Ökologische Gleichungen für zwei Spezies

Größe: px
Ab Seite anzeigen:

Download "Ökologische Gleichungen für zwei Spezies"

Transkript

1 Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4

2 Inhaltsverzeichnis 1 Satz von der Jordan schen Kurve 2 Lotka-Volterra-Regeln Lotka-Volterra-Gleichungen in einer Dimension Satz von Poincaré-Bendixson Lotka-Volterra-Gleichungen in zwei Dimensionen 3 Attraktoren und Grenzzyklen Beispiel zur Anschauung 4 Stabilitätstheorie in dynamischen Systemen Betrachtung der Stabilität von Fixpunkten Satz von Hopf 5 Fazit

3 Satz von der Jordan schen Kurve Jede geschlossene Jordankurve in der euklidischen Ebene zerlegt diese in zwei disjunkte Gebiete, deren Rand die Kurve ist. Genau eines dieser Gebiete ist beschränkt, das Innere. wichtiger Satz der Topologie - hier im R 2 Jordankurve = Kurve mit gleichem Anfangs- und Endpunkt Vereinigung von Innerem und Äußerem = euklidische Ebene

4 Folgerung 1: Zwei Punkte im Inneren können so verbunden werden, dass ihre Verbindung nie die Jordankurve schneidet. Folgerung 2: Jede Verbindung zwischen Innerem und Äußerem schneidet immer die Jordankurve. Abbildung:

5 Lotka-Volterra-Regeln Zur Erinnerung: Regel 1 - Periodische Populationsschwankung: Räuber- und Beuteanzahl schwanken periodisch. Phasenverschiebung Abbildung: upload.wikimedia.org/wikipedia/.../800px-lotkavolterra.svg.png

6 Regel 2 - Konstanz der Mittelwerte: Mittelwerte sind konstant. Mittelwerte sind konstant. Abhängigkeit nur von Parametern, nicht von Anfangswert. Regel 3 - Störung der Mittelwerte: Verringerung beider Populationen = kurzfristige Zunahme der Beute und Abnahme der Räuber.

7 Lotka-Volterra-Gleichungen in einer Dimension Zur Wiederholung: Lotka-Volterra-Gleichungen in einer Dimension Lösungen: Triviale Lösung: P (0, 0) ( e Gleichgewicht: F d a), c ẋ = x (a c y), ẏ = y ( d + e x). Trajektorie: d y e ln y + c x + a ln x = const.

8 Bedeutung: Lotka-Volterra-Gleichungen in einer Dimension Koeffizienten: ẋ = x (a c y), ẏ = y ( d + e x). a : Fortpflanzungsrate Beute c : Fressrate Räuber pro Beute = Sterberate Beute pro Räuber d : Sterberate Räuber e : Fortpflanzungsrate Räuber pro Beute

9 Abbildung: upload.wikimedia.org/wikipedia/de/a/a4/jäger-beute_1.jpg

10 Zum Verständnis weiterer Sätze müssen wir einige Begriffe einführen: Die Menge O f (x 0 ) = {f n (x 0 ) n 0} heißt positiver Halborbit für den Punkt x 0. Ist dabei f (x) eine injektive Funktion, kann man auch vom negativen Orbit bzw. allgemein dem Orbit sprechen.

11 Abbildung: upload.wikimedia.org/wikipedia/de/a/a4/jäger-beute_1.jpg

12 Zum Verständnis weiterer Sätze müssen wir einige Begriffe einführen: Die Menge O f (x 0 ) = {f n (x 0 ) n 0} heißt positiver Halborbit für den Punkt x 0. Ist dabei f (x) eine injektive Funktion, kann man auch vom negativen Orbit bzw. allgemein dem Orbit sprechen. Ein Punkt x 0 heißt kritischer Punkt, Ruhelage oder Gleichgewichtslage des von f (x) induzierten dynamischen Systems, falls x 0 = f (x 0 ) =... = f n (x 0 ).

13 Zum Verständnis weiterer Sätze müssen wir einige Begriffe einführen: Die Menge O f (x 0 ) = {f n (x 0 ) n 0} heißt positiver Halborbit für den Punkt x 0. Ist dabei f (x) eine injektive Funktion, kann man auch vom negativen Orbit bzw. allgemein dem Orbit sprechen. Ein Punkt x 0 heißt kritischer Punkt, Ruhelage oder Gleichgewichtslage des von f (x) induzierten dynamischen Systems, falls x 0 = f (x 0 ) =... = f n (x 0 ). Für einen periodischen Punkt x 0 existiert ein periodischer Orbit der Länge n. Dieser ist gegeben durch: O f (x 0 ) = {x 0, f (x 0 ),..., f n 1 (x 0 )}.

