Stabilität von n-spezies Gemeinschaften

Größe: px
Ab Seite anzeigen:

Download "Stabilität von n-spezies Gemeinschaften"

Transkript

1 Stabilität von n-spezies Gemeinschaften Julia Klein Joseph Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Kap.15

2 Übersicht 1 Einführung 2 Mutualismus und M-Matrizen 3 Beschränktheit und B-Matrizen 4 VL-Stabilität und globale Stabilität 5 P-Matrizen 6 Gemeinschaften mit einer speziellen Struktur 7 D-Stabilität und totale Stabilität 8 Fazit

3 Ziel des Vortrags Herausarbeitung dynamischer Eigenschaften der Lotka-Volterra Gleichung in Verbindung mit den algebraischen Eigenschaften der Interaktionsmatrix A

4 Ziel des Vortrags Herausarbeitung dynamischer Eigenschaften der Lotka-Volterra Gleichung in Verbindung mit den algebraischen Eigenschaften der Interaktionsmatrix A Aufzeigen von ökologisch relevanten Eigenschaften spezieller Gemeinschaften

5 1. Einführung 1 stabil: Auf- und Abbaurate sind im Gleichgewicht Populationswert regelt sich selbstständig vor Katastrophen geschützt 2 instabil geringfügige Änderung große Folgen entweder Bevölkerungsexplosion oder Aussterben einer Art Quelle: Manfred Eigen und Ruthild Winkler: Das Spiel, Piper, S. 45

6 2. Mutualismus und M-Matrizen Mutualismus Eine Wechselbeziehung zwischen zwei Lebewesen verschiedener Art, die für beide förderlich, für einen der Partner aber lebensnotwendig ist. Beispiele: Blütenbestäubung durch Tiere, Verbreitung von Pflanzensamen durch Tiere. Quelle:

7 Mutualismus und M-Matrizen Betrachten wir zunächst einmal die Lotka-Volterra Gleichung: n ẋ i = x i (r i + a ij x j ) j=1 für n Bevölkerungen bzw. Spezies, deren Kopfzahlen durch x(t) = (x 1 (t), x 2 (t),..., x n (t)) gegeben seien. r i gibt an, wie die i-te Bevölkerung in Abwesenheit aller anderen wächst. Der Matrixeintrag a ij beschreibt die Wirkung der j-ten Bevölkerung auf die i-te Bevölkerung

8 Mutualismus und M-Matrizen Aus Kapitel 3 ist bekannt: Ein mutualistisches System mit 2 Spezies hat unbegrenzte Lösungen, falls a 21 a 12 > a 11 a 22, und einen global stabilen stationären Punkt, falls a 12 a 21 < a 11 a 22.

9 Mutualismus und M-Matrizen 2.1 Theorem Sei a ij 0 für alle i j. Annahme: Es gibt einen inneren stationären Punkt ˆx. Dann sind die folgenden Aussagen äquivalent: (M1) Alle Orbits (Menge aller Lösungen) in R n + sind gleichmäßig beschränkt für t ; (M2) Die Matrix A ist stabil;

10 Mutualismus und M-Matrizen (M2) Die Matrix A ist stabil (det(a) hat Vorzeichen ( 1) n ); (M3) Die Hauptminoren von A alternieren in ihrem Vorzeichen: ( 1) k det(a ij ) 1 i,j k > 0; (M4) Für alle c > 0 gibt es ein x > 0, so dass Ax + c = 0; (M5) Es gibt ein x > 0 mit Ax < 0; (M6) Der stationäre Punkt ˆx ist global asymptotisch stabil und alle Bahnen sind gleichmäßig beschränkt für t +

11 Matrix A erfüllt die Bedingungen (Theorem 2.1 ) A ist (invertierbare) M-Matrix. Mutualismus und M-Matrizen

12 Mutualismus und M-Matrizen 2.2 Lemma Falls die Matrix A einen linken Eigenvektor v 0 mit Eigenwert λ > 0 hat, dann hat die Lotka-Volterra Gleichung innere Lösungen, die für t + unbeschränkt sind.

