Floquet Theorie (III) 1 Verhalten von Lösungen und Der Ljapunov-Exponent

Größe: px
Ab Seite anzeigen:

Download "Floquet Theorie (III) 1 Verhalten von Lösungen und Der Ljapunov-Exponent"

Transkript

1 Floquet heorie (III Vortrag zum Seminar zu gewöhnlichen Differentialgleichungen, Andreas Schmitz Nachdem Gabriela Ansteeg uns in die heorie eingeführt hat und Sebastian Monschang weitere Vorarbeit geleistet hat, folgen nun weitere Einblicke in die Floquet- heorie. Verhalten von Lösungen und Der Ljapunov-Exponent Wir werden in diesem Abschnitt die Periodizität eines periodischen Systems wie in ( untersuchen. Außerdem werden wir ein schönes Resultat kennenlernen, mit dem man das Langzeitverhalten der Lösungen eines Systems der Form ( untersuchen kann. Wir betrachten wieder das System Stabilität periodischer Orbits ẋ = A(tx, ( wobei x R n und A : R Mat(n n; R eine periodische, stetige Abbildung mit Periode. Dieses hat bekannterweise eine Floquet-Normalform R R n, t Q(te tr, (2 wobei Q eine reellwertige 2-periodische Funktion und R eine reele Matrix ist. Das System ( hat nach Korollar (2. reelle Lösungen der Form: R R n, t q(tr(te αt sin βt und R R n, t q(tr(te αt cos βt, wobei q 2-periodisch, r ein Polynom vom Grad n und α + iβ ein Eigenwert von R ist.

2 Nun leiten wir über zu unserem ersten (3. Satz Sei eine Floquet-Normalform (2 gegeben. Dann liegt genau einer der folgenden Fälle vor: Die Lösungen sind (quasi-periodisch Die Lösungen sind unbeschränkt für t und konvergieren gegen für t Die Lösungen konvergieren gegen für t und sind unbeschränkt für t Beweis Sei λ ein charakteristisches Vielfaches des Systems (.. λ > : Sei µ der zugehörige reelle charakteristische Exponent. Dieser ist eindeutig, da die Multiplikation mit e 2πik den Realteil nicht ändert, da cos(2πk =, k Z. Es existiert nach (2.9 eine Lösung der Form x(t = e µt p(t, wobei p wieder eine -periodische Funktion ist. Falls p komplex ist, so seien r, s: R R -periodische Funktionen mit p = r + is. Da das System ( reell ist, betrachten wir reelle Lösungen. Diese sind durch Real- und Imaginärteile der komplexen Lösungen gegeben. Es existieren also nichttriviale Lösungen der Form x (t = e µt r(t, x 2 (t = e µt s(t. Es gilt: a Falls λ = bzw. µ = : Die Lösungen sind -periodisch, da e µt =, also x (t = r(t bzw. x 2 (t = s(t b Falls λ < bzw. µ < : Die Lösungen kovergieren gegen für t und sind unbeschränkt für t, da e µt r(t für t, da e µt für t und r(t beschränkt, da periodisch und e µt r(t für t, da e µt für t und r(t beschränkt. Analog für x 2 (t. c Falls λ > bzw. µ > : Die Lösungen sind unbeschränkt für t und konvergieren gegen für t, da e µt r(t für t, da e µt für t und r(t beschränkt und e µt r(t für t, da e µt für t und r(t beschränkt. Analog für x 2 (t. 2

