdruck f ( b) f ( a) b a nicht: Stelle dir den Zusammenhang mit Steigungsdreieck, Geradensteigung in Mathe Kl 8, und mit Definition der Geschwindigkeit, Mittlere Geschwindigkeit in Physik Kl8/ her f ( b) f ( a) Definition: bezeichnet man als Differenzenquotient b a oder (mittlere) Änderungsrate der Funktion f im Intervall [a ; b] Ein Beispiel: Betrachten wir das Schaubild der Funktion f : x x 3x also eine Normalparabel mit Scheitel S (,5,5) Wie ändert sich der Funktionswert im Intervall [ ; 4]? Er ändert sich um 6, denn f ( ) und f ( 4) 6 Die mittl Änderungsrate der Funktion f im Intervall [ ; 4] f ( b) f ( a) 6 ist somit 3 b a 4 (vgl Steigungsdreieck : nach rechts, 6 nach oben) In Worten: Der Differenzenquotient der Funktion f : x x 3x im Intervall [ ; 4] ist 3 Oder: Die mittlere Änderungsrate der Funktion f : x x 3x im Intervall [ ; 4] ist 3 Nebenbemerkung: Mit Hilfe der Zweipunkteform kann man die Gleichung der eingezeichneten Geraden (= lineare Näherungsfunktion ) bestimmen: g : x 3x 6 Die Steigung dieser linearen Näherungsfunktion von f im Intervall [ ; 4] ist 3 Script - Mathematik Kl /, Schuljahr 9/, Rohmer Druckdatum: 9
2 M /, Kap V Einführung in die Differenzialrechnung S 5 Momentane Änderungsrate Um vom Differenzenquotient zur momentanen Änderungsrate zu kommen, verkleinern wir das Intervall immer weiter (Die math Kurzschreibweise lim beschreibt genau dieses), Intervall genauso wie wir von der mittleren Geschwindigkeit zur Momentangeschwindigkeit kommen Definition: f ( x lim xx x x ) Momentane Änderungsrate der Funktion f an der Stelle x Unser Beispiel: Um die momentane Änderungsrate von f bei x zu berechnen, müssen wir den Differenzenquotienten von f im Intervall [ ; x] für den Grenzwert x berechnen (hierbei: Polynomdivision): f () x 3x lim lim lim ( x ) x x x x x In Worten: Die momentane Änderungsrate der Funktion f : x x 3x bei x ist Oder: Die Steigung der Tangente bei x ist Nebenbemerkung: Mit Hilfe der Punkt-Steigungsform kann man die Gleichung der eingezeichneten Geraden (= Tangente ) bestimmen, nämlich g : x x 53 Die Ableitung an der Stelle x Definition des Begriffs Ableitung (eine präzisere Formulierung steht im Buch): f ( x ) Die in 5 definierte momentane Änderungsrate f '( x ) lim x x x x bezeichnet man auch als Ableitung der Funktion f an der Stelle x In unserem Beispiel: Die Ableitung der Funktion f : x x 3x an der Stelle x ist, kurz: f '( x ) f '() 54 Von der Ableitung zur Funktion (Dieses Kapitel ist unwichtig) -> Lokale Näherungsformel Script - Mathematik Kl /, Schuljahr 9/, Rohmer Druckdatum: 9
3 M /, Kap V Einführung in die Differenzialrechnung S 3 55 Die Ableitungsfunktion Wir wollen nun die Ableitung von f an der Stelle x zu jedem beliebigen x-wert bestimmen, dh wir suchen eine Funktion f ' (die sogenannte Ableitung von f ), die zu jedem beliebigen x-wert die zugehörige Steigung der Tangente angibt Die Funktion f ': x f '( x) heißt Ableitung oder Ableitungsfunktion von f Nebenbemerkung: Die Ableitung nach x wird mit Strich geschrieben: f ' Ableitung nach der Zeit t mit Punkt: h In unserem Beispiel: Wir bilden zunächst allgemein für ein bestimmtes x die Ableitung von f an der Stelle x : f ( x ) x 3x ( x 3x ) x x 3x 3x f '( x ) lim lim lim lim ( x x 3) x xx x x xx x x xx x x xx also: