Fixpunkte und Stabilitätsanalyse
|
|
|
- Maria Scholz
- vor 9 Jahren
- Abrufe
Transkript
1 Fixpunkte und Stabilitätsanalyse 1
2 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2
3 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme Ohne explizite Lösung Fixpunkte!!! 3
4 1D-Probleme Betrachte Systeme der Form Einfaches Beispiel: Explizite Lösung der DGL mit Separation 4
5 1D-Probleme Stattdessen: Graphische Analyse als Vektorfeld auf x-achse Graphische Darstellung: i. Pfeil nach rechts ii. Pfeil nach links Fixpunkt bei 5
6 1D-Probleme 6
7 1D-Probleme Graphisches Stabilitätskriterium: i. Stabil Pfeile zeigen nach innen ii. Instabil Pfeile zeigen nach außen Quantitative Analyse auch möglich? Lineare Stabilitätsanalyse 7
8 1D-Probleme Ansatz: Taylor d Lösung: 8
9 1D-Probleme Lineares Stabilitätskriterium: i. Stabil ii. Instabil 9
10 1D-Probleme Zurück zum Beispiel Fixpunkt, wenn 10
11 1D-Probleme Zurück zum Beispiel Fixpunkt, wenn instabil stabil 11
12 1D-Probleme Erinnerung: 12
13 1D-Probleme Bemerkung: Was passiert bei? stabil instabil 13
14 1D-Probleme Hier ist halbstabiler Fixpunkt 14
15 Bifurkationen Übersicht: Sattel-Knoten-Bifurkationen Transkritische Bifurkationen Pitchfork-Bifurkationen Superkritische Bifurkationen Subkritische Bifurkationen Nicht perfekte Bifurkationen Beispiele 15
16 Was sind Bifurkationen Bis jetzt: simple 1D-Probleme Dynamik der Vektorfelder sehr eingeschränkt Nun: Abhängigkeit von Parametern Struktur des Verlaufs ändert sich Fixpunkte werden zerstört oder erschaffen Änderungen in der Dynamik heißen Bifurkationen Parameterwerte an denen sie auftreten Bifurkationspunkt Bifurkationen liefern Modelle für Verstärkung und Instabilität 16
17 Sattel-Knoten-Bifurkation Fixpunkte für bei Bei Variation des Parameters bewegen sich Fixpunkte aufeinander zu und annihilieren sich Normalform unterschiedliche Fälle 17
18 Fall 1: 18
19 Fall 2: 19
20 Fall 3: 20
21 Bifurkationsdiagramm 21
22 Transkritische Bifurkationen Es gibt Modelle in denen ein Fixpunkt für alle Parameterwerte existieren muss Dieser Fixpunkt kann jedoch seine Stabilität ändern Für solche Modelle werden transkritische Bifurkationen verwendet Normalform 22
23 Fall 1: 23
24 Fall 2: 24
25 Fall 3: 25
26 Bifurkationsdiagramm 26
27 Pitchfork Bifurkation Modell für Systeme mit Symmetrie Es gibt 2 Arten dieser Bifurkation Superkritische Pitchfork Bifurkation Subkritische Pitchfork Bifurkation 27
28 Superkritische Pitchfork Bifurkation Normalform invariant unter Kubischer Term wirkt stabilisierend 28
29 Fall 1: 29
30 Fall 2: 30
31 Fall 3: 31
32 Bifurkationsdiagramm 32
33 Subkritische Pitchfork Bifurkation Normalform Kubischer Term ist hier nicht mehr stabilisierend treibt Funktion andere Normalform für stabile Funktionen System invariant für erster stabilisierender Term ist neue Normalform 33
34 Bifurkationsdiagramm für instabile Bifurkation 34
35 Bifurkationsdiagramm für stabile Bifurkation 35
36 Wichtiges zur stabilen Bifurkation Für koexistieren zwei stabile Zustände Welcher Fixpunkt für angenommen wird, ergibt sich aus der Anfangsbed. Daher ist der Fixpunkt im Ursprung gegen kleine Störungen stabil, nicht jedoch gegen große der Ursprungsfixpunkt ist nur lokal stabil 36
37 Wichtiges zur stabilen Bifurkation Die Existenz von versch. stabilen Zuständen ermöglicht Sprünge und Hysteresen 37
38 Nichtperfekte Bifurkationen Normalerweise Systeme nicht perfekt symmetrisch, sondern nur näherungsweise Diese Syteme haben Unvollkommenheiten Betrachte hierzu : Für Für liegt normale Symmetrie vor liegt Symmetriebrechung vor Analyse hier deutlich schwieriger aufgrund zweier unabhängiger Parameter 38