3 2. λ < : Hier kann µ gewählt werden als ν + πi/, wobei ν reel ist und e µ = λ. Setzen wir wieder wie oben p = r + is, dann erhalten wir als Lösung: ( ( πt πt e µt p(t = e νt e πit/ (r(t + is(t = e (cos νt + i sin (r(t + is(t = e νt (cos ( πt r(t sin ( πt s(t ( + ie νt cos ( πt s(t + sin Falls der Realteil der Lösung verschieden von Null ist, dann hat der Realteil der komplexen Lösung die Form: x(t = e νt (r(t cos(πt/ s(t sin(πt/. Weiter gilt: a Falls λ = bzw. ν = : Die Lösung ist 2-periodisch, denn e πi = und e 2πi =. b Falls ν < : Die Lösung konvergiert gegen für t und sind unbeschränkt für t. c Falls ν > : Die Lösung ist unbeschränkt für t und konvergieren gegen für t. (a-(c folgen analog wie unter. 3. λ ist komplex: Dann gilt µ = α + iβ und die Lösungen sind gegeben durch: Also haben wir reelle Lösungen: x(t = e αt (cos(βt + i sin(βt(r(t + is(t. ( πt r(t x (t = e αt (r(t cos(βt s(t sin(βt, x 2 (t = e αt (r(t sin(βt + s(t cos(βt Falls α <, dann konvergieren die Lösungen gegen für t. Falls α >, so sind beide Lösungen unbeschränkt für t. Falls α = und es positive ganze Zahlen m und n gibt, sodass 2πm/β = n, dann sind die Lösungen n-periodisch. Falls keine solche ganzen Zahlen existieren, so nennt man die Lösungen quasi-periodisch. Bei unserem ersten Vortrag von Gabriela Ansteeg haben wir bereits eine Poincaré- Abbildung in mehrdimendisionalen Räumen kennengelernt. 3

4 Wir wiederholen nun ein Beispiel aus dem ersten Vortrag, an dem die Poincaré- Abbildung einfach zu konstruieren ist: Wir betrachten folgende nichtautonome Differentialgleichung: u = f (u, t, u R n (3 Setze die Periode > voraus. Man kann das System jedoch künstlich autonom machen, indem man eine Gleichung hinzuaddiert: u = f (u, ψ, ψ =, (4 wobei ψ als Winkel-Variable modulo gesehen werden kann. Also gilt für n Z: ψ + n = ψ. Also betrachten wir das System auf R n, wobei = [, ] als R modulo gesehen wird. Nun haben wir die richtigen Voraussetzungen für eine Poincaré-Abbildung: Für jedes ξ R n, sei Φ(t, ξ die Lösung der Differentialgleichung (3, sodass Φ(, ξ = ( ξ, wobei dann Φ Φ(t, ξ (t = die Lösung von (4 ist. t mod Dann ist Σ := {(ξ, ψ : ψ = } = R n {} ein Poincaré-Schnitt und ξ Φ(, ξ die zugehörige Poincaré-Abbildung. Gibt es ein p R n mit f (p, t = für alle t R, dann sind die Funktionen Φ(t, p ( bzw. Φ Φ(t, p (t = periodische Lösungen mit Periode. Halten wir fest, t dass Φ(, p = p. Dies zeigt, dass die Lösung zu einem fixen Punkt der Poincaré- Abbildung gehört. Unser Ziel ist nun, die Stabilität des periodischen Orbits, also der Fixpunkte der Poincaré-Abbildung, über die charakteristischen Multiplikatoren zu bestimmen. Für den nächsten Satz benötigen wir den folgenden Hilfssatz, der hier jedoch ohne Beweis bleibt: (3.2 Hilfssatz Das System der Gestalt ( habe die Poincaré-Abbildung P : Σ Σ, x(t x(t + für t Z (also = {...,,,, 2,...}. Sei z Σ mit P(z = z ein Fixpunkt von P. Dann gilt: Haben alle Eigenwerte von DP(z Betrag<, so ist z asymptotisch stabil. Hat ein Eigenwert von DP(z Betrag>, so ist z instabil. 4