f '( x) x 3 (im zweitletzten Schritt wurde eine Polynomdivision durchgeführt) Wir müssen nun noch x in x umbenennen: Für beliebiges x lautet also die Ableitung der Funktion f folgendermaßen: f '( x) x 3 Mit Hilfe der Ableitungsfunktion kann man nun die Steigung der Tangente zu jedem beliebigen x-wert sofort angeben: zb für x Tangentensteigung f '() 3 zb für x 5 Tangentensteigung f '(5) Ergebnis: In Kapitel 5 sind wir ausgegangen von einer Funktion x 3x Durch Ableitung der Funktion f(x) nach x haben wir daraus in Kapitel 55 nun schließlich deren Ableitungsfunktion f '( x) x 3 vorliegen, mit Hilfe derer man die Steigung der Tangente an das Schaubild von f an jeder beliebigen Stelle x sofort angeben kann 3 Übungen: Übe nun 5 bis 55 analog mit einigen anderen Funktionen wie zb: f : x x mit [a ; b] = [ ; 4] und x 4 3 f : x x mit [a ; b] = [ ; ] und x Und nun möchte ich euch mit Hilfe eines Vorausblicks wieder Mut machen: Es gibt unendlich viele Anwendungen, bei denen die Ableitung einer Funktion benötigt wird Differenzialrechnung ist unbestritten ein sehr wichtiges Teilgebiet der Mathematik Deshalb brauchen wir das Verständnis der Kapitel 5 bis 55 als Grundlage hierfür Es gibt aber einige einfache Ableitungsregeln, mit Hilfe derer man die Ableitung einer Funktion sofort angeben kann, so dass man in der Praxis in der Regel nicht den in 5 bis 55 beschriebenen Weg über Differenzenquotient und Grenzwertbildung gehen muss Script - Mathematik Kl /, Schuljahr 9/, Rohmer Druckdatum: 9
4 M /, Kap V Einführung in die Differenzialrechnung S 4 56 Die Ableitung der Potenzfunktion Potenzregel: Die Ableitung der Potenzfunktion f n : x x ist n f ': x n x Beispiele und Aufschrieb: selbst 57 Summen- und Faktorregel Summenregel: Die Ableitung einer Funktion f, die sich additiv aus den Einzelfunktionen g und h zusammensetzt, also f g h, ist f ' g' h' Faktorregel: Die Ableitung einer Funktion f, die das c-fache einer Funktion g ist, also ist f ' c g' Beispiele und Aufschrieb: selbst f c g 58 Ableiten ganzrationaler Funktionen, höhere Ableitungen Eine ganzrationale Funktion vom Grad n ist differenzierbar und ihre Ableitung ist eine ganzrationale Funktion vom Grad n 59 Ableiten der Sinus- und Kosinusfunktion 59 Wiederholung Sinus- / Kosinusfunktion Besondere Werte (Winkel und Bogenmaß), die sich aus der Darstellung am Einheitskreis ergeben: Um sich die Werte klarzumachen, genügt einfachste Dreiecksgeometrie Winkel Bogenmaß x Sinx 3 Cosx 3 Die Tabelle lässt sich auf Werte größer als 9 bzw (zb mit dem Schaubild) ausweiten Eselsbrücke für die besonderen Werte zum Merken:,,, 3, 4 Script - Mathematik Kl /, Schuljahr 9/, Rohmer Druckdatum: 9
5 M /, Kap V Einführung in die Differenzialrechnung S 5 Daraus ergibt sich folgendes Schaubild für die Sinuskurve: sin x Die sin-funktion hat die Periode und die Amplitude (Schwingungshöhe) Dh: sin( x ) sin x Entsprechend ergibt sich für die Kosinuskurve: cos x cos( x ) cos x Die Kosinuskurve unterscheidet sich von der Sinuskurve lediglich durch eine Verschiebung um nach links Wegen der jeweiligen Symmetrie lassen sich die speziellen Werte der ganzen Periode ableiten Veränderungen im Schaubild: Streckung längs der y-achse (Amplitude): a sin x das Schaubild von y sin x wird längs der y-achse mit dem Faktor a gestreckt bei negativem a erfolgt zusätzlich noch eine Spiegelung an der x-achse Streckung längs der x-achse ( Geschwindigkeit ): sin( k x) das Schaubild läuft k-fach so schnell durch eine Periode: kx, damit ergibt sich für die Periodenlänge p die Gleichung: p k das Schaubild von y sin x wird längs der x-achse mit dem Faktor k gestreckt Aufgabe: Zeichne das Schaubild von cos( x) Script - Mathematik Kl /, Schuljahr 9/, Rohmer Druckdatum: 9