13 Mutualismus und M-Matrizen 2.3 Perron-Frobenius-Theorem Wenn M eine n n Matrix mit nicht-negativen Einträgen ist, gibt es einen Eigenwert λ, der dominant ist, d.h. es gilt: µ λ für alle anderen Eigenwerte µ von M. Es gibt rechte und linke Eigenvektoren u 0 (d.h. u i 0 für alle i) und v 0, so dass Mu = λu und vm = λv. Ist M nicht mehr weiter zu vereinfachen, d.h. für jedes Indizes-Paar (i, j) gibt es ein k > 0 (kann von i und j abhängen), so dass der (i, j)-te Eintrag von M k positiv ist, dann ist λ einfach und positiv und die Eigenvektoren u und v sind eindeutig und positiv.

14 Mutualismus und M-Matrizen Ist M primitiv, d.h. existiert ein k > 0, so dass alle Einträge von M k positiv sind, dann gilt für alle anderen Eigenwerte µ µ < λ Wenn wir u und v normalisieren (u v = 1) und eine Matrix T mit t ij = u i v j definieren, dann gilt λ k M k T für k +

15 3. Beschränktheit und B-Matrizen 3.1 Theorem Die folgenden Bedingungen sind für eine Matrix A äquivalent: (B1) Für jedes r R n +, sind die Lösungen der Lotka-Volterra Gleichung alle gleichmäßig beschränkt für t + (B2) Der Ursprung 0 ist global asymptotisch stabil für die Lösungen von ẋ i = x i (Ax) i in R n +. (B3) Wenn x i (Ax) i = λx i, i = 1,..., n für x 0 (mit x 0), dann ist λ < 0 Die Matrix A ist eine B-Matrix, wenn eine dieser Äquivalenzbedingungen (B1)-(B3) erfüllt ist.

16 Beschränktheit und B-Matrizen 3.2 Theorem Die Matrix A ist eine B-Matrix, falls (B4) Für alle x 0 mit x 0 ein i existiert, so dass x i > 0 und (Ax) i < 0.

17 Beschränktheit und B-Matrizen 3.3 Theorem Wenn alle Haupt-Untermatrizen von A B-Matrizen sind und det( A) > 0, dann ist auch A eine B-Matrix.

18 4. VL-Stabilität und globale Stabilität stärkstes Stabilitätskonzept: die globale asymptotische Stabilität Matrix A heißt nun Volterra-Ljapunov stabil (VL-stabil), falls es eine Diagonalmatrix D > 0 gibt, so dass die symmetrische Matrix DA + A t D negativ definit (x T Ax < 0) ist, d.h. es gilt d i a ij x i x j < 0 für alle x 0 i,j

19 VL-Stabilität und globale Stabilität für passende d i > 0 gilt: die Funktion V (x) = d i xj 2 ist strikte Ljapunov-Funktion für ẋ = Ax darstellt. V(x) c strikt vorwärts invariant.

20 VL-Stabilität und globale Stabilität 4.1 Theorem A ist VL-stabil. Dann gilt für alle r R n, dass die Lotka-Volterra Gleichung einen global stabilen Fixpunkt hat.

21 Die Matrix A heißt P-Matrix, falls alle Hauptminoren von A positiv sind. 5.1 Theorem Die folgenden Eigenschaften sind äquivalent: 5. P-Matrizen (P1) A ist eine P-Matrix (P2) Für jede Diagonalmatrix D 0, ist A + D eine P-Matrix. (P3) Für alle x 0 gibt es ein i, so dass x i (Ax) i > 0 (P4) Für alle x 0 gibt es eine Diagonalmatrix D > 0, so dass x DAx = Dx Ax > 0 (P5) Jeder reelle Eigenvektor einer Haupt-Untermatrix von A ist positiv.

22 P-Matrizen 5.2 Theorem Die Lotka-Volterra Gleichung hat für alle r R n einen eindeutigen gesättigten stationären Punkt, falls A eine P-Matrix ist.