5 Sei Φ(t, p = P(te tb eine Darstellung in Floquet-Normalform. Die Ableitung der Poincaré Abbildung im Fixpunkt p ist gegeben durch: DΦ(, p = e B, denn Φ(, p = P(e, also P( = I. Also sind die Eigenwerte der Ableitung gerade die charakteristischen Multiplikatoren. Wenn wir nun diese Erkenntnis nutzen und die Ableitung in folgende Variationsgleichung (vgl. Kap III Satz (2.5 einsetzen: Ẇ = f Φ (Φ(t, p, tw, mit Anfangswert W( = I, dann können wir den Hilfssatz nutzen und stellen Folgendes fest: (3.3 Satz Unter obigen Voraussetzungen gilt: Haben alle charakteristischen Multiplikatoren Betrag kleiner eins, so ist der zugehörige Fixpunkt der Poincaré-Abbildung stabil. Hat ein charakteristischer Multiplikator Betrag größer eins, so ist der Fixpunkt instabil. Beweis Die Aussagen folgen sofort aus obiger Vorabeit und dem Hilfssatz. Betrachten wir als Anwendung das folgende (3.4 Beispiel (Mathieu-Gleichung Seien a, ω R. Betrachten wir das Pendel mit oszilierendem Ausgangspunkt: θ + ( + a cos(ωt sin(θ = Die Nulllösung ist gegeben durch θ(t = Dieses System lässt sich nach dem Reduktionssatz in Kap I Satz (2.6 auch als zweidimensionales System erster Ordnung schreiben: wobei x = θ und y = θ. Sei (( x f y ẋ = ( + a cos(ωt sin y ẏ = x ( ( + a cos(ωt sin y, t = x 5

6 Wie im obigen Beispiel betrachten wir das System: (( x Ẇ = f ( x y, t W y Jetzt wird die Fundamentalmatrix gebildet: ( ( + a cos(ωt cos y Ẇ = W Jetzt wird die Lösung eingesetzt und ergibt Also erhalten wir: ( x y = ( ( ( + a cos(ωt Ẇ = W was äquivalent zu ẋ = ( + a cos(ωty ẏ = x ẍ = ( + a cos(ωtx ist. Diese Gleichung wird auch Mathieu-Gleichung genannt. Dieses hema soll jedoch hier nicht weitergeführt werden. Ljapunov-Exponenten In diesem Abschnitt führen wir einen neuen Begriff, den Ljapunov-Exponent ein, welcher hema des nächsten Vortrags sein wird. Ab nun betrachten wir die (nichtlineare Differentialgleichung u = f (u, u R n (5 Es sei Φ : R R n R n der lokale Fluss. Sei ɛ R, ξ, ν R n und η := ξ + ɛv, dann starten die Lösungen Φ(t, ξ und Φ(t, η in einer ɛ-umgebung. Betrachten wir die aylorentwicklung von Φ(t, η bei ɛ = von Φ: Φ(t, η = Φ(t, ξ + ɛdφ(t, ξν +...(ɛ

7 Umstellen ergibt: Φ(t, η Φ(t, ξ = ɛdφ(t, ξν + O(ɛ 2 (6 (3.5 Bemerkung Betrachten wir folgende Gleichung: ϕ(u = f (ϕ(u, dh. ϕ ist Lösung von (5 und differenzieren beide Seiten der Differentialgleichung (5 nach u an der Stelle u = ξ. Wir definieren den linearen Operator L durch: L = sup DΦ(t, ξav av = DΦ(t, ξv wobei a R und v R n. Indem wir unsere Lösungen in Integralform ausdrücken erhalten wir: Φ(t, ξ = ξ + t f (Φ(s, ξds, Φ(t, η = ξ + t f (Φ(s, ηds Wenn wir nun ein beschränktes Zeitintervall bzw. eine Lösung wählen, die in einem Kompaktum des R n enthalten ist, so existiert eine Lipschitz -Konstante Lip( f von f. Wenn wir nun die zweite Gleichung von der ersten subtrahieren, erhalten wir die folgende Ungleichung: t Φ(t, η Φ(t, ξ ɛ + Lip( f Φ(s, η Φ(s, ξ ds Mit der Gronwall-Ungleichung aus Kap III Lemma (.7, wobei hier die Konstanten im Satz hier folgende Werte haben a =, b =, α = ɛ, β = Lip( f und die Funktion ϕ = Φ(t, η Φ(t, ξ gilt, die nach Voraussetzung stetig ist. Nun sind alle Voraussetzungen erfüllt und es folgt: Φ(t, ξ + ɛv Φ(t, ξ ɛe t Lip( f (3.6 Definition (Ljapunov-Exponent Angenommen, ξ R n und die Lösung Φ(t, ξ von (5 existiert t. Sei v R n, v =. Der Ljapunov-Exponent von ξ in Richtung v des lokalen Flusses Φ ist definiert durch: χ(ξ, v : ( D2 Φ(t, ξv 7