6 M /, Kap V Einführung in die Differenzialrechnung S 6 Verschiebung längs der y-achse: sin x c ist bekannt von den Parabeln oder Geraden Verschiebung längs der x-achse: f x) sin( x x ) ( ist bekannt von der Scheitelform der Parabel y ( x ) Beachte: bei y cos( x 4) ist zuerst umzuformen: y cos( ( x )) Periodenlänge ; Verschiebung um nach rechts Zusammenfassung: allgemeiner Typ a sin( k( x x )) c Reihenfolge: ) p, ) a (evtl Spiegelung), 3) x, 4) c Übungen: geeignet: GTR oder Mathe-Grafikprogramm zb Maple oder Mathgraf (shareware -> Suche mathgraf über wwwgooglede) Hinweis: Beginne mit der Darstellung von sin x und füge dann Parameter wie a, x und c sukzessive hinzu 59 Ableitung der Sinus- und Kosinusfunktion Die Ableitung der Sinusfunktion f : x sin x ist f ': x cos x Die Ableitung der Kosinusfunktion f : x cos x ist f ': x sin x Dies macht man sich am besten grafisch klar (Stichwort: Tangentensteigung) Die Ableitung von f : x a sin x ist f ': x a cos x (Faktorregel 57) (entsprechend beim Kosinus) Die Ableitung von f : x sin( kx) ist f ': x k cos( kx) (Erklärung anschaulich grafisch, formal später in Klasse : Kettenregel) Die Ableitung von f : x sin( x x) ist f ': x cos( x x) (Erklärung anschaulich grafisch, formal später in Klasse : Kettenregel) allgemein: Die Ableitung von f : x asin( kx x ) c ist f : x ak cos( kx x ) ' Script - Mathematik Kl /, Schuljahr 9/, Rohmer Druckdatum: 9
Zusammenfassung: Differenzialrechnung 1
LGÖ Ks M Schuljahr 7/8 Zusammenfassung: Differenzialrechnung Inhaltsverzeichnis Aufgabenformulierungen Gleichungen Graphen, Trigonometrie und Geraden Ableitung Ableitungsregeln, höhere Ableitungen 3 Kettenregel
3 Differenzialrechnung
Differenzialrechnung 3 Differenzialrechnung 3.1 Ableitungsregeln Übersicht Beispiel Vorgehen Potenzfunktionen f(x) = x 4 f (x) = 4 x 3 f(x) = x f (x) = 1 x 0 = 1 f(x) = x Hochzahl f (x) = Hochzahl x Hochzahl
Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a
. Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------
KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)
Lehrbuch: Elemente der Mathematik 10 KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Thema Inhalte Kompetenzen Zeit in Stunden Buchseiten Bemerkungen Modellieren
Die Kettenregel Seite 1
Die Kettenregel Seite 1 Kapitel mit 124 Aufgaben Seite WIKI Regeln und Formeln 03 Level 1 Grundlagen Aufgabenblatt 1 (26 Aufgaben) 07 Lösungen zum Aufgabenblatt 1 09 Aufgabenblatt 2 (34 Aufgaben) 11 Lösungen
Trigonometrische Funktionen
Trigonometrische Funktionen Kurvendiskussion ohne Verwendung der Differenzialrechnung Trainingsaufgaben Geeignet für die Klassenstufen 9 und 0. Die gezeigten Methoden werden zum Abitur vorausgesetzt! Datei
Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt
Abitur 2017 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.
Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die
Die allgemeine Sinusfunktion Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Funktionsgleichung f(x) x. Aus ihr erzeugt man andere Parabeln, indem man den Funktionsterm verändert.
Differenzialrechnung Einführung 1
0.0.06 Änderungstendenz einer Funktion Differenzialrechnung Einführung Eines der wichtigsten Merkmale einer Funktion ist die Änderungstendenz, womit angegeben wird, wie stark die Funktionswerte f() zu-
1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11
Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel
Johannes-Althusius-Gymnasium Emden
Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß
Beweise zum Ableiten weiterer Funktionen
Arbeitsblatt A: Eponentialfunktionen Satz (Ableitung von Eponentialfunktionen) Für alle gilt: () f () = e f ' () = e () f () = a f ' () = a ln (a) mit a + f() = e grafisches Differenzieren: Ergänze die
Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f
Curriculare Analyse. Beispiel: Leitidee Funktionaler Zusammenhang. Dr. M.Gercken, 2009
Curriculare Analyse Beispiel: Leitidee Funktionaler Zusammenhang Dr. M.Gercken, 2009 Quellen [1] Bildungsplan 1994 [2] Bildungsplan 2004 [3] Schulcurriculum Helmholtz Gymnasium, Karlsruhe [4] Schulcurriculum
Schulinternes Curriculum Mathematik EF. Kompetenzerwartungen bzgl. der Kenntnisse, Fähigkeiten und Fertigkeiten und Reflexionsfähigkeit. Kap.
I I.1 - I.6 untersuchen die Eigenschaften von linearen und quadratischen Funktionen (Wiederholung SI) Potenzfunktionen Ganzrationalen Funktionen können Gleichungen linearer und quadratischer Funktionen
Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen
A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale
WWG Grundwissen Mathematik 10. Klasse
WWG Grundwissen Mathematik 10. Klasse I. Kreiszahl 1. Kreis: Fläche des Kreissektors: = Länge des Kreisbogens: = Im Einheitskreis gilt: = 2 = 2. Kugel: Oberflächeninhalt: = 4 Volumen: = II. Geometrische
5.2. Differentialrechnung
.. Differentialrechnung... Die mittlere Steigung einer Funktion zwischen zwei Punkten Die mittlere Steigungder Funktion f() zwischen zwei Punkten P( f()) und Q( + Δ f( + Δ)) ist definiert als der Differenzenquotient
Stoffverteilungsplan Mathematik Klasse 10 auf der Grundlage des Bildungsplans 2016 Lambacher Schweizer 10 ISBN
1 In der Arbeitsfassung des Bildungsplans 2016 wird betont, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener
Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.