39 Analyse der Fixpunkte graphischer Ansatz: Plotte in ein Koordinatensyst. Suche nach Schnittpunkten Schnittpunkte sind Fixpunkte 39
40 Analyse der Fixpunkte Kritischer Fall: Gerade ist Tangente an Extrempunkt Dann: Sattel-Knoten-Bifurkation Suche Werte für h an denen Bifurkation auftritt: Für den Wert am lokalen Maximum gilt: Sattel-Knoten-Bifurkation tritt auf, wenn 40
41 Analyse der Fixpunkte 41
42 Analyse der Fixpunkte Bifurkationsdiagramme von für festes 42
43 Analyse der Fixpunkte Bifurkationsdiagramme von für festes 43
44 Kurze Anmerkung zu Katastrophen Spitzenkatastrophe 44
45 Beispiel : Populationsentwicklung Hier: Falterart aus Kanada Modell bedient sich der Trennung von Zeiträumen Population wächst schnell (char. Zeitraum: Monate) Bäume wachsen langsam (char. Zeitraum Jahre) Bei Betrachtung der Populationsentwicklung können also die Waldvariablen konstant angenommen werden 45
46 Populationsentwicklung Für die Population gilt: wächst logistisch mit Wachstumsrate und Tragfähigkeit (hierbei fest) (Todesrate aufgr. von Raubtieren) wächst logistisch 46
47 Populationsentwicklung Hier Untersuche Modell nun auf einen sog.ausbruch 47
48 Dimensionlose Formulierung 48
49 Analyse der Fixpunkte Erster Fixpunkt bei (immer instabil) Weitere Fixpunkte durch Lösung von 49
50 Analyse der Fixpunkte 50
51 Bifurkationskurven errechnen Wir untersuchen Kurven im für die eine Sattel-Knoten-B. vorliegt Wir können jedoch die Parameter nicht als Funktion voneinander ausdrücken Wähle Parametrisierung 51
52 Bifurkationskurven errechnen Für S-K-B müssen erfüllt sein: Einsetzen von (3) in (1) liefert: Einsetzen von (4) in (3) liefert: Bifurkationskurven sind (5) und (4) 52
53 Bifurkationskurven 53
54 2D-Probleme Betrachte nun nichtlineare Probleme vom Typ Fixpunkte dann gegeben durch 54
55 2D-Probleme baut Phasenebene auf ist dann Vektorfeld auf der Phasenebene 55
56 2D-Probleme Erst lineare Systeme untersuchen! Allgemeine Lösung: Schreibe Mit und 56
57 Sattelpunkt 57
58 Knoten : Stabil : Instabil 58
59 Periodische Lösung 59
60 Spirale : stabil : instabil 60
61 Sonderfall: Stern-Knoten 61
62 Sonderfall: Entarteter-Knoten 62
63 Zusammenfassung Was haben wir bisher gelernt? Fixpunkte zur Betrachtung der Dynamik Stabilität graphisch oder analytisch bestimmen Graphisch: Vektorflusses visualisieren Analytisch: Lineare Stabilitätsanalyse In 2D viel mehr Möglichkeiten als in 1D 63
64 Lotka-Volterra-Modelle Beschreiben Wechselwirkung von mehreren Populationen Beispiel: Räuber-Beute-Problem Populationszahlen: (Beute), (Räuber) Ungestörte Wachstumsrate: Begegnung Räuber-Beute: 64
65 Lotka-Volterra-Modelle Insgesamt also: Betrachte die Dynamik mit Mathematica! 65
66 Quellenverzeichnis Strogatz, Steven H. (1994): Nonlinear Dynamics and Chaos. Massachusetts Suter, Dieter (2010): Skript zur Vorlesung Analytische Mechanik. [cited ]. _Chaos.pdf [cited ] mik) 66
Bifurkationstheorie. 1. Verzweigungen stationärer Zustände
Bifurkationstheorie 1. Verzweigungen stationärer Zustände Die Lage, Anzahl und Stabilität der stationären Zustände von nichtlinearen Systemen hängt in der Regel noch von bestimmten Systemparametern ab.
Synchronisation in Natur und Technik
Am Beispiel des Kuramoto-Modells Jan Baumbach Christoph Schöler Christian Barthel 2 Inhalt 1. Einleitung 2. Kuramoto-Modell 3. Simulation und Ergebnisse 3 Die Motivation Das Phänomen Synchronisation tritt
Diskrete Populationsmodelle für Einzelspezies
Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle
Flüsse, Fixpunkte, Stabilität
1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher
Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit
Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.
Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert
Poincaré-Schnitte Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Themen 1. Was sind Poincaré-Schnitte?. Anwendung: Poincaré-Schnitte Mathematica-Beispiel: Attraktor
Diskrete Populationsmodelle für Einzelspezies - Teil 2
Diskrete Populationsmodelle für Einzelspezies - Teil 2 Laura Gemmel 30.10.2012 Literatur, die verwendet wurde: J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Inhaltsverzeichnis
6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität
6.1 Beispiele dissipativer Systeme Der Duffing Ozillator z.b. für (Ueda Oszillator) Potential Bewegungsgleichung: Nichtlinearität nur zwei Parameter Kartierung des Verhaltens in der (f,r)- Ebene äußerst
Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017
Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017 Dozent: Dr. M. V. Barbarossa ([email protected]) Vorlesung+ Übung: Mo/Mi/Fr. 8:15-9:45Uhr, SR 1, INF 205 Termin
Nichtlineare Dynamik Einführung
Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische
Einfache Modelle der Populationsdynamik
Vorlesung 4. Einfache Modelle der Populationsdynamik Wintersemester 215/16 1.11.215 M. Zaks allgemeine vorbemerkungen In kleinen Populationen schwanken die Bevolkerungszahlen stochastisch: Geburt/Tod von
System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:
C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art
Wettbewerbs- und Symbiose-Modelle Von Jakob Foss
Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbsmodell Das einfachste Wettbewerbsmodell für zwei Spezies lässt sich aus dem Lotka- Volterra Modell ableiten und sieht folgendermaßen aus: dn1
Nichtlineare Dynamik in biologischen Systemen
Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik 29. August 2006 11 Nichtlineare Dynamik in biologischen Systemen Erster Gutachter: Prof. Dr. Wolfgang Oehme, Universität
Dynamik hüpfender Bälle
1 Dynamik hüpfender Bälle Proseminar: Theoretische Physik Florian Döhle 2. Juli 2014 2 Video Chaotische Bewegung Video Periodische Bewegung 3 Gliederung 1 Motivation 2 Aufstellen und Fixpunktanalyse der
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:
Dynamische Systeme eine Einführung
Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 3. Übung/Lösung Mathematik für Studierende der Biologie
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: [email protected] Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:
Kleine Schwingungen vieler Freiheitsgrade
Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:
Fronten von Reaktions-Diffusions-Gleichungen
Technische Universität Berlin Fronten von Reaktions-Diffusions-Gleichungen Technische Universität Berlin Fakultät II - Mathematik und Naturwissenschaften Markus Osenberg Magnus Happach Inhalt Motivation
Feigenbaum, Chaos und die RG
Feigenbaum, Chaos und die RG 9. Juli 27 Lara Becker Bildquelle: [7] Nichtlineare Systeme und Chaos nichtlineare Systeme in letzter Zeit wieder reges Forschungsgebiet Ermöglichung der Untersuchung nicht-integrabler
Kleine Schwingungen vieler Freiheitsgrade
Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen
Eigenschaften von Funktionen
Eigenschaften von Funktionen Mag. Christina Sickinger HTL v 1 Mag. Christina Sickinger Eigenschaften von Funktionen 1 / 48 Gegeben sei die Funktion f (x) = 1 4 x 2 1. Berechnen Sie die Steigung der Funktion
PROBEPRÜFUNG MATHEMATIK I UND II
PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant
Ökologische Gleichungen für zwei Spezies
Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der
Modellbildung und Simulation, Kap (S ) 10 Zwei-Spezies-Modelle
Erratum zu Modellbildung und Simulation, Kap. 1.3 (S. 256 261) 1 Zwei-Spezies-Modelle Interessanter als einzelne Populationen sind Modelle mit mehreren Arten, die miteinander in Wechselwirkung stehen,
Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik
e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann
Systemtheorie Vorlesung 6: Lösung linearer Differentialgleichungen Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Viele technischen Anwendungen lassen sich zumindest näherungsweise
Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen:
Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen: Aufgabe I Gegeben sind die Schaubilder und die Funktionsterme zweier Funktionen f und g: 4 2 f ( x) = x x + 8
Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79
Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine
Stetige Populationsmodelle
Stetige Populationsmodelle Christof Straßer Autor: J.D.Murray Titel: Mathematical Biology 31.01.01 James Dickson Murray Geb.: 0.01.1931 Professor Emeritus Oxford u. Washington Bereich biologische und biomedizinische
5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation
5.5. Prüfungsaufgaben zur graphischen Integration und Differentiation Aufgabe : Verschiebung und Streckung trigonometrischer Funktionen (5) a) Bestimmen Sie die Periode p sowie die Nullstellen der Funktion
Polynome. Ein Term der Form. mit n und a 0 heißt Polynom. Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms.
Polynome Ein Term der Form a x + a x + a x + a x +... + a x + a x + a n n 1 n 2 n 3 2 1 2 3 4 n 2 n 1 n mit n und a 0 heißt Polynom. 1 Die Zahlen a, a, a,... heißen Koeffizienten des Polynoms. 1 2 3 Als
Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Lineare Algebra und analytische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben
Biologische Oszillatoren und Schalter - Teil 1
Biologische Oszillatoren und Schalter - Teil 1 Elena Süs 11.12.2012 Literatur: J.D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Gliederung 1 Motivation 2 Historische Entwicklung
3. Übung zur Vorlesung Steuer- und Regelungstechnik
3. Übung zur Vorlesung Steuer- und Regelungstechnik Linearisierung Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München
Stabilitätsfragen bei autonomen Systemen
1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität
Differenzialgleichungen
Differenzialgleichungen 1.1 Gewöhnliche DGL 1. Ordnung 1.2 Separable DGL 1.3 Lineare DGL 1.4 Bernoulli-DGL 1.5 Riccati-DGL 1.6 Lösen von DGL durch Substitution & Transformation Differenzialgleichungen
Prüfung zur Vorlesung Mathematik III
Dr. A. Caspar ETH Zürich, August 2013 Prof. N. Hungerbühler HST, Lehrdiplom D-MATH Prüfung zur Vorlesung Mathematik III Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle
Fibonacci Zahlen: 3. Hamiltonsche Systeme. 3.1 Hamilton Dynamik. Teilverhältnis beim `goldenen Schnitt : definiert als. mit
Fibonacci Zahlen: definiert als Bemerkungen: (1) ist das Teilverhältnis beim `goldenen Schnitt : mit A T B und (2) Alle Zahlen, deren Darstellung als Kettenbruch auf endet, heißen `noble Zahlen. (3) Entwicklung
- 1 - angeführt. Die Beschleunigung ist die zweite Ableitung des Ortes x nach der Zeit, und das Gesetz lässt sich damit als 2.
- 1 - Gewöhnliche Differentialgleichungen Teil I: Überblick Ein großer Teil der Grundgesetze der Phsik ist in Form von Gleichungen formuliert, in denen Ableitungen phsikalischer Größen vorkommen. Als Beispiel
Nullstellen von algebraischen Gleichungen
Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar
g 2 g 1 15/16 I Übungen 2 EF Be Sept. 15 p 1 p 2
15/16 I Übungen EF Be Sept. 15 Nr. 1: a) Funktion oder Relation? Welcher Graph gehört zu einer Funktion, welcher nicht? Begründe Deine Antwort kurz. a) und d) sind keine Funktionen, da die Zuordnungen
C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: Ort: Geschwindigkeit:
C7 Differentgleichungen (DG) C7.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) [Stoffgliederung im Skript für Kapitel
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.
Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:
Probestudium der Physik 2011/12
Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.
Beispiel: Rollender Reifen mit
Beispiel: Rollender Reifen mit Kinetische Energie: Trägheitsmoment Potenzielle Energie: Zwangsbedingung: konstant nicht-gleitendes Rollen, holonome ZB Erweiterte Lagrange-Fkt.: t-abhängig: Interpretation:
Exkurs: Method of multiple scales (Mehrskalen Methode)
Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische
Starrer Körper: Drehimpuls und Drehmoment
Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und
Systemanalyse und Modellbildung
Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 7. Zeitdiskrete Modelle 7.1
Zusammenfassung Mathematik 2012 Claudia Fabricius
Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-
Die Maximum-Likelihood-Methode
Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft
Symmetrien, gerade und ungerade Funktionen
Symmetrien, gerade und ungerade Funktionen Wir Menschen fühlen uns von Symmetrien angezogen. 1-E1 1-E2 Vorausgesetzte Kenntnisse Definition einer Funktion, einer Relation, des Definitionsbereiches einer
SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle
Universität Koblenz-Landau Fachbereich 7: Natur-und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) SYSTEMANALYSE 2 Kapitel 7: Zeitdiskrete Modelle 1. Zeitdiskrete
Kurvendiskussion. Gesetzmäßigkeiten. Lineare Funktionen. Funktionsgleichung
Kurvendiskussion Gesetzmäßigkeiten Lineare Funktionen Funktionsgleichung y = mx + c m: Steigung c: y-achsenabschnitt (Funktionswert für y, bei dem der Graph die y-achse schneidet Beispiel : y = x 3 mit
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
Beschränktheit, Monotonie & Symmetrie
Beschränktheit, Monotonie & Symmetrie ein Referat Dies ist eine Beilage zum Gruppen-SOL - Projekt Potenz- & Exponentialfunktionen Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch November 2015 Inhaltsverzeichnis
durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t
5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N
Kurvendiskussion von Funktionsscharen
Kurvendiskussion von Funktionsscharen Die Untersuchung von Funktionsscharen unterscheidet sich nicht von der Untersuchung von normalen Funktionen. Einzig die Bestimmung der Ortskurven von Extremstellen
Geben Sie an, welche dieser vier Funktionen im gesamten Definitionsbereich monoton steigend sind, und begründen Sie Ihre Entscheidung!