8 (3.7 Beispiel Sei das System gegeben, wobei a, b >. Der Fluss ist gegeben durch: ẋ = ax, ẏ = by Φ(t, (x, y = (e at x, e bt y Wir berechnen erst die Fundamentalmatrix von Φ: ( e at D 2 Φ(t, ξ = e bt Sei nun v = (w, z und w =, dann ist χ(ξ, v = b. Mit den Limesregeln und der Stetigkeit des Logartihmus folgt: lim sup ( e at e bt (( e at w + e bt z w2 + z 2 (e at w + e bt z ( w 2 + z 2 }{{} ln(lim sup(e at w t }{{} +e bt z (ebt + (z = b }{{} 8

9 Im Falle w = kann man analag zum 2. Fall bei z = vorgehen. Betrachte also w =. Falls nun z = und w =, dann ist χ(ξ, v = a, denn Also berechnen wir mithilfe von L Hospital lim sup ( e at e bt ( e at w w 2 ( e at t e at = lim t e at = a Es gibt hier genau zwei Exponenten, die in diesem Fall die Eigenwerte der Jacobimmatrix sind. Es folgt eine (3.8 Bemerkung Unsere Definition ist nur für autonome Systeme sinnvoll und hängt nur von der Fundamentalmatrix der zugehörigen abweichenden Lösungen entlang der Lösungsbahn des Systems ab. Alternativ können wir Ljapunov-Exponenten auch für Lösungen von abstrakten, linearen Systemen definieren. Betrachte das System (. Sei Φ(tFundamentalmatrix bei t =. Dann ist der Ljapunov-Exponent definiert durch: mit v R n. χ(v : ( Φ(tv 9

10 Kommen wir nun zu einem interessanten Ergebnis: (3.9 Lemma Falls µ ein Floquet-Exponent des Systems (5 ist, dann ist der Realteil von µ ein Ljapunov-Exponent. Beweis Angenommen, die Fundamentalmatrix Φ(t ist in Floquet-Normalform gegeben durch: Φ(t = P(te tb, wobei p : R C n eine -periodische Funktion und B C n n ist. Falls µ = a + ib ein Floquet-Exponent ist, dann gibt es nach Definition einen zugehörigen Vektor v, sodass e µ v = λv = e B v mit λ ein Eigenwert von e B. Es ist Φ( = P(e B und Φ( = P(e = I nach Voraussetzung. Daraus folgt P( = I, also P( = P( = I, also Φ( = e B und damit Φ(v = e µ v Falls t, dann gibt es eine nichtnegative ganze Zahl n und eine Zahl r, sodass r < mit t = n + r. Betrachte ( Φ(tv Erweitern des Bruchs und t = n + r einsetzen ergibt: ( Φ(tv = ( ( n Φ(tv n + r n ln Indem man nun Φ(t = P(te tb und e B = e µ ausnutzt, erhält man ( Φ(tv = ( ( ( n P(n + re rb n + r n ln e nµ v Da P(t -periodisch ist, µ = a + ib und den Logarithmus-Regeln folgt: ( Φ(tv = ( ( n n + r n ln( ena + ( P(re rb n ln v Offensichtlich gilt n, falls t. Also folgt: lim n } n {{ + r } n ln( ena + ( P(re rb }{{} n ln v = a. =na }{{} }{{} a

Floquet-Theorie IV. 1 Hills Gleichung

Floquet-Theorie IV. 1 Hills Gleichung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 08.11.2011 Tobias Roidl Dieser Vortrag befasst sich mit der Hills Gleichung und gibt eine Einführung in die Periodischen Orbits von linearen Systemen.