I. Nullstellen Arbeitsblatt I.1 Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der Faktoren null wird, sonst nicht. Beispiele:
Wahrscheinlichkeitsrechnung. Trigonometrie Sinus und Kosinus
Gymnasium Neutraubling Grundwissen Mathematik 10. Jahrgangsstufe Wissen und Können Aufgaben, Beispiele und Erläuterungen 1. Bedingte Wahrscheinlichkeit Bezeichnungen: P(A): Wahrscheinlichkeit des Ereignisses
Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation
Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen
5.2. Aufgaben zur Differentialrechnung
Aufgabe : Mittlere und momentane Geschwindigkeit Bestimme graphisch a) die mittleren Geschwindigkeiten [;] [;] [;6] [8;9] [;] [4;6] [5;7] [6;8] b) die Momentangeschwindigkeiten () () () () (4) (5) (9)
Schulinternes Curriculum 11 Jg. (Einführungsphase) Thema Kompetenzen Methoden Fachspezifische
Fachbereich MATHEMATIK GYMNASIUM ISERNHAGEN Schulinternes Curriculum 11 Jg. (Einführungsphase) Thema Kompetenzen Methoden Fachspezifische Kriterien Funktionen Potenzfunktionen - Mit natürlichen Exponenten
Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik
Kosinusfunktion: graphische Darstellung und Interpretation 1-E Vorkurs, Mathematik Kosinusfunktion: Erklärung der Aufgabe 1 Aufgabe 1: Zeichnen Sie die trigonometrische Kosinusfunktion g (x) = a cos x.
Der Ableitungsbegriff
GS - 24.08.04 - abl_01_grundbegr.mcd Der Ableitungsbegriff - Die Steigung von Graphen - 1. Einführung in die Problematik: Bekannt ist der Funktionswert einer Funktion f an einer bestimmten Stelle x 0.
Kompetenzcheck. Konzept
Kompetenzcheck Konzept In der fachdidaktischen Literatur findet man immer häufiger sogenannte Kompetenzchecks, in denen die Lernenden ihre Kompetenzen selbst einschätzen. Diese Idee haben die Referenten
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = = 360 360 Das Bogenmaß eines Winkels ist
Hauptprüfung 2007 Aufgabe 3
Hauptprüfung 7 Aufgabe. Gegeben sind die Funktionen f, g und h mit f (x) = sin x g (x) = sin(x) +, x h(x) = sin x Ihre Schaubilder sind Beschreiben Sie, wie hervorgehen.. Skizzieren Sie K g. K f, K f,
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius gilt für einen Kreissektor mit Mittelpunktswinkel : Länge des Kreisbogens Fläche des Kreissektors = 2 = 360 360 Das Bogenmaß eines Winkels ist
Differentialrechnung
Katharina Brazda 5. März 007 Inhaltsverzeichnis Motivation. Das Tangentenproblem................................... Das Problem der Momentangeschwindigkeit.......................3 Differenzenquotient und
Überblick über die Winkelfunktionen Sinusfunktion
Überblick über die Winkelfunktionen Sinusfunktion -x2 -x1 x1 x2 Die Funktion x sin x ; x ℝ heißt Sinusfunktion und ihr Graph Sinuskurve. Die Sinusfunktion ist punktsymmetrisch (blau in der Zeichnung) zum
Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1
Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben
Differenzialrechnung. Zusammenfassung. 1 Mathematik Kl. 10 Walahfrid-Strabo-Gymnasium Rheinstetten
Differenzialrechnung Zusammenfassung 1 Mathematik Kl. 10 Walahfrid-Strabo-Gymnasium Rheinstetten 2.1 Funktionen Funktion: jeder reellen Zahl x aus einer Definitionsmenge D wird eine ganz bestimmte Größe,
Voraussetzungen zur Umsetzung des Gruppenpuzzles
Hinführung zu den trigonometrischen Funktionen als Gruppenpuzzle Voraussetzungen zur Umsetzung des Gruppenpuzzles Aufstellen des Differenzenquotienten zur Berechnung der momentanen Steigung mittels der
Grundwissen 10. Überblick: Gradmaß rπ Länge eines Bogens zum Mittelpunktswinkels α: b = α
Grundwissen 0. Berechnungen an Kreis und Kugel a) Bogenmaß Beispiel: Gegeben ist ein Winkel α=50 ; dann gilt: b = b = π 50 0,8766 r r 360 Die (reelle) Zahl ist geeignet, die Größe eines Winkels anzugeben.