14 Abbildung: upload.wikimedia.org/wikipedia/de/a/a4/jäger-beute_1.jpg

15 Zum Verständnis weiterer Sätze müssen wir einige Begriffe einführen: Die Menge O f (x 0 ) = {f n (x 0 ) n 0} heißt positiver Halborbit für den Punkt x 0. Ist dabei f (x) eine injektive Funktion, kann man auch vom negativen Orbit bzw. allgemein dem Orbit sprechen. Die Menge der Häufungspunkte des positiven Halborbits bezeichnet man als ω-limesmenge.

16 Abbildung: upload.wikimedia.org/wikipedia/de/a/a4/jäger-beute_1.jpg

17 Satz von Poincaré-Bendixson Sei im Folgenden ẋ = f (x) dynamisches System und ω(x) eine nichtleere, kompakte ω -Limesmenge. Falls die Limesmenge ω(x) keinen kritischen Punkt (Gleichgewicht) enthält, so ist sie gerade ein periodischer Orbit.

18 Satz von Poincaré-Bendixson Sei im Folgenden ẋ = f (x) dynamisches System und ω(x) eine nichtleere, kompakte ω -Limesmenge. Falls die Limesmenge ω(x) keinen kritischen Punkt (Gleichgewicht) enthält, so ist sie gerade ein periodischer Orbit. Fragen: Warum folgt der Satz von Poincaré-Bendixson direkt aus dem Theorem über Jordan sche Kurven? Direkte Folgerung: Wann ist die Limesmenge ω(x) kein periodischer Orbit?

19 Lotka-Volterra-Gleichungen in zwei Dimensionen Berücksichtigung von Konkurrenztermen quadratischer Art: Begründung: ẋ = x (a b x c y), ẏ = y ( d + e x f y). Annahme: Wachstumsrate abhängig von Kapazitätsgrenze, logistisches Bevölkerungsverhalten (Fortpflanzung vs. Verhungern), theoretische Biologie: nachwachsende Biozönose (Konkurrenzgleichungen).

20 Lösungen: Triviale Lösung: P(0, 0), ẋ = x (a b x c y), Gleichgewicht: ( b c e f ( ) x = = ẏ = y ( d + e x f y). y ) ( x 1 b f c e y ) ( ) a = d ), ( f a + c d e a + b d Trajektorie: e (x x ln x) c (y y ln y) = const.

21 Abbildung:

22 Attraktoren und Grenzzyklen Zwei weitere Definitionen zur Untersuchung der Kurven: Ein periodischer Orbit γ ist ein Attraktor, wenn die Limesmenge ω (x) für alle x in Nähe von γ gleich dem periodischen Orbit ist. (ω (x) = γ). Ein periodischer Orbit γ ist ein Grenzzyklus, wenn die Limesmenge ω (x) für mindestens ein x, das nicht im periodischen Orbit γ enthalten ist, trotzdem ein periodischer Orbit ist. (ω (x) = γ)

23 Beispiel Der Einheitskreis ist ein peridodischer Attraktor für: ẋ = x y x (x 2 + y 2 ), ẏ = x + y y (x 2 + y 2 ). V (x, y) = (1 x 2 y 2 ) 2 ist die Lyapunov-Funktion!

24 Betrachte zunächst Lyapunov-Funktion: V (x, y) = (1 x 2 y 2 ) 2 Diese hat folgende Richtungsableitungen: V x V y = 2 2x (1 x 2 y 2 ), = 2 2y (1 x 2 y 2 ). (Trivialer) instabiler Fixpunkt P(0, 0), stablie Fixpunktmenge: Einheitskreis x 2 + y 2 = 1.

25

26 Benutze die Lyapunow-Funktion, um die Lösungen zu untersuchen: Es ergibt sich: Lösungen: ẋ = x y x (x 2 + y 2 ), ẏ = x + y y (x 2 + y 2 ). ẋ = y ẏ = x f (t) = (c 1 sin(t) + c 2 cos(t), c 1 cos(t) c 2 sin(t)).