Mehr

Floquet Theorie II. 1 Einführung

Floquet Theorie II. 1 Einführung Vortrag zum Seminar Gewöhnliche Differentialgleichungen, 18.10.2011 Sebastian Monschang 1 Einführung Auf den Ergebnissen des ersten Vortrags basierend werden wir in diesem Vortrag gewöhnliche lineare Differentialgleichungssysteme

Mehr

Stabilitätsfragen bei autonomen Systemen

Stabilitätsfragen bei autonomen Systemen 1 Stabilitätsfragen bei autonomen Systemen M. Schuster 09.08.2006 Inhaltsverzeichnis 1 Allgemeines über autonome Systeme 1 1.1 Oft übliche Bezeichnungen mit Übersetzung.......................... 1 2 Stabilität

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

Seminar Gewöhnliche Dierentialgleichungen

Seminar Gewöhnliche Dierentialgleichungen Seminar Gewöhnliche Dierentialgleichungen Dynamische Systeme II Valentin Jonas 8. 6. 215 1 Einleitung In dem letzten Kapitel "Dynamische Systeme I" ging es vor allem um in t glatte, autonome, dynamische

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Planare Systeme II Einleitung Dieser Vortrag beschäftigt sich mit unterschiedlichen, allgemeinen Lösungen von Differentialgleichungssystemen und ihrer graphischen

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 2

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 2 Prof. Roland Gunesch Sommersemester 00 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt Aufgabe : a Zeigen Sie: Für alle Anfangsdaten u 0, t 0 R R hat das Anfangswertproblem

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

12 Lineare Differentialgleichungen mit periodischen Koeffizienten

12 Lineare Differentialgleichungen mit periodischen Koeffizienten 56 Gewöhnliche Differentialgleichungen / Sommersemester 28 12 Lineare Differentialgleichungen mit eriodischen Koeffizienten 12.1 Homogene lineare Systeme mit eriodischen Koeffizienten haben für > die Form

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

Stabilität linearer Differentialgleichungssysteme 1-1

Stabilität linearer Differentialgleichungssysteme 1-1 Stabilität linearer Differentialgleichungssysteme Ein lineares homogenes Differentialgleichungssystem mit konstanten Koeffizienten u = Au, u = (u 1,..., u n ) t, ist Stabilität linearer Differentialgleichungssysteme

Mehr

Aufgaben GDGL SS 1998

Aufgaben GDGL SS 1998 Aufgaben GDGL SS 1998 Frank Wübbeling 17. September 1998 Aufgabe 1: (4 Punkte) Stellen Sie eine Differentialgleichung 1. Ordnung auf für die Schar der Parabeln mit der x-achse als Achse und dem Ursprung

Mehr

Klassifikation planarer Systeme

Klassifikation planarer Systeme Klassifikation planarer Systeme Dieser Vortrag thematisiert die Klassifikation planarer Systeme. Man klassifiziert planare Systeme um einen besseren Überblick über die verschiedenen Verhaltensweisen von

Mehr

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden.

Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Lösungsvorschläge zur ersten Klausur Gewöhnliche Differenzialgleichungen am 20.6.2015 um 10 Uhr. Bearbeitungszeit beträgt zwei Stunden. Prof. Dr. Wolfgang Arendt Manuel Bernhard Sommersemester 2015 Achten

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Prof. Dr. Guido Sweers WS 28/29 Jan Gerdung, M.Sc. Gewöhnliche Dierentialgleichungen Übungsblatt 6 Die Lösungen müssen in den Übungsbriefkasten Gewöhnliche Dierentialgleichungen Raum 3 im MI) geworfen

Mehr

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1

x= f(x) p= U (x). (b) Zeigen Sie, dass auf jeder auf einem Intervall existierenden Lösung t x(t) die Energie E(t) := 1 2 p(t)2 + U(x(t)) x 1 Blatt 1 03042006 H-Ch Grunau Aufgabe 1 Betrachten Sie die Differentialgleichung x= f(x) mit f = U und U C 2 ((α, β), R) und schreiben Sie diese in der Form x= p, p= U (x) (a) Skizzieren Sie die Phasenportraits

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 12.1 Der Satz von Picard-Lindelöf 12.1.1 Definition (Explizite Differentialgleichung erster Ordnung) Ω 1 R, Ω 2 R n seien offen und f : Ω 1 Ω 2 R n, (x,y) f (x,y)

Mehr

14 Ljapunov-Funktionen

14 Ljapunov-Funktionen 14 Ljapunov-Funktionen 67 14 Ljapunov-Funktionen 14.1 Gradientenfelder. a Ein Vektorfeld v C 1 D, R n besitze ein Potential U C 2 D, R, d.h. es sei v = gradu. Dann ist Dvx = HUx symmetrisch, und man hat