Abitur Mathematik Baden-Württemberg 2012
Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)
Schulinterner Stoffverteilungsplan Mathematik. auf der Basis des Schulbuchs EdM (Schroedel) Einführungsphase (G9) Arbeitsfassung Stand
Seite 1 Gymnasium Neu Wulmstorf r Stoffverteilungsplan Mathematik auf der Basis des Schulbuchs EdM (Schroedel) Einführungsphase (G9) Arbeitsfassung Stand 26.04.2018 Vorbemerkung: Da der Kompetenzerwerb
Aufgaben zum Basiswissen 10. Klasse
Aufgaben zum Basiswissen 10. Klasse 1. Berechnungen an Kreisen und Dreiecken 1. Aufgabe: In einem Kreis mit Radius r sei α ein Mittelpunktswinkel mit zugehörigem Kreisbogen der Länge b und Kreissektor
1.2 Einfache Eigenschaften von Funktionen
1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
sfg Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α:
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens b = Fläche des Kreissektors α α 2rπ A = 360 360 πr2 Das Bogenmaß
α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel
Achtung: Das Grundwissen steht im Lehrplan! Tipps zum Grundwissen Mathematik Jahrgangsstufe 10 Folgende Begriffe und Aufgaben solltest Du nach der 10. Klasse kennen und können: (Falls Du Lücken entdeckst,
Ernst Klett Verlag GmbH, Stuttgart 2017 Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch
Ernst Klett Verlag GmbH, Stuttgart 2017 Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch gestattet. Seite 1 Ernst Klett Verlag GmbH, Stuttgart
5 Differenzialrechnung für Funktionen einer Variablen
5 Differenzialrechnung für Funktionen einer Variablen Ist f eine ökonomische Funktion, so ist oft wichtig zu wissen, wie sich die Funktion bei kleinen Änderungen verhält. Beschreibt etwa f einen Wachstumsprozess,
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung
Die Ableitung der Exponentialfunktion Seite 1
Die Ableitung der Exponentialfunktion Seite 1 Kapitel mit 100 Aufgaben Seite WIKI Regeln und Formeln 03 Level 1 Grundlagen Aufgabenblatt 1 (20 Aufgaben) 06 Lösungen zum Aufgabenblatt 1 07 Level 2 Fortgeschritten
marienschule euskirchen
Schulinternes Curriculum Mathematik Sekundarstufe II Einführungsphase (ab Schuljahr 2014/2015) Lehrbuch: Bigalke/Köhler Mathematik Sekundarstufe II, Cornelsen Verlag GTR: TI-82 Stats 1/8 ca. 8 UE sbezogene
Die Summen- bzw. Differenzregel
Die Summen- bzw Differenzregel Seite Kapitel mit Aufgaben Seite WIKI Regeln und Formeln Level Grundlagen Aufgabenblatt ( Aufgaben) Lösungen zum Aufgabenblatt Aufgabenblatt (7 Aufgaben) Lösungen zum Aufgabenblatt
Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 10
RMG Haßfurt Grundwissen Mathematik Jahrgangsstufe 0 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 0 Wissen und Können. Berechnungen am Kreis Bogenmaß Das Bogenmaß ist das zu
Mathematik I Herbstsemester 2018 Kapitel 3: Differentialrechnung
Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 39 3. Differentialrechnung Einführung Ableitung elementarer Funktionen Ableitungsregeln Kettenregel Ableitung
Selbsteinschätzungstest Auswertung und Lösung
Selbsteinschätzungstest Auswertung und Lösung Abgaben: 46 / 587 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: Durchschnitt: 7 Frage (Diese Frage haben ca. 0% nicht beantwortet.) Welcher Vektor
Trigonometrische Funktionen
Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet
Inhaltsverzeichnis. 3 Folgen Achilles und die Schildkröte Grundbegriffe Fraktale... 49
Inhaltsverzeichnis 1 Analytische Geometrie: Geraden 8 1.1 Lineare Gleichungen........................ 8 1.2 Die Hauptform einer linearen Gleichung............. 8 1.3 Wertetabellen............................
Einführung in die Differenzialrechnung. Teil I. Klasse 10 B / Schuljahr 2018 / 19. Deyke
Einführung in die Differenzialrechnung Teil I Klasse 10 B / Schuljahr 2018 / 19 Deyke www.deyke.com Diff_Teil_I.pdf Einführung in die Differenzialrechnung Etwas Wirtschaftsmathematik: Einführung Seite
Urs Wyder, 4057 Basel Funktionen. f x x x x 2
Urs Wyder, 4057 Basel [email protected] Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 1 Schwingungen und Wellen: Einführung in die mathematischen Grundlagen 1.1 Die Sinus- und die Kosinusfunktion Die Sinusfunktion lässt sich genauso wie die Kosinusfunktion
Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: , Seite 1 von 7
Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: 25.11.2014, Seite 1 von 7 Unterrichtswerk: Elemente der Mathematik, Niedersachsen, 10. Schuljahr, Schroedel,
Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang
. Die Momentangeschwindigkeit eines Autos Wir halten in einem s t Diagramm das Anfahren eines Autos fest. Wir nehmen an, dass zwischen Weg und Zeit der einfache Zusammenhang s(t) = t gilt. Im s t Diagramm
KOMPETENZHEFT ZUR TRIGONOMETRIE, II
KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4
Spezielle Klassen von Funktionen
Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als
f(f 1 (w)) = w f 1 (f(z)) = z Abbildung 21: Eine Funktion und ihre Umkehrfunktion
Mathematik für Naturwissenschaftler I 2.8 2.8 Umkehrfunktionen 2.8. Definition Sei f eine Funktion. Eine Funktion f heißt Umkehrfunktion, wenn f (w) = z für w = f(z). f darf nicht mit f(z) = (f(z)) verwechselt
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des
Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben
Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Gymnasium Oberstufe J oder J Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Pflichtteilaufgaben (ohne GTR): Aufgabe : Leite die folgenden
( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )
64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den
Der Differenzenquotient
Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten
B Differenzialrechnung
A Funktionen Seite 1 Abhängigkeiten entstehen... 4 2 Der Funktionsbegriff... 6 3 Lineare Funktionen... 8 4 Lineare Regression... 1 5 Funktionsscharen... 12 6 Betragsfunktionen... 13 7 Potenzfunktionen...
Bezüge zu den Bildungsstandards
Differentialrechnung Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik In Anlehnung an Prof. Dr. Bernd Zimmermanns Seminarpräsentationen Inhalt Bezüge zu den Bildungsstandards
= (Differenzenquotient).
Micael Bulmann Matematik > Analysis > Ableitungen > Änderungsrate Von der mittleren zur momentanen Änderungsrate Für zwei versciedene Punkte P( 1 y 1 und Q( y auf der Zalenebene ergibt sic die Steigung
Differenzialrechnung Was du nach den Ferien kannst! Klasse 10
Differenzialrecnung Was du nac den Ferien kannst! Klasse 10 Zeicne die Tangenten an den Stellen x=-4, x=-1 und x=3 an den abgebildeten Funktionsgrap, und bestimme die Tangentengleicung. Zeicne die Sekanten
Alexander Riegel.