23 6. Gemeinschaften mit einer speziellen Struktur A sei die Interaktionsmatrix eines Ökosystems, das durch die Lotka-Volterra Gleichung modelliert wird. ungerichteter Graph G(A): i und j immer dann durch eine Kante verbinden, wenn a ij 0 oder a ji 0. gerichteter Graph G(A): Pfeil von j nach i, genau dann, wenn a ij 0. Kreis von A: ein nicht-endendes Produkt der Form a i1 i 2 a i2 i 3...a ik i 1, einer Folge von paarweise verschiedenen Indizes i 1, i 2,..., i k. Länge des Kreises: k

24 Gemeinschaften mit einer speziellen Struktur 6.1 Theorem Annahme: A enthält keine Kreise der Länge 3. A VL-stabil, falls A eine P-Matrix ist. A sei eine zerlegbare Matrix der Form ( ) A1 A A = 2 0 A 3 A VL-stabil, falls A 1 und A 3 VL-stabil. Vereinfachung (Räuber-Beute-Schema): Annahme: G(A) hat keine Kreise der Länge 3, sowie a ii < 0 und a ij a ji 0 für alle i j. A VL-stabil.

25 7. D-Stabilität und totale Stabilität Sei ˆx ein innerer Fixpunkt der Lotka-Volterra Gleichung. Die Jacobi-Matrix bei ˆx ist gegeben durch ( xa ij ), und hängt von der Wachstumsrate r i ab. Um zu garantieren, dass ˆx immer asymptotisch stabil ist, muss die Interaktionsmatrix A D-stabil sein, d.h. DA ist für jede Diagonalmatrix D > 0 stabil.

26 D-Stabilität und totale Stabilität 7.1 Theorem A ist total stabil, falls gilt: Für jedes r hat die Lotka-Volterra Gleichung genau einen gesättigten Fixpunkt und dieser Punkt ist asymptotisch stabil. Vermutung: Wenn die Lotka-Volterra Gleichung einen inneren Fixpunkt ˆx hat und die Interaktionsmatrix D-stabil ist, dann ist ˆx global stabil.

27 8. Fazit Wir haben......mutualistische Systeme kennengelernt...eigenschaften von M-Matrizen, B-Matrizen und P-Matrizen erarbeitet...vl-stabilität, globale Stabilität, D-Stabilität und totale Stabilität betrachtet...gemeinschaften mit speziellen Strukturen kennengelernt.

28 Anhang Beweis Theorem 2.1: (M1) (M2). Da A mutualistisch ist, können wir sagen: A = B ci wobei c > 0 und B eine nicht-negative Matrix ist. Der Satz von Perron-Frobenius zeigt, dass es einen dominanten Eigenwert ρ > 0 von B mit nicht-negativen linken und rechten Eigenvektoren v 0 und u 0 gibt. u und v sind auch Eigenvektoren von A, die zu dem Eigenwert λ = ρ c gehören. Das vorherige Lemma und die Voraussetzung aus (B1) zeigen, dass λannahme :λ = 0 Au = 0. Die Reihe ˆx + tu, t R entspricht den Fixpunkten der Lotka-Volterra Gleichung. Dies ist ein Widerspruch zu (M1). Daher gilt: λ < 0. Jedoch hat keiner der Eigenwerte von A einen reellen Teil größer als λ. A ist stabil.

29 Anhang (M2) (M3). Da A stabil ist, hat det(a) das Vorzeichen ( 1) n. Das Selbe gilt auch für alle Untermatrizen von A. Für alle J 1,..., n hat die Haupt-Untermatrix B J = (b ij ) i,j J von B einen dominanten Eigenwert ρ(j), der nicht größer ist als der dominante Eigenwert ρ von B. Es gilt also, dass die Untermatrizen A J = B J cj stabil sind und ihre Determinanten das Vorzeichen ( 1) cardj.

30 Anhang (M3) (M4). Dies wird durch die Induktion nach n bewiesen. Wir eliminieren x 1 in (M4), indem wir die erste Gleichung n a 1k x k + c 1 = 0 (15.5) k=1 mit a i1 /a 11 (a 11 < 0) multiplizieren und sie von der i ten Gleichung subtrahieren. Dies erzeugt ein lineares System in x 2,...x n : n ā ik x k + c i = 0 (15.6) mit k=2 ā ik = a ik a 1k a i1 a 11 und c i = c i c 1 ( a i1 a 11 ) c i > 0.