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Lösung - Schnellübung 13

Lösung - Schnellübung 13 D-MAVT/D-MATL Analysis II FS 7 Dr. Andreas Steiger Lösung - Schnellübung 3. Gegeben sei die Differentialgleichung y + λ 4 y + λ y = 0. Für welche Werte des reellen Parameters λ gibt es eine von Null verschiedene

Mehr

Übungen zu Differentialgleichungen (WiSe 12/13)

Übungen zu Differentialgleichungen (WiSe 12/13) Übungen zu Differentialgleichungen WiSe 2/) Blatt 6 22 November 202 Gruppenübung Aufgabe G Sei f t, p) := p 5, t, p) R 2 Gegeben sei das Anfangswertproblem ẋ = f t,x), x0) = ) Bestimmen sie das maximale

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Mathematik für Anwender I. Klausur

Mathematik für Anwender I. Klausur Fachbereich Mathematik/Informatik 27. März 2012 Prof. Dr. H. Brenner Mathematik für Anwender I Klausur Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

1 Nicht-lineare dynamische Systeme

1 Nicht-lineare dynamische Systeme 1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:

Mehr

29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1)

29.2 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System. y = A y, t R, (1) 292 Lineare Differentialgleichungssysteme mit konstanten Koeffizienten Wir betrachten das homogene System y = A y, t R, ( wobei A C n n, und wollen ein Fundamentalsystem bestimmen Grundlegende Beobachtung:

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 7..7 Aufgabe ( Punkte) (a) Bestimmen Sie die Eigenwerte und Eigenräume der Matrix A mit 3 3 A = 3 Ist die Matrix A diagonalisierbar? (b) Die Matrix A

Mehr

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf d Gewöhnliche Differentialgleichungen Woche 6 Existenz nach Picard-Lindelöf 6.1 Vorbereitung für den Existenzsatz 6.1.1 Stetigkeit und Lipschitz-Stetigkeit Definition 6.1 Seien (V 1, 1 und (V 2, 2 zwei

Mehr

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007

Differenzen/Differentialgleichungen Gegenüberstellung und Analogien sneaky, Mai 2007 Differenzengleichung Differentialgleichung 1. Ordnung (konstante Koeff.) Gestalt x n+1 =ax n +b allgemeine Lösung x n = a n x 0 +b((a n -1)/(a-1)) für a 1 oder x n = x 0 +b n für a=1 partikuläre Lösung

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 53 Norm von Endomorphismen und Matrizen Definition 53.1. Es seien V und W endlichdimensionale normierte K-

Mehr

Lineare Systeme 1. Ordnung mit konstanten Koeffizienten

Lineare Systeme 1. Ordnung mit konstanten Koeffizienten Lineare Systeme. Ordnung mit konstanten Koeffizienten Wir betrachten ẋ = Ax + b(t) () mit A R n n und b( ) C (I, R n ) und die dazugehörige homogene Gleichung Ansatz: ẋ = Ax. () x(t) = ce λt mit c C n,

Mehr

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen:

Wir wollen Systeme von linearen Differentialgleichungen 1. Ordnung über einem offenen Intervall I R untersuchen: 23 23 Lineare Systeme Wir wollen Systeme von linearen Differentialgleichungen Ordnung über einem offenen Intervall I R untersuchen: y = y A(t + b(t, mit stetigen Abbildungen A : I M n,n (R und b : I R

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

1.3 Zweidimensionale Systeme

1.3 Zweidimensionale Systeme 132 KAPITEL IV. QUALITATIVE THEORIE UND DYNAMISCHE SYSTEME Im Fall a 3 > 0 ist das Gleichgewicht asymptotisch stabil. Für a 2 3 > 4a 1a 2 haben wir < < 0 und es liegt ein stabiler Knoten vor (siehe den

Mehr

Gewöhnliche Differentialgleichungen Woche 7. Nicht-lineare und linearisierte Systeme

Gewöhnliche Differentialgleichungen Woche 7. Nicht-lineare und linearisierte Systeme Gewöhnliche Differentialgleichungen Woche 7 Nicht-lineare und linearisierte Systeme d 71 Gleichgewichtspunkte Wir werden uns mit Anfangswertproblemen der folgenden Form beschäftigen: { y (t f (t, y(t,