Alexander Riegel [email protected] 2 9 10 Ordinatenachse ( y-achse ) f x Gerade Ordinatenabschnitt f x = 0 Ursprungsgerade Nullstelle f x = x 0 = 0 0 Ursprung (0 0) Abszissenachse ( x-achse ) x f(x 1
Mathematik lernen mit Karteikarten Grundwissen im Berufskolleg II
Aufbau des Kartensatzes Mathematik lernen mit Karteikarten Grundwissen im Berufskolleg II Die Karteikarten orientieren sich am Lehrplan des Berufskollegs II in Baden-Württemberg. Folgende Inhalte sind
Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4
Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte
Crashkurs sin 2 x + 5 cos 2 x = sin 2 x 2 sin x = 3
Crashkurs. Funktion mit Parameter/Ortskurve - Wahlteil Analysis.. Gegeben sei für t > die Funktion f t durch f t (x) = 4 x 4t x 2 ; x R\{}. a) Welche Scharkurve geht durch den Punkt Q( 4)? b) Bestimme
2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks
2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,
II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis
II.1 sin, cos, tan im rechtwinkligen Dreieck und im Einheitskreis 263/1 a) c = 5 cm; 53,13 ; 36,87 b) b = 12 cm; 22,62 ; 67,38 c) a 4,11 cm; b 5,66 cm; = 54 d) c 7,46 cm; b 6,58 cm; = 62 e) c 1631,73 cm;
Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.
Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der
Mathematik lernen mit Karteikarten Grundwissen im Berufskolleg II
Aufbau des Kartensatzes Mathematik lernen mit Karteikarten Grundwissen im Berufskolleg II Die Karteikarten orientieren sich am Lehrplan des Berufskollegs II in Baden-Württemberg. Folgende Inhalte sind
Abitur 2014 Mathematik Infinitesimalrechnung I
Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln
Abitur 2017 Mathematik Infinitesimalrechnung II
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung II Die Abbildung zeigt den Graphen der in R definierten Funktion g : x p + q sin p, q, r N. ( π r x ) mit Gegeben
100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?
Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)
1 Ergänzen Sie für die Funktionen u, v und w mit u (x) = cos (2 x), v (x) = 2 x 2 und w (x) = 9 x 1
Neue Funktionen aus alten Funktionen: Produkt, Quotient, Verkettung Sind die Funktionen u mit u () = und v mit v () = cos () gegeben, so erhält man die Verkettung u v () = u v () dieser beiden Funktionen,
Diese Funktion ist mein Typ!
Diese Funktion ist mein Typ! Überblick über die wichtigsten Funktionstypen der 10.Jgst.: Lineare Funktionen Quadratische Funktionen Ganzrationale Funktionen Gebrochen-rationale Funktionen Trigonometrische
Bogenmaß, Trigonometrie und Vektoren
20 1 Einführung Bogenmaß: Bogenmaß, Trigonometrie und Vektoren Winkel können in Grad ( ) oder im Bogenmaß (Einheit: 1 Radiant, Abkürzung 1 rad) angegeben werden. Dabei gilt 2 rad 360. Die Einheit 1 rad
Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker
REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich
Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung.
Förderaufgaben EF Arbeitsblatt 1 Abgabe 20.1.15 1. Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. 2. Bestimme f (x): a) f(x) = x 3 + 4x 2 x + 1 b) f(x) =
Tangente an die Normalparabel
Tangente an die Normalparabel Am Anfang der von Leibniz und Newton entwickelten Analsis steht das Tangentenproblem. Zunächst: Was ist eine Tangente? P P - - - - Im vorliegenden Fall f() = und der Stelle
Der Funktionsbegri und elementare Kurvendiskussion
Der Funktionsbegri und elementare Kurvendiskussion Christoph Jansen Institut für Statistik, LMU München Formalisierungspropädeutikum 5. Oktober 2016 1 / 24 Allgemeiner Funktionsbegri Eine Funktion f ist
Abitur 2012 Mathematik Infinitesimalrechnung I
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion
Arbeitsblätter Förderplan EF
Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen
Trigonometrische Kurven / Funktionen
Trigonometrische Kurven / Funktionen Teil Eigenschaften der Funktionen sin, cos und tan Verschiebung und Streckung von Sinuskurven Kurvendiskussion ohne Verwendung der Differenzialrechnung Geeignet ab