Aufgabe 3 Funktionen vergleichen Gegeben sind vier reelle Funktionen f, g, h und i mit den nachstehenden Funktionsgleichungen: f() = 3 mit g() = 3 mit h() = 3 mit i() = sin(3) mit Geben Sie an, welche
Deterministisches Chaos
Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend
Kurvenintegral, Tangenten
Vorzeigeaufgaben: HS10 Aufgabe 2 WS05/06 Aufgabe 1a+b HS11 Aufgabe 2: falls Zeit am Ende vom Kursblock 1, ansonsten als Hausaufgabe. Empfohlene Bearbeitungsreihenfolge: HS09 Aufgabe 1 HS08 Aufgabe 3 HS12
3. Übung zur Vorlesung Steuer- und Regelungstechnik
3. Übung zur Vorlesung Steuer- und Regelungstechnik Linearisierung Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München
Wachstum mit oberer Schranke
1 1.1 exponentielles Wir haben das eines Kontos mit festem Zinssatz untersucht. Der jährliche Zuwachs (hier die Zinsen) sind proportional zum Bestand (hier dem jeweiligen Kontostand). Die Annahme, daß
1 Nicht-lineare dynamische Systeme
1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:
Mathematische Methoden in der Systembiologie WS 2017/2018
Mathematische Methoden in der Systembiologie WS 2017/2018 Dozent: Dr. M. V. Barbarossa ([email protected]) Tutor: M.Sc. D. Danciu ([email protected]) /Übung: Di.+Do. 9:15-10:45Uhr,
Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung
TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
a) Bestimmen Sie rechnerisch die Koordinaten und die Art der Extrempunkte von G. Betrachtet wird die Gleichung
Analysis Aufgabe 1.1 Gegeben ist die Funktion f mit 1 3 2 f x x 4 3x 9x 5 und G f Definitionsmenge IR. Die Abbildung zeigt den Graphen von f. a) Bestimmen Sie rechnerisch die Koordinaten und die Art der
5. Zustandsgleichung des starren Körpers
5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch
Jan Henrik Sylvester. 10. Februar 2003
Seminar über gewöhnliche Differentialgleichungen Chaos in eindimensionalen diskreten dynamischen Systemen: Das Feigenbaum-Szenario Die logistische Abbildung Jan Henrik Sylvester 10. Februar 2003 1 Die
Iterationsverfahren und Stabilitätsuntersuchung
1 FÜR INTERESSIERTE! NICHT TESTRELEVANT 1! Iterationsverfahren und Stabilitätsuntersuchung Unter Iterationsverfahren versteht man rekursive numerische Methoden mit welchen auch analytisch nicht lösbare
Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung
Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte
Quadratische Funktionen
Lernlandkarte Quadratische Funktionen Achsenschnittpunkte y-achsenabschnitt: = Allgemeine Parabelgleichung = + + Nullstellen: = p-q-formel + + = 0 / = ± Öffnung, Dehnung, Stauchung Aufstellen der Funktionsgleichung
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 1.08.016 Kurvendiskussion Vorbetrachtungen Um den Graphen einer Funktion zeichnen und interpretieren zu können, ist es erforderlich einiges über markante Punkte
Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.
Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
Differentialgleichungen
Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:
ANALYSIS. 3. Extremwertaufgaben (folgt)
ANALYSIS 1. Untersuchung ganzrationaler Funktionen 1.1 Symmetrie 2 1.2 Ableitung 2 1.3 Berechnung der Nullstellen 3 1.4 Funktionsuntersuchung I 4 1.5 Funktionsuntersuchung II 6 2. Bestimmung ganzrationaler