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

6.1 Komplexe Funktionen

6.1 Komplexe Funktionen 118 6 Funktionentheorie 6.1 Komplexe Funktionen Wir kennen die komplexen Zahlen als Erweiterung des Körpers der reellen Zahlen. Man postuliert die Existenz einer imaginären Größe i mit der Eigenschaft

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert.

h n = (t t 0 )/n Bevor wir diesen Satz beweisen, geben wir noch einen Hilfssatz an, der eine wichtige Abschätzung liefert. Kapitel 4 Berechnung von Lösungen 41 Die Euler sche Polygonzugmethode Die Grundlage dieser Methode ist die einfache Beobachtung, dass f(u, t) in der Nähe eines Punktes als nahezu konstant angesehen werden

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung 1 Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform 4 Reelle Fundamentalsysteme Ausblick auf die heutige Vorlesung

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

y = A(x) y + b(x). (1) y = A(x) y (2)

y = A(x) y + b(x). (1) y = A(x) y (2) 73 5.2 Lineare Systeme Sei weiterhin IK = C oder IK = IR. Seien = I IR ein offenes Intervall, x 0 I, y 0 IK n, A: I IK n n und b: I IK n stetige matrix- bzw vektorwertige Funktionen. Wir betrachten komplexe

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

Lineare Differentialgleichungen

Lineare Differentialgleichungen Technische Universität München Thomas Reifenberger Vorlesung, Kapitel 4 Repetitorium Analysis I für Physiker Analysis I Lineare Differentialgleichungen 1 Das Matrixexponential Definition 1.1 Sei A C n

Mehr

Formelsammlung zum Skriptum

Formelsammlung zum Skriptum Systemtheorie und Regelungstechnik I - WS08/09 Formelsammlung zum Skriptum Kapitel 2 Satz 23 (Lokale Existenz und Eindeutigkeit) Es sei f (x, t) stückweise stetig in t und genüge der Abschätzung (Lipschitz-Bedingung)

Mehr

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung Gewöhnliche Differentialgleichungen Woche 7 Globale Existenz einer Lösung 7.1 Von lokal zu global Wir betrachten wiederum das Anfangswertproblem { y (x = f (x, y(x, y( = y 0. (7.1 Eine erste Erweiterung

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

Analysis II (FS 2015): Vektorfelder und Flüsse

Analysis II (FS 2015): Vektorfelder und Flüsse Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme

Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Analysis von singulären Differentialgleichungen erster und zweiter Ordnung - Skalare Probleme Jonathan Mosser 3. Juni 27 / 38 Vorbemerkungen Singularität Singuläre Probleme können auf zwei Arten formuliert

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

Kapitel 7. Topologische Äquivalenz. 7.1 Strukturelle Stabilität

Kapitel 7. Topologische Äquivalenz. 7.1 Strukturelle Stabilität Kapitel 7 Topologische Äquivalenz 7.1 Strukturelle Stabilität Wir betrachten in diesem Abschnitt C 1 -Vektorfelder auf kompakten Mannigfaltigkeiten, oder aber Lipschitz stetige Vektorfelder auf einem Gebiet

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Prof. Steinwart Höhere Mathematik I/II Musterlösung A = Prof. Steinwart Höhere Mathematik I/II Musterlösung 9.8.6 Aufgabe Punkte a Berechnen Sie die Eigenwerte der folgenden Matrix: A 3 b Es sei 4 A. 8 5 Bestimmen Sie P, P M, und eine Diagonalmatrix D M, so,

Mehr

3. Lineare dynamische Systeme

3. Lineare dynamische Systeme 3 Lineare dynamische Systeme Im Kapitel 11 wurde bereits erwähnt, dass die Wahl der Zustandsgrößen keinesfalls eindeutig ist (siehe auch Aufgabe 16) Mit Hilfe einer regulären Zustandstransformation der

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

4.7 Lineare Systeme 1. Ordnung

4.7 Lineare Systeme 1. Ordnung 3. Die allgemeine Lösung der inhomogenen Differentialgleichung lautet damit yx = y hom x + y inh x = c x + c 2 x + 8 x + 4 xlnx2 4 xlnx = C x + C 2 x + 4 xlnx2 4 xlnx. Wir haben c 2 + 8 zu C 2 zusammengefasst.