31 Anhang Wenn wir die korrespondierenden Operationen auf die führende Haupt-Unterdeterminante anwenden, so erhalten wir: det(a ij ) 1 i,j k = a 11 a 12. a 1k 0 ā 22. ā 2k ā k2. ā kk = a 11 det(ā ij ) 2 i,j k Deshalb erfüllt die (n 1)x(n 1) Matrix Ā (M3). Durch induktive Hypothese folgt, dass (15.6) eine positive Lösung x 2,..., x n hat. Dies führt zu einer positiven Lösung x 1, x 2,..., x n von (M4), da x 1 > 0 eine Konsequenz von (15.5) und (15.6) ist.

32 Anhang (M4) (M5): trivial (M5) (M6): Für mutualistische Systeme bedeutet (M5), dass A eine negative dominante Diagonale hat, d.h. d i > 0 : a ii d i + j i a ij d j < 0. Wir zeigen, dass diese Bedingung die globale Stabilität des inneren stationären Punktes ˆx (welchen wir annehmen)für allgemeine, nicht unbedingt mutualistische Lotka-Volterra Systeme, sicher stellt. Sei x i ˆx i V (x) = max. i=1,...,n d i

33 Anhang Dann ist V (x) 0 (Gleichheit falls x = ˆx). Die konstanten Niveauflächen von V sind Boxen der Seitenlänge 2d i, die in ˆx platziert sind. Wir behaupten, dass all diese Boxen vorwärts invariant sind. Sei i ein beliebiger Index, für den x i ˆx i d i maximal sei. Dann x i ˆx i = ẋ i sgn(x i ˆx i ) =x i (a ii (x i ˆx i ) + j i a ij(x j ˆx j ))sgn(x i ˆx i ) x i (a ii x i ˆx i + j i a ij x j ˆx j ) x i V (x)(a ii d i + j i a ij d j ) < 0 für alle x ˆx in R +. V (x) ist folglich eine strikt fallende Ljapunow Funktion alle inneren Orbits konvergieren zu ˆx. Aus demselben Grund sind alle Grenz-Orbits gleichmäßig beschränkt. (M6) (M1): ist offensichtlich.

34 Anhang Beweis Theorem 3.1: Mit z k = x k 1 + x i, (k = 1,..., n) z n+1 = x i transformiert sich die Lotka-Volterra Gleichung in die Replikatorgleichung ż k = z k ( n a kj z j + r k z n+1 ā(z)) k = 1,..., n (15.12) j=1 auf S n+1 mit ż n+1 = z n+1 ( ā(z)) n n ā(z) = a ij z i z j + z n+1 r k z k. i,j=1 k=1

35 Anhang Offensichtlich hat die Lotka-Volterra Gleichung unbeschränkte Lösungen für t +, falls die geschlossene invariante Oberfläche F = z S n+1 : z n+1 = 0, die zu den Punkten im Unendlichen korrespondiert, ein Repellor für (15.12) ist, so dass dort ein c > o existiert, so dass für alle z S n+1 mit z n+1 > 0. lim inf z n+1(t) > c t +

36 Anhang (B3) (B1). Es reicht zu zeigen, dass P(z) = z n+1 eine durchschnittliche Ljapunov-Funktion in der Umgebung von F ist. Dies gilt nur dann, wenn Ṗ żn+1 ( z) = z = ā( z) > 0 P z n+1 für alle Fixpunkte z von (15.12) mit z n+1 = 0. Diese Fixpunkte z im Unendlichen werden durch z i (A z) i = λ z i charakterisiert, wobei λ eine beliebige Konstante ist. Wenn wir z S n+1 verwenden, sehen wir, dass λ dann bloß ā( z). Folglich ist P(z) = z n + 1 eine durchschnittliche Ljapunov Funktion für (15.12) ist, falls λ = ā( z) < 0 für jeden Punkt z F.

37 Anhang B(1) (B2). Annahme: Es existiert eine Konstante k > 0, so dass B k := (x R n + : x i f ürallei) alle ω Grenzen der Lösungen der Lotka-Volterra Gleichung enthält mit r = 0, d.h. (B2). Aber (B2) ist homogen und daher invariant unter x αx für α > 0. Also haben alle Menge B αk mit α > 0 die selben Eigenschaften. Für α 0 beweist dies, dass alle Lösungen gegen 0 konvergieren. Die Stabilität von 0 folgt aus der Kompaktheit der Mengen B αk.

38 Anhang (B2) (B3). x 0 erfülle (B3). Die Reihe t x : t > 0 ist offensichtlich invariant für (B2), da (x i /x j ) = 0 dort gilt. In dieser Reihe reduziert sich die Folge zu ẋ i = i. Falls λ > 0 wächst der Orbit ins Unendliche. Falls λ = 0 besteht die Reihe aus stationären Punkten. Da beiden Möglichkeiten (B2) widersprechen, folgt λ < 0.

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

Selektions-Mutations-Modelle

Selektions-Mutations-Modelle Selektions-Mutations-Modelle Claudia Groÿmann January 16, 2012 Claudia Groÿmann () Selektions-Mutations-Modelle January 16, 2012 1 / 29 Inhaltsverzeichnis 1 Selektions-Mutations-Modelle 2 Mutation und

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Floquet Theorie II. 1 Einführung

Floquet Theorie II. 1 Einführung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 18.10.2011 Sebastian Monschang 1 Einführung Auf den Ergebnissen des ersten Vortrags basierend werden wir in diesem Vortrag gewöhnliche lineare Differentialgleichungssysteme

Mehr

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK K. Taubert Universität Hamburg SS8 Linearisierung 2 LINEARISIERUNG und das VERHALTEN VON LÖSUNGEN NICHTLINEARER DIFFERENTIALGLEICHUNGEN

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26

Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26 Spieldynamik Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kap. 8 Simon Maurer Saarbrücken, den 13.12.2011 1 / 26 Ablauf 1 Imitationsdynamik 2 Monotone Auszahlung

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte Teschl/Teschl 4. Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x 0, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Stabilität linearer Differentialgleichungssysteme 1-1

Stabilität linearer Differentialgleichungssysteme 1-1 Stabilität linearer Differentialgleichungssysteme Ein lineares homogenes Differentialgleichungssystem mit konstanten Koeffizienten u = Au, u = (u 1,..., u n ) t, ist Stabilität linearer Differentialgleichungssysteme

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Lösungsskizze zur Wiederholungsserie

Lösungsskizze zur Wiederholungsserie Lineare Algebra D-MATH, HS Prof. Richard Pink Lösungsskizze zur Wiederholungsserie. [Aufgabe] Schreibe die lineare Abbildung f : Q Q 5, x +x +x x x +x +6x f x := x +x +8x x x +x +x. x +x +5x als Linksmultiplikation

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 53 Norm von Endomorphismen und Matrizen Definition 53.1. Es seien V und W endlichdimensionale normierte K-

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2)

2 k k 1 k(k + 1) = 2n+1. n = 0 = k(k + 1) = 2n+1 n n. = 2 n+1 n + 2 (n + 1)(n + 2) + n. (n + 1)(n + 2) Prof. Hesse Höhere Mathematik I und II Musterlösung 7. 0. 0, 80min Aufgabe (3 Punkte) Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n k= k k k(k + ) = n+ n +. Induktionsanfang: k= Induktionsschluss

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008

KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 KLAUSUR ZUR LINEAREN ALGEBRA II 19. Juli 2008 MUSTERLÖSUNG Name: Studiengang: Aufgabe 1 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Lösung 13: Unitäre Vektorräume und normale Abbildungen

Lösung 13: Unitäre Vektorräume und normale Abbildungen D-MATH Lineare Algebra II FS 2017 Dr. Meike Akveld Lösung 13: Unitäre Vektorräume und normale Abbildungen 1. a) Im Folgenden sei γ : V V C die Abbildung γ(v, w) v + w 2 v w 2 i v + iw 2 + i v iw 2. : Wir

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

2. Übung: Lineare dynamische Systeme

2. Übung: Lineare dynamische Systeme 2. Übung: Lineare dynamische Systeme Aufgabe 2.. Gegeben sind die beiden autonomen Systeme und x (2.) {{ A 2 2 x. (2.2) {{ A 2 Berechnen Sie die regulären Zustandstransformationen x = V z und x = V 2 z,

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y.

Determinanten. Motivation: Man betrachte das lineare Gleichungssystem =. (1) y = Sei o.b.d.a a 0 und c 0. Dann ist (1) äquivalent zu. = ac ad y. Determinanten Motivation: Man betrachte das lineare Gleichungssystem [ [ [ a b x u = (1) c d y v Sei obda a und c Dann ist (1) äquivalent zu [ [ ca cb x = ac ad y und ferner zu [ [ ca cb x ad cb y Falls

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen

D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld. Clicker Fragen D-Math/Phys Lineare Algebra II FS 2017 Dr. Meike Akveld Clicker Fragen Frage 1 Wenn eine reelle Matrix einen Eigenvektor hat, so hat es unendlich viele Eigenvektoren Sei u K n einen Eigenvektor von A M

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen

Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen Mathematik für Naturwissenschaftler, Pruscha & Rost Kap 7 Lösungen a) Es ist < x, y > α + + β β ( + α) und y α + + β α + + ( + α) (α + α + ) 6 α + α, also α, ± 5 + ± 9 4 ± 3 Es gibt also Lösungen: α, β

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

Bimatrix-Spiele. Sarah Hidlmayer

Bimatrix-Spiele. Sarah Hidlmayer Bimatrix-Spiele Sarah Hidlmayer 13.12.2011 Literatur: Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics (Ch. 11), Cambridge. Bimatrix-Spiele 1 Dynamik für Bimatrix-Spiele 2 Partnerschaftsspiele

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Das Prinzip der Suchmaschine Google TM

Das Prinzip der Suchmaschine Google TM /9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,

Mehr

Geburtenratenselektion

Geburtenratenselektion Geburtenratenselektion Laura Kursatz 17.01.2012 Literatur: Hofbauer J., Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press: Cambridge Inhaltsverzeichnis 1 Allgemeines

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Zusammenfassung. 2.7 Eigenwerte und Eigenvektoren 53. in 2.1: Lösung eines linearen Gleichungssystems

Zusammenfassung. 2.7 Eigenwerte und Eigenvektoren 53. in 2.1: Lösung eines linearen Gleichungssystems 7 Eigenwerte und Eigenvektoren 53 Zusammenfassung in : Lösung eines linearen Gleichungssystems Formalisierung: a x + a x + + a n x n b a x + a x + + a n x n b a m x + a m x + + a mn x n b m A x b Lösungsmethode:

Mehr

3 Zweidimensionale dynamische Systeme Oszillationen

3 Zweidimensionale dynamische Systeme Oszillationen 3 Zweidimensionale dynamische Systeme Oszillationen Lineare Systeme Ein Beispiel für ein zweidimensionales dynamisches System ist die Gleichung ẍ + ω 2 sin x = 0 für ebene Schwingungen eines reibungsfreien

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.48 2017/06/14 15:16:10 hk Exp $ $Id: jordan.tex,v 1.26 2017/06/16 10:59:58 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Zum Abschluss dieses Kapitels behandeln

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr. 14-16 und n.v. holtz@math.tu-berlin.de Sadegh Jokar MA 373 Sprechstunde, Do. 12-14 und n.v. jokar@math.tu-berlin.de

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Sommer 2017 Musterlösung

Sommer 2017 Musterlösung Sommer 7 Musterlösung. (5 Punkte) a) Sei V ein Vektorraum über K und sei T End(V ). Geben Sie die Definition eines Eigenwertes von T und zeigen Sie für endlichdimensionales V, dass λ K genau dann ein Eigenwert

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1

Serie a) Welche der folgenden Vektoren sind Eigenvektoren der Matrix 1 0 1? 0 1 1 Prof. Norbert Hungerbühler Serie Lineare Algebra II ETH Zürich - D-MAVT. a Welche der folgenden Vektoren sind Eigenvektoren der Matrix? i (,,. ii (,,. iii (,,. iv (, 3,. v (,,. Ein Vektor v ist Eigenvektor

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 3 Der Axiator Eigenschaften des Axiators Bestimmung des Kegelschnitts Geometrische Betrachtungen Dualer Kegelschnitt Pol-Polare

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 5

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 5 D-MATH, D-PHYS, D-CHAB Analysis II FS 208 Prof. Manfred Einsiedler Lösung 5 Hinweise. Per Definition ist v f(x, y) die Ableitung von s f(x+s, y+2s) in s = 0. Alternativ können Sie die Darstellung der Ableitung

Mehr

Universalität für Wigner Matrizen

Universalität für Wigner Matrizen Universalität für Wigner Matrizen Benjamin Schlein, Universität Zürich HSGYM Tag 29. Januar 2015 1 1. Einführung Zufallmatrizen: sind N N Matrizen dessen Einträge Zufallsvariablen mit gegebenen Verteilung

Mehr

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und 7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ

Mehr

Katalytische Hyperzyklen

Katalytische Hyperzyklen Katalytische Hyperzyklen Lara Münster 20.12.2011 Literatur: Hofbauer J., Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press: Cambridge Katalytische Hyperzyklen 1

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 22/3 Institut für Analysis 28..23 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 4. Übungsblatt (letztes Blatt)

Mehr

I (u +v)+w = u +(v +w) II u +v = v +u III Es existiert ein 0 V, s. d. 0+v = v IV Es existiert ein v V, s. d. v +v = 0

I (u +v)+w = u +(v +w) II u +v = v +u III Es existiert ein 0 V, s. d. 0+v = v IV Es existiert ein v V, s. d. v +v = 0 Def. Sei (K,+, ) ein Körper. Eine Wiederholung: (Hauptdefinition Menge V mit Abbildungen der LAAG1:) Vektorraum ist eine + : V V V Menge V mit zwei Abbildungen : K V V + : V V V, : R V heißt ein Vektorraum

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

Floquet Theorie (III) 1 Verhalten von Lösungen und Der Ljapunov-Exponent

Floquet Theorie (III) 1 Verhalten von Lösungen und Der Ljapunov-Exponent Floquet heorie (III Vortrag zum Seminar zu gewöhnlichen Differentialgleichungen, 25..2 Andreas Schmitz Nachdem Gabriela Ansteeg uns in die heorie eingeführt hat und Sebastian Monschang weitere Vorarbeit

Mehr

1.3 Zweidimensionale Systeme

1.3 Zweidimensionale Systeme 132 KAPITEL IV. QUALITATIVE THEORIE UND DYNAMISCHE SYSTEME Im Fall a 3 > 0 ist das Gleichgewicht asymptotisch stabil. Für a 2 3 > 4a 1a 2 haben wir < < 0 und es liegt ein stabiler Knoten vor (siehe den

Mehr

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.

Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen

2.5 Smith-Normalform für Matrizen über Euklidischen Ringen 2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Differentialgleichungen I

Differentialgleichungen I Differentialgleichungen I Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 5. Januar 2009 Beachtenswertes Die Veranstaltung

Mehr

Der Fundamentalsatz der Algebra. 1 Motivation

Der Fundamentalsatz der Algebra. 1 Motivation Vortrag im Rahmen des Proseminars zur Analysis, 24. April 2006 Micha Bittner Motivation Den ersten des Fundamentalsatzes der Algebra erbrachte C.F. Gauss im Jahr 799 im Rahmen seiner Dissertation. Heute

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

1 Einleitung. 1.1 Ablauf

1 Einleitung. 1.1 Ablauf 1 Einleitung 1.1 Ablauf Einleitung Zentrale Unterräume in regulären Netzwerken Lösungszweige Bifurkationen von stabilen, synchronen Lösungen Ziel: Zeigen, dass eine Kodimension 1 Bifurkation von einem

Mehr

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME

EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME EXKURS: MATRIZEN UND LINEARE GLEICHUNGSSYSTEME In diesem Abschnitt wiederholen wir zunächst grundlegende Definitionen und Eigenschaften im Bereich der Matrizenrechnung, die wahrscheinlich bereits in Ansätzen

Mehr

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B :=

Lösung zu Serie Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: A := B := Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 2. Bestimme die Jordansche Normalform und eine zugehörige Basiswechselmatrix der folgenden reellen Matrizen: 0 2 0 0 0 2 0 0 0 0 0 0 0

Mehr