27

28 Stabilitätstheorie in dynamischen Systemen Betrachte im Folgenden ẋ = f (x) mit Fixpunkt x 0. x 0 heißt Lyapunov-stabil, wenn ɛ > 0 δ > 0 : t > 0 x (t) mit x (0) x 0 < δ gilt: x (t) x 0 < ɛ. x 0 heißt stabil, wenn die Kriterien nach Lyapunow erfüllt sind: 1 x 0 ist Fixpunkt des Systems, 2 V (x, y) ist Lyapunov-Funktion für f (x), 3 Die Art der Stabilität hängt von der Ableitung der Lyapunov-Funktion ab.

29 x 0 heißt stabil, wenn die Kriterien nach Lyapunow erfüllt sind: 1 x 0 ist Fixpunkt des Systems, 2 V (x, y) ist Lyapunov-Funktion für f (x), 3 Die Art der Stabilität hängt von der Ableitung der Lyapunov-Funktion ab. Der Fixpunkt ist stabil, wenn gilt: Die Lyapunov-Funktion V (x, y) besitzt in x 0 ein lokales Minimum. Falls nicht: kein Fixpunkt Trajektorie divergiert (chaotisch). Die Begründung, warum sich die Kurven an Fixpunkten so verhalten, liefert nun der Satz von Hopf.

30 Betrachtung der Stabilität von Fixpunkten Sei ẋ = f µ (x) Familie von Differentialgleichungen mit Parameter µ [ ɛ, ɛ]. Betrachte nun die Jacobimatrix J µ : Für zwei Eigenwerte gelte: α(µ) ± i β(µ) Alle weiteren Eigenwerte haben einen negativen Realteil. Untersuche nun das Verhalten der Kurve in Abhängigkeit von µ:

31 Im Im Im I I Re Re Re J1,=O Abbildung: Hofbauer, Sigmund: Evolutionary Games and Population Dynamics, Cambridge, S.39

32 Satz von Hopf Unter den o.g. Bedingungen ist der Fixpunkt stabil für µ < 0, instabil für µ > 0, der Fixpunkt ist dabei umgeben von einem periodischen Attraktor. Es entsteht eine stabile Oszillation um den kreisförmigen Attraktor. Der komplex konjugierte Eigenwert bewirkt auf die Kurve bzgl. ihres Fixpunktes eine Anziehung für µ < 0, Abstoßung für µ > 0.

33 Fazit Dynamische Systeme theoretische Biophysik, Verhalten von Trajektorien für unterschiedliche Systeme, Systemgrenzverhalten: Attraktoren und Grenzzyklen, Systempotenzial nach Lyapunow als Indikator, Verhalten von Bahnkurven: Limesmenge als Anzeige der Konvergenz/Divergenz, Verhalten an Fixpunkten: Attraktion oder Abstoßung?

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011 Asymmetrische Spiele Eric Barré 13. Dezember 2011 Gliederung 1 Einführung Allgemeines Definition Begründung Nash-Gleichgewicht 2 Kampf der Geschlechter Allgemein Auszahlungsmatrix Nash-Gleichgewicht Beispiel

Mehr

den Satz von Poincaré-Bendixson.

den Satz von Poincaré-Bendixson. Seminar zu Geometrie der Gewöhnlichen Differentialgleichungen Der Satz von Poincaré-Bendixson bearbeitet von Rodrigo Menendez Zusammenfassung Fragen des Langzeitverhaltens und der Stabilität spielen in

Mehr

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t 5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N

Mehr

Gleichgewichte von Differentialgleichungen

Gleichgewichte von Differentialgleichungen Gleichgewichte von Differentialgleichungen Gleichgewichte von Differentialgleichungen Teil 1 Zur Erinnerung: Zur Erinnerung: Wir hatten lineare Differentialgleichungen betrachtet: in R 1 : Zur Erinnerung:

Mehr

Beispiel: Evolution infizierter Individuen

Beispiel: Evolution infizierter Individuen Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie

Mehr

Vorwissen Lineare Modelle zweier Bevölkerungen

Vorwissen Lineare Modelle zweier Bevölkerungen Reiser Stephan 1 Ablauf Vorwissen Lineare Modelle zweier Bevölkerungen Das Konkurrenzmodell von Volterra Ein allgemeineres Konkurrenzmodell Periodische Bahnen für die allgemeine Volterra-Lotka- Gleichung

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak Populations Modelle Das Lotka-Volterra Model Robin Gwinner Seminarleiterin: Dr. Iryna Rybak 04.05.2016 Motivation Rote Liste: Motivation Rote Liste: Motivation Rote Liste: Motivation Motivation Motivation

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Logistische Gleichung

Logistische Gleichung Logistische Gleichung Marius Bohn Fakultt6.1MathematikderUniversittSaarbrcken 22.11.2011 Marius Bohn (Universität Saarbrücken) Logistische Gleichung 22.11.2011 1 / 37 Übersicht Bei der Untersuchung von

Mehr

Katalytische Hyperzyklen

Katalytische Hyperzyklen Katalytische Hyperzyklen Lara Münster 20.12.2011 Literatur: Hofbauer J., Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press: Cambridge Katalytische Hyperzyklen 1

Mehr

Seltsame Attraktoren

Seltsame Attraktoren 1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?

Mehr

Fraktale und Beispiele aus der Physik

Fraktale und Beispiele aus der Physik Fraktale und Beispiele aus der Physik Anschauung Warum beschäftigen Fraktale (auch) Naturwissenschaftler? kurze Wiederholung Konkretes Beispiel: Magnetpendel Das Experiment Mathematische Beschreibung Trajektorien

Mehr

Motivation. Motivation 2

Motivation. Motivation 2 Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis

Mehr

Stabilität von n-spezies Gemeinschaften

Stabilität von n-spezies Gemeinschaften Stabilität von n-spezies Gemeinschaften Julia Klein 20.12.2011 Joseph Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Kap.15 Übersicht 1 Einführung 2 Mutualismus und M-Matrizen 3

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

5. Vorlesung Wintersemester

5. Vorlesung Wintersemester 5. Vorlesung Wintersemester 1 Bewegung mit Stokes scher Reibung Ein dritter Weg, die Bewegungsgleichung bei Stokes scher Reibung zu lösen, ist die 1.1 Separation der Variablen m v = αv (1) Diese Methode

Mehr

Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016

Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Probeklausur: Nichtlineare Regelungssysteme 1 Sommer 2016 Hörsaal 2 Montag, den 08. 08. 2016 Beginn: 10.00 Uhr Bearbeitungszeit: 120

Mehr

Lösungsskizzen zur Klausur

Lösungsskizzen zur Klausur sskizzen zur Klausur Mathematik II Sommersemester 4 Aufgabe Es seien die folgenden Vektoren des R 4 gegeben: b = b = b 3 = b 4 = (a) Prüfen Sie ob die Vektoren b b 4 linear unabhängig sind bestimmen Sie

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Evolutionär stabile Strategien

Evolutionär stabile Strategien Evolutionär stabile Strategien Thomas Luxenburger 06.12.2011 LITERATUR: Josef Hofbauer, Karl Sigmund: Evolutionary Games and Population Dynamics, Kapitel 6: Evolutionary stable strategies Gliederung 1

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

Fixpunkte und Stabilitätsanalyse

Fixpunkte und Stabilitätsanalyse Fixpunkte und Stabilitätsanalyse 1 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

Bimatrix-Spiele. Sarah Hidlmayer

Bimatrix-Spiele. Sarah Hidlmayer Bimatrix-Spiele Sarah Hidlmayer 13.12.2011 Literatur: Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics (Ch. 11), Cambridge. Bimatrix-Spiele 1 Dynamik für Bimatrix-Spiele 2 Partnerschaftsspiele

Mehr

Rand der Fläche = Linie. suggestive Notation. "Zirkulation pro gerichteter Fläche" Vorschau: Eine komplexe Funktion sei nur von der Kombination

Rand der Fläche = Linie. suggestive Notation. Zirkulation pro gerichteter Fläche Vorschau: Eine komplexe Funktion sei nur von der Kombination Zusammenfassung: Satz von Stokes Satz v. Stokes: Flussintegral der Rotation = Linienintegral Fläche Rand der Fläche = Linie Symbolisch: suggestive Notation Geometrische Definition der Rotation: "Zirkulation

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Räuber-Beute-Modelle, Auslese/Schwellensatz

Räuber-Beute-Modelle, Auslese/Schwellensatz Räuber-Beute-Modelle, Auslese/Schwellensatz Mareike Franz und Brigitte Steinhauser 15. Dezember 2008 1 / 37 1 Räuber-Beute-Modelle 2 Prinzip der Auslese durch Wettbewerb 3 Schwellensatz der Epidemiologie

Mehr

Unterricht 13: Wiederholung.

Unterricht 13: Wiederholung. , 1 I Unterricht 13: Wiederholung. Erinnerungen: Die kleinen Übungen nden diese Woche statt. Zur Prüfung müssen Sie Lichtbildausweis (Personalausweis oder Reisepass) Studierendenausweis mitbringen. I.1

Mehr

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt.

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. 11. Nichtlineare Dynamik und Chaos Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. der Auslenkung Fadenlänge L, Masse m, Auslenkwinkel φ Rücktreibende Kraft: Beschleunigung:

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

FC3 - Duffing Oszillator

FC3 - Duffing Oszillator FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme

Mehr

Von der Schönheit des mathematischen Chaos. Eine Einführung in Seltsame Attraktoren mit jreality

Von der Schönheit des mathematischen Chaos. Eine Einführung in Seltsame Attraktoren mit jreality Von der Schönheit des mathematischen Chaos Eine Einführung in Seltsame Attraktoren mit jreality Inhalt Physikalische Grundlagen Definition Eigenschaften Beispiele Implementierung Demonstration Physikalische

Mehr

3 Das n-dimensionale Integral

3 Das n-dimensionale Integral 3 Das n-dimensionale Integral Ziel: Wir wollen die Integrationstheorie für f : D R n R entwickeln. Wir wollen den Inhalt (beziehungsweise das Maß ) M einer Punktmenge des R n definieren für eine möglichst

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

Modelle mit zwei Zustandsgrößen Seminar für Lehramt Mathematik

Modelle mit zwei Zustandsgrößen Seminar für Lehramt Mathematik Modelle mit zwei Zustandsgrößen 106.081 Seminar für Lehramt Mathematik Modelle mit zwei Zustandsgrößen Grundlegende Wechselwirkungsmodelle aus der Ökologie Mutualismus Konkurrenz Räuber-Beute-Modell Modelle

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Topologische Begriffe

Topologische Begriffe Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer

Mehr

31 Die Potentialgleichung

31 Die Potentialgleichung 3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1 6 Differentialgeometrie: Grundlagen Vorlesung Einleitung. Motivation.. Name of the game Geometer bezeichnet klassisch einen Landvermesser (heute ist eher Geodät gebräuchlich. Die klassische Differentialgeometrie

Mehr

Populationsdynamik im Computer simuliert

Populationsdynamik im Computer simuliert Populationsdynamik im Computer simuliert Die Grösse einer Population in einem Ökosystem hängt von zahlreichen abiotischen und biotischen Faktoren ab, die meist auf komplexe Art und Weise zusammenwirken:

Mehr

Fressen und Gefressen werden

Fressen und Gefressen werden Fressen und Gefressen werden Teilnehmer: Ssohrab Borhanian Kristin Emmrich Johannes Jendersie Sophia Ketterl Arne Müller Thao Phuong Nguyen Felix Rehn Heinrich-Hertz-Oberschule Heinrich-Hertz-Oberschule

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

:50:11 REZ: Spieltheorie SoSe Sitzung 7

:50:11 REZ: Spieltheorie SoSe Sitzung 7 01.05.2007 16:50:11 REZ: Spieltheorie SoSe 2007 16 Sitzung 7 Der Begriff der evolutionären Stabilität unterstellt implizite dynamische Betrachtungen. Diese können nach Maßgabe einer Differentialgleichung

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst.

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 Punkte) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Einleitung Bistabile nichtlineare halbleitende Komponenten (z.b.

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

Gekoppelte Populationen

Gekoppelte Populationen Leibnizschule Hannover - Seminararbeit - Gekoppelte Populationen Modellierung und Analyse K.K Schuljahr: 20 Fach: Mathematik Inhaltsverzeichnis 1 Einleitung 2 2 Erläuterungen 3 2.1 Gekoppelte Population..............................

Mehr

Unkämmbarkeit der Sphäre

Unkämmbarkeit der Sphäre Unkämmbarkeit der Sphäre Michela Riganti März 2010 1 2 BEISPIELE 1 Einführung In diesem Text geht es darum, folgenden Satz zu beweisen: Satz 1. Jedes glatte Vektorfeld auf einer Sphäre S n gerader Dimension

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Vortragsthemen. Reelle Dynamik

Vortragsthemen. Reelle Dynamik Vortragsthemen Jede Teilnehmende ist für ein Thema verantwortlich, das sie im Kurs vorstellen wird. Es gibt also insgesamt 15 Vorträge, 4 aus den Gebieten Reelle bzw. Komplexe Dynamik und 7 aus dem Gebiet

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I

Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I Mathematik für Biologen mathematische Ergänzungen und Beispiele Teil I 1. Mengen und Abbildungen In der Mathematik beschäftigt man sich immer -direkt oder indirekt- mit Mengen. Wir benötigen den Mengenbegriff

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno Benno van den Berg WS 9/1 1.1.1 1. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Kreuzen Sie die richtigen Aussagen an. Sei V C 1 (R n,

Mehr

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19

Überlagerung I. Überlagerung für z z 2 : komplexe Quadratwurzel. Christoph Schweigert, Garben p.1/19 Überlagerung I Überlagerung für z z 2 : komplexe Quadratwurzel Christoph Schweigert, Garben p.1/19 Überlagerung II Überlagerung für z z 3 : komplexe dritte Wurzel Christoph Schweigert, Garben p.2/19 Überlagerung

Mehr

Topologieseminar. Faserbündel. Michael Espendiller. 16. Oktober 2010 Universität Münster - 3 Faserbündel oder lokal triviale Bündel 4

Topologieseminar. Faserbündel. Michael Espendiller. 16. Oktober 2010 Universität Münster - 3 Faserbündel oder lokal triviale Bündel 4 Wintersemester 2010/2011 Topologieseminar Faserbündel Michael Espendiller 16. Oktober 2010 Universität Münster - Inhaltsverzeichnis 1 Allgemeine Bündel 1 2 Morphismen und Schnitte 2 3 Faserbündel oder

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Die Perronsche Methode

Die Perronsche Methode Emilia Finsterwald und Peter Schrank 21.06.2012 Gliederung 1 Oskar Perron 2 3 4 5 6 7 8 Oskar Perron (1880-1975) b7.mai 1880 in Frankenthal - d22.feb. 1975 in München Lösung eines speziellen s Im Fall

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Katharina Kausel, April 2012

Katharina Kausel, April 2012 Mathematische Modelle in der Biologie Seminar Biomathematik Seminar Biomathematik Katharina Kausel, April 2012 Mutualismus Was ist Mutualismus? SYMBIOSE Unterschied: eine Art ist ohne die andere LEBENSUNFÄHIG

Mehr

42 Lokale Extrema mit Nebenbedingungen

42 Lokale Extrema mit Nebenbedingungen 4 Lokale Extrema mit Nebenbedingungen 09 4 Lokale Extrema mit Nebenbedingungen Lernziele: Resultate: Kriterien für lokale Extrema mit Nebenbedingungen Methoden: Lagrange-Multiplikatoren Kompetenzen: Bestimmung

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Einführung in Dynamische Systeme Vorlesung im Sommersemester 2010 Universität Hamburg. Prof. Roland Gunesch

Einführung in Dynamische Systeme Vorlesung im Sommersemester 2010 Universität Hamburg. Prof. Roland Gunesch Einführung in Dynamische Systeme Vorlesung im Sommersemester 2010 Universität Hamburg Prof. Roland Gunesch Kontakt-Information: Prof. Roland Gunesch Büro 107, Geomatikum, Bereich Dgl. und Dynamische Systeme

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Kapitel 8 - Kompakte Räume

Kapitel 8 - Kompakte Räume Kapitel 8 - Kompakte Räume Ein Vortrag von Philipp Dittrich nach B.v.Querenburg: Mengentheoretische Topologie Inhalt 8.1 Definition Kompaktheit....................... 2 Beispiel - das Intervall (0,1).....................

Mehr

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/ Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL (Prof. Dr. Lutz Arnold) Wintersemester 2009/10 2.3.2010 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt:

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Dynamische Systeme in der Mikrobiologie

Dynamische Systeme in der Mikrobiologie Dynamische Systeme in der Mikrobiologie Gruppe G Mi: Severine Hurni, Esther Marty, Giulia Ranieri, Matthias Engesser, Nicole Konrad Betreuer: Roman Kälin 1. Einleitung Ein dynamisches System ist ein System,

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert.

SS 2016 Höhere Mathematik für s Studium der Physik 21. Juli Probeklausur. Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. SS 6 Höhere Mathematik für s Studium der Physik. Juli 6 Probeklausur Die Antworten zu den jeweiligen Fragen sind in blauer Farbe notiert. Fragen Sei (X, d) ein metrischer Raum. Beantworten Sie die nachfolgenden

Mehr