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Analysis 3. Vorlesungsausarbeitung zum WS 2001/02. von Prof. Dr. Klaus Fritzsche. Inhaltsverzeichnis

Analysis 3. Vorlesungsausarbeitung zum WS 2001/02. von Prof. Dr. Klaus Fritzsche. Inhaltsverzeichnis Bergische Universität Gesamthochschule Wuppertal Fachbereich Mathematik Analysis 3 Kapitel 6 Dynamische Systeme Vorlesungsausarbeitung zum WS 2001/02 von Prof. Dr. Klaus Fritzsche Inhaltsverzeichnis 1

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1

D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler. Übungsblatt 5 A := u = Au, u(0) = 1. 1 D-MATH, D-PHYS, D-CHAB Analysis II FS 2017 Prof. Manfred Einsiedler Übungsblatt 5 1. Gegeben sei die Matrix 1 1 0 A := 0 1 0 0 0 2 a) Bestimmen Sie ein Fundamentalsystem (das heisst eine Basis des Lösungsraums)

Mehr

Zulassungsprüfung in Mathematik

Zulassungsprüfung in Mathematik der Deutschen Aktuarvereinigung e V Hinweise: Als Hilfsmittel sind ein Taschenrechner, eine mathematische Formelsammlung sowie entsprechende Literatur zugelassen Die Gesamtpunktzahl beträgt 9 Punkte Die

Mehr

Übungen p-adische Zahlen

Übungen p-adische Zahlen Blatt 1 Aufgabe 1. Berechnen Sie die ersten fünf Ziffern a 0,..., a 4 der ganzen p- adischen Zahl 1 + p + p 2 = a i p i Z p, p 1 i 0 für die Primzahlen p = 2, 3, 5. Aufgabe 2. Sei a = i 0 a ip i Z p eine

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

3 Gewöhnliche Differentialgleichungen 23.4.

3 Gewöhnliche Differentialgleichungen 23.4. 3 Gewöhnliche Differentialgleichungen 23.4. 3.1 Differentialgleichungen erster Ordnung 3.1.1 Fundamentalsätze Definition 3.1. Es sei Ω R d eine offene Menge und V : Ω R d eine Vektorfunktion. Eine Kurve

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 25 1. Wie lautet die charakteristische Gleichung der Differentialgleichung y + 2y + y = 0? (a) λ 3 + 2λ + 1 = 0 (b) λ 3 + 2λ = 0 (c)

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analsis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 07.05.07 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Frühjahr 2014 T R, M.S. 06.03.2014 Bachelor-Modulprüfung Aufgabe

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Musterlösung Klausur zu Analysis II. Verständnisteil

Musterlösung Klausur zu Analysis II. Verständnisteil Technische Universität Berlin SS 2009 Institut für Mathematik 20.07.2009 Prof. Dr. R. Schneider Fritz Krüger Sebastian Holtz Musterlösung Klausur zu Analysis II Verständnisteil 1. (a) Sei D R n konvex

Mehr

KAPITEL 10 DIE INNERE-PUNKTE-METHODE

KAPITEL 10 DIE INNERE-PUNKTE-METHODE KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Die von Neumannsche Ungleichung

Die von Neumannsche Ungleichung Die von Neumannsche Ungleichung Dominik Schillo 12. November 2012 Satz (Die von Neumannsche Ungleichung) Seien p C[z] ein Polynom in einer Variablen und T L(H) eine Kontraktion (d.h. T 1). Dann gilt: p(t

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

Differentialgleichungen I

Differentialgleichungen I Differentialgleichungen I Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 5. Januar 2009 Beachtenswertes Die Veranstaltung

Mehr

Lineare Differenzialgleichungssysteme

Lineare Differenzialgleichungssysteme 16 Lineare Differenzialgleichungssysteme Eine lineare Differenzialgleichung auf dem R n ist von der Form ẋ = Ax mit einer reellen n n-matrix A. Ausgeschrieben handelt es sich um ein System von n gekoppelten

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr