Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Größe: px
Ab Seite anzeigen:

Download "Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens"

Transkript

1 in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg

2

3

4 : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik: 5 Deskriptive Statistik 6 Wahrscheinlichkeitstheorie 7 Induktive Statistik 3 Differentialgleichungen Lineare Differentialgleichungen

5 Weltkarte Ein makroökonomisches Modell Analyse von Differentialgleichungen 64

6 Kartenanamorphose der Bevölkerungsverteilung Ein makroökonomisches Modell Analyse von Differentialgleichungen Quelle: worldmapper.com 65

7 Ausgaben im tertiären Bildungssektor Ein makroökonomisches Modell Analyse von Differentialgleichungen Quelle: worldmapper.com 66

8 Bruttoinlandsprodukt 2002 Ein makroökonomisches Modell Analyse von Differentialgleichungen Quelle: worldmapper.com 67

9 BIP Wachstum zwischen 1975 und 2002 Ein makroökonomisches Modell Analyse von Differentialgleichungen Quelle: worldmapper.com 68

10 Makroökonomische Systeme und deren Beschreibung Lassen sich Beobachtungen an wirtschaftlichen Daten und vor allem deren Veränderung nutzen, um Entwicklungen aggregierter Größen in Volkswirtschaften wie z.b. den Beschäftigungsgrad oder das Bruttoinladsprodukt zu modellieren und zu analysieren? Dazu: Makroökonomische Modelle Ein makroökonomisches Modell Analyse von Differentialgleichungen 69

11 Das Modell zyklischen Wachstums von Goodwin Lohnquote und Beschäftigungsgrad: Problem Modellannahmen Betrachtung einer wirtschaftlichen Wachstumsphase Gesucht: Ausdruck für sich gegenseitig beeinflussende Lohnquote u(t) und Beschäftigungsgrad v(t) Verwendete Symbole: Wachstumsfaktor der Arbeitsproduktivität bzw. des Arbeitskräftepotentials: α, β Linearisierungskonstanten: ρ, γ Output pro Kapital: κ Modellannahmen reduzieren sich zu: v(t) v(t) u(t) u(t) = (κ α β) κ u(t) = (γ + α) + ρ v(t) Mit den Abkürzungen: Streikende bei der Telekom a 1 = κ α β ; a 2 = κ b 1 = γ + α ; b 2 = ρ ergibt sich: v(t) v(t) u(t) u(t) = a 1 a 2 u(t) = b 1 + b 2 v(t) Ein makroökonomisches Modell Analyse von Differentialgleichungen 70

12 Zusammenfassung Beschäftigungsgrad und Lohnquote v(t) v(t) u(t) u(t) = a 1 a 2 u(t) = b 1 + b 2 v(t) Ein makroökonomisches Modell Analyse von Differentialgleichungen Gleichungen beinhalten jeweils die gesuchte Funktion und ihre Ableitung Und nur eine Veränderliche (hier t) Solche Gleichungen nennt man gewöhnliche Differentialgleichungen Nötig für weitere Analyse der Modelle: Aussagen über Verhalten des Systems 71

13 Begriffe Differentialgleichung: Eine Gleichung einer gesuchten Funktion y und einigen ihrer Ableitungen Gewöhnliche Differentialgleichung n-ter Ordnung: Gleichung gesuchter Funktion y und einigen Ableitungen nach einer Veränderlichen x, also Gleichungen der Form: ( F x, y, dy ) dx,..., dn y = 0 dx n oder ( F x, y, y,..., y (n)) = 0 Explizite Differentialgleichung erster Ordnung: y = f(y, x) Anfangswertproblem: ) F (x, y, y,..., y (n) = 0, y(x 0 ) = y 0, y (x 0 ) = y 0,..., y (n 1) (x 0 ) = y n

14 Analyse von Differentialgleichungen Wichtige Fragen: Gibt es eine explizite Lösung? Falls vorhanden: Eindeutigkeit? Oft trotz Existenz und Eindeutigkeit analytische Lösung nicht möglich; dann zum Beispiel: Richtungsfelder Numerische Lösungen Beispiel numerischer Lösungen: dy dx = 2xy2 73

15 Analyse von Differentialgleichungen Wichtige Fragen: Gibt es eine explizite Lösung? Falls vorhanden: Eindeutigkeit? Oft trotz Existenz und Eindeutigkeit analytische Lösung nicht möglich; dann zum Beispiel: Richtungsfelder Numerische Lösungen Bei ohne Abhängigkeit von Parameter: Trajektorien Stabile Punkte Physikalisches Pendel, Winkel v(t), Winkelgeschwindigkeit u(t), Dämpfung λ > 0 dv = u(t) dt du = sin(v) λ u(t) dt 73

16 Beispiel: Räuber-Beute-Dynamik Pflanzenfresserpopulation B(t) wächst (ungestört) mit konstanter Rate a 1. Ḃ(t) B(t) = a 1 Analyse des Modells von Goodman 74

17 Beispiel: Räuber-Beute-Dynamik Pflanzenfresserpopulation B(t) wächst (ungestört) mit konstanter Rate a 1. Bei Existenz von Raubtieren mit den Pflanzenfressern als Beute: Raubtierbestand R(t) vermindert Wachstumsrate der Beutetiere proportional: Ḃ(t) B(t) = a 1 a 2 R(t) Analyse des Modells von Goodman 74

18 Beispiel: Räuber-Beute-Dynamik Pflanzenfresserpopulation B(t) wächst (ungestört) mit konstanter Rate a 1. Bei Existenz von Raubtieren mit den Pflanzenfressern als Beute: Raubtierbestand R(t) vermindert Wachstumsrate der Beutetiere proportional: Ḃ(t) B(t) = a 1 a 2 R(t) Analyse des Modells von Goodman Ohne Beute (B(t) = 0) schrumpft Raubtierbestand kontinuierlich mit konstanter Rate b 1. Ṙ(t) R(t) = b 1 74

19 Beispiel: Räuber-Beute-Dynamik Pflanzenfresserpopulation B(t) wächst (ungestört) mit konstanter Rate a 1. Bei Existenz von Raubtieren mit den Pflanzenfressern als Beute: Raubtierbestand R(t) vermindert Wachstumsrate der Beutetiere proportional: Ḃ(t) B(t) = a 1 a 2 R(t) Analyse des Modells von Goodman Ohne Beute (B(t) = 0) schrumpft Raubtierbestand kontinuierlich mit konstanter Rate b 1. Andererseite wächst ihr Bestand proportional zur vorhandenen Menge der Beutetiere: Ṙ(t) R(t) = b 1 + b 2 B(t) 74

20 Beispiel: Räuber-Beute-Dynamik Pflanzenfresserpopulation B(t) wächst (ungestört) mit konstanter Rate a 1. Bei Existenz von Raubtieren mit den Pflanzenfressern als Beute: Raubtierbestand R(t) vermindert Wachstumsrate der Beutetiere proportional: Ḃ(t) B(t) = a 1 a 2 R(t) Ohne Beute (B(t) = 0) schrumpft Raubtierbestand kontinuierlich mit konstanter Rate b 1. Andererseite wächst ihr Bestand proportional zur vorhandenen Menge der Beutetiere: Ṙ(t) R(t) = b 1 + b 2 B(t) System von Differentialgleichungen beschreibt im B-R-Diagramm zyklische Kurven. Bekannt als Lotka-Volterra-Gleichungen Analyse des Modells von Goodman 74

21 Analogie der Modelle Beute-Jäger-Modell Goodman-Modell Ḃ(t) B(t) = a 1 a 2 R(t) v(t) v(t) = a 1 a 2 u(t) Ṙ(t) R(t) = b 1 + b 2 B(t) u(t) u(t) = b 1 + b 2 v(t) Die Beschäftigungsgrad v(t) entspricht der Beute, Die Lohnquote u(t) den Räubern Jede Lösung: Zyklus im u-v-diagramm Anfangsbedingungen bestimmen Orbit Stationäre Lösung bei u = a 1 /a 2 und v = b 1 /b 2 Analyse des Modells von Goodman 75

22 Mechanik des Modells a) Beschäftigungsgrad v kleiner als b 1 /b 2 Lohndruck ist gering, Reallöhne sinken. b) Dadurch: Sinkende Lohnquote (und steigende Gewinnquote wachsende Investitionen) c) Diese erhöhen die Wachstumsrate der Produktion und sobald diese das Wachstum der Arbeitsproduktivität übersteigt, kommt es zu Neueinstellungen und der Beschäftigungsgrad nimmt zu. Richtungsfeld mit a 1 = 2, a 2 = b 1 = b 2 = 1 d) Dann: Steigender Beschäftigungsgrad und Lohndruck; Reallöhne wachsen, senken die Gewinnquote, die Investitionen und die Wachstumsrate der Wirtschaft. Sobald diese unter die Wachstumsrate der Arbeitsproduktivität gesunken ist, sinkt der Beschäftigungsgrad wieder. 2 v(t) v(t) u(t) u(t) = a 1 a 2 u(t) = b 1 + b 2 v(t) Analyse des Modells von Goodman 76

23 Empirischer Gehalt des Modells Westdeutsche Daten Analyse des Modells von Goodman Quelle: Sachverständigenrat (1996) 77

Die Differentialgleichung :

Die Differentialgleichung : Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Nichtlineare Dynamik in biologischen Systemen

Nichtlineare Dynamik in biologischen Systemen Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik 29. August 2006 11 Nichtlineare Dynamik in biologischen Systemen Erster Gutachter: Prof. Dr. Wolfgang Oehme, Universität

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 8.12.2016 20. Vorlesung Differentialgleichungen n-ter Ordnung Lösung einer Differentialgleichung Veranschaulichung der Lösungsmenge Anfangswertprobleme Differentialgleichungen

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme

Outline. 1 Anwendungen. 2 Trennung der Variablen. 3 Variation der Konstanten. 4 Differentialgleichungssysteme Outline 1 Anwendungen 2 Trennung der Variablen 3 Variation der Konstanten 4 Differentialgleichungssysteme 5 Lösungsansatz vom Typ der rechten Seite Roman Wienands (Universität zu Köln) Mathematik II für

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

4 Gewöhnliche Differentialgleichungen

4 Gewöhnliche Differentialgleichungen 4 Gewöhnliche Differentialgleichungen 4.1 Einleitung Definition 4.1 Gewöhnliche Differentialgleichung n-ter Ordnung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten

Mehr

Wettbewerbs- und Symbiose-Modelle Von Jakob Foss

Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbs- und Symbiose-Modelle Von Jakob Foss Wettbewerbsmodell Das einfachste Wettbewerbsmodell für zwei Spezies lässt sich aus dem Lotka- Volterra Modell ableiten und sieht folgendermaßen aus: dn1

Mehr

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t 5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 93 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

Klassifikation von partiellen Differentialgleichungen

Klassifikation von partiellen Differentialgleichungen Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.

Mehr

6 Differentialgleichungen

6 Differentialgleichungen 88 6 Differentialgleichungen Eine Differentialgleichung ist eine Gleichung, in der eine unbekannte Funktion y = y(x) und Ableitungen (die erste oder auch höhere) von y vorkommen. Lösungen einer Differentialgleichung

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

6 Gewöhnliche Differentialgleichungen

6 Gewöhnliche Differentialgleichungen 6 Gewöhnliche Differentialgleichungen Differentialgleichungen sind Gleichungen in denen nicht nur eine Funktion selbst sondern auch ihre Ableitungen vorkommen. Im einfachsten Fall gibt es eine unabhängige

Mehr

Mathematische Methoden der Physik I

Mathematische Methoden der Physik I Karl-Heinz otze Mathematische Methoden der Physik I Nachschrift des Vorlesungs-Manuskripts und A TEX-Satz von Simon Stützer Jena, November 2009 Inhaltsverzeichnis 9 Gewöhnliche Differentialgleichungen

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

MATHEMATISCHE METHODEN DER PHYSIK 1

MATHEMATISCHE METHODEN DER PHYSIK 1 MATHEMATISCHE METHODEN DER PHYSIK 1 Helmuth Hüffel Fakultät für Physik der Universität Wien Vorlesungsskriptum Sommersemester 2012 Version vom 08-03-2012 Inhaltsverzeichnis 1 Lineare gewöhnliche Differentialgleichungen

Mehr

Numerische Verfahren für gewöhnliche Differentialgleichungen

Numerische Verfahren für gewöhnliche Differentialgleichungen Numerische Verfahren für gewöhnliche Differentialgleichungen. Einschrittverfahren I: Einfache Verfahren. Konvergenzordnung. Einschrittverfahren II: Runge Kutta Verfahren 4. Stabilität 5. Schrittweitensteuerung

Mehr

1 Differentialgleichungen mit Matlab lösen

1 Differentialgleichungen mit Matlab lösen 1 Differentialgleichungen mit Matlab lösen Eine Differentialgleichung (DGL) ist eine Gleichung für eine gesuchte Funktion mit einer oder mehreren Variablen, in der auch Ableitungen dieser Funktion vorkommen.

Mehr

5.4 Uneigentliche Integrale

5.4 Uneigentliche Integrale 89 Wir dividieren die Potenzreihe von sin(t) gliedweise durch t und erhalten sint t = t (t t3 3! + t5 5! + ) = t2 3! + t4 5! +. Diese Reihe ist konvergent für alle t R. Nun integrieren wir gliedweise.

Mehr

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2.

Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Kapitel 8: Gewöhnliche Differentialgleichungen 8.1 Definition, Existenz, Eindeutigkeit von Lösungen Motivation: z.b. Newton 2. Gesetz: (enthalten Ableitungen der gesuchten Funktionen) Geschwindigkeit:

Mehr

Einfache Modelle der Populationsdynamik

Einfache Modelle der Populationsdynamik Vorlesung 4. Einfache Modelle der Populationsdynamik Wintersemester 215/16 1.11.215 M. Zaks allgemeine vorbemerkungen In kleinen Populationen schwanken die Bevolkerungszahlen stochastisch: Geburt/Tod von

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

y hom (x) = C e p(x) dx

y hom (x) = C e p(x) dx Gewöhnliche Differentialgleichungen F (x, y, y,..., y n ) = 0 Gleichung, die die Veränderliche x sowie die Funktion y = y(x) und ihre Ableitungen y,..., y n beinhaltet. Klassifiaktion: implizit F (...)

Mehr

Modelle für interagierende Populationen

Modelle für interagierende Populationen Modelle für interagierende Populationen Christoph Molitor 06.11.2012 Seminar: Mathematische Modelle in der Biologie (WS 12/13) Literatur: J. D. Murray (2002): Mathematical Biology: I. An Introduction,

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Eine einfache Differentialgleichung löst man bereits beim Integrieren in der Oberstufe. Sie hat die Form y (x) = f(x) und y wird gesucht. Beispiel: y (x) = 6x² - 4x + 1 fl y(x)

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Jahreskurs Makroökonomik, Teil 2

Jahreskurs Makroökonomik, Teil 2 Professor Dr. Oliver Landmann SS 2011 Jahreskurs Makroökonomik, Teil 2 Wiederholungsklausur vom 12. Oktober 2011 Aufgabe 1 (25%) Die Produktionsfunktion einer Volkswirtschaft sei gegeben durch Y = K α

Mehr

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet.

3. Berechnen Sie auch die Beschleunigung a als Funktion der Zeit t. 4. Erstellen Sie ein SIMULINK Modell, das x(t) numerisch berechnet. unit 1 / Seite 1 Einführung Differenzialgleichungen In physikalischen Anwendungen spielt oft eine Messgrösse in Abhängigkeit von der Zeit die Hauptrolle. Beispiele dafür sind Druck p, Temperatur T, Geschwindigkeit

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes 6. Nichtlineare Modelle 6.1 Nichtlineare Modelle

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 6 Differentialgleichungen erster Ordnung 0.7.0 Beispiel 6.: Durch Verzinsung wächst ein Kapital Kx im Laufe der Zeit x. Der Zuwachs K zum Zeitpunkt x im kleinen Zeitraum x ist proportional zum

Mehr

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen

7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Prof. Dr. Walter Arnold Lehrstuhl für Materialsimulation Universität des Saarlandes 5. Januar 2016 7. Übungsblatt Physik I für MWWT Komplexe Zahlen, gewöhnliche Differentialgleichungen Abgabe des Übungsblattes

Mehr

Differentialgleichung.

Differentialgleichung. Kapitel 9 Differentialgleichungen 9. Einteilung der Differentialgleichungen In einer Differentialgleichung (DGl) treten Differentialquotienten von einer oder ehreren Funtionen von einer oder ehreren Veränderlichen

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Modellbasierte Software- Entwicklung eingebetteter Systeme

Modellbasierte Software- Entwicklung eingebetteter Systeme Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS Folie

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen

Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen MATHEMATISCHES INSTITUT SoSe 24 DER UNIVERSITÄT MÜNCHEN Probeklausur zu Funktionentheorie, Lebesguetheorie und gewöhnlichen Differentialgleichungen Musterlösung Prof. Dr. P. Pickl Aufgabe Zeigen Sie, dass

Mehr

Spezielle Kinetik MC 1.3. Prof. Dr. B. Dietzek. Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie. Wintersemester 2016/2017

Spezielle Kinetik MC 1.3. Prof. Dr. B. Dietzek. Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie. Wintersemester 2016/2017 Spezielle Kinetik MC 1.3 Prof. Dr. B. Dietzek Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie Wintersemester 2016/2017 B. Dietzek/D. Bender Spezielle Kinetik 1 Physikalische Chemie//Master

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Dynamische Systeme in der Mikrobiologie

Dynamische Systeme in der Mikrobiologie Dynamische Systeme in der Mikrobiologie Gruppe G Mi: Severine Hurni, Esther Marty, Giulia Ranieri, Matthias Engesser, Nicole Konrad Betreuer: Roman Kälin 1. Einleitung Ein dynamisches System ist ein System,

Mehr

2.4 Gekoppelte lineare Differentialgleichungen

2.4 Gekoppelte lineare Differentialgleichungen 48 Kapitel 2 Lineare Algebra II 24 Gekoppelte lineare Differentialgleichungen Die Untersuchung der Normalformen von Matrizen soll nun auf die Lösung von gekoppelten Differentialgleichungen angewendet werden

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 7.0.07 (Stand: 7.0.07, 6: Uhr) Frage Wofür gibt es für Studierende der Biologie und des Lehramtes

Mehr

Lineare Differentialgleichungen höherer Ordnung

Lineare Differentialgleichungen höherer Ordnung Lineare Differentialgleichungen höherer Ordnung I. Grundlegendes Eine homogene lineare Differentialgleichung n-ter Ordnung besitzt die Form y (n) + a n 1 (x)y (n 1) +... + a 1 (x)y + a 0 (x)y = 0 Eine

Mehr

Jahreskurs Makroökonomik, Teil 1

Jahreskurs Makroökonomik, Teil 1 Professor Dr. Oliver Landmann WS 2011/12 Jahreskurs Makroökonomik, Teil 1 Abschlußklausur vom 2. März 2012 Aufgabe 1 (30%) Beurteilen Sie, ob die folgenden Beobachtungen mit der in der Vorlesung behandelten

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Vorbemerkungen. Eine gewöhnliche Differentialgleichung ist eine Gleichung, wo neben einer gesuchten Funktion y(x) auch deren Ableitungen y, y etc. auftreten, z.b. y

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

SVWL Wachstum, Strukturwandel und Handel SS 2016 Konjunktur und Wachstum

SVWL Wachstum, Strukturwandel und Handel SS 2016 Konjunktur und Wachstum SVWL Wachstum, SS 2016 Konjunktur und Wachstum Rechts- und Staatswissenschaftliche Erklärung konjunktureller Schwankungen: Konjunkturelle Schwankungen können ihre Ursache in Anpassungsprozessen auf dem

Mehr

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer

Reaktionskinetik. Maximilian Erlacher. Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Reaktionskinetik Maximilian Erlacher Quelle: Mathematical Biology: I. An Introduction, Third Edition J.D. Murray Springer Themen: 1 Basisenzymreaktion 2 Michaelis-Menten-Analyse 3 Selbstauslöschende Kinetik

Mehr

Lineare Differenzen- und Differenzialgleichungen

Lineare Differenzen- und Differenzialgleichungen Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

Zusätzliche Aufgabe 5:

Zusätzliche Aufgabe 5: D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas Zusätzliche Aufgabe 5: Populationsmodelle Um die Entwicklung einer Population zu modellieren, gibt es diskrete Modelle, wobei die Zeit t bei diskreten

Mehr

DIFFERENTIALGLEICHUNGEN (DGL)

DIFFERENTIALGLEICHUNGEN (DGL) DIFFERENTIALGLEICHUNGEN (DGL) Definition und Klassifikation und Beispiele Definition und Klassifikation Definition Gleichung, deren Unbekannte eine Funktion ist und die Ableitungen der gesuchten Funktion

Mehr

Gewöhnliche Differentialgleichungen Woche 1

Gewöhnliche Differentialgleichungen Woche 1 Gewöhnliche Differentialgleichungen Woche Einführung. Modelle Eine gewöhnliche Differentialgleichung gibt eine Relation zwischen einer unbekannten Funktion und deren Ableitung(en). Nun kann man unendlich

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

11.2. Lineare Differentialgleichungen erster Ordnung

11.2. Lineare Differentialgleichungen erster Ordnung 112 Lineare Differentialgleichungen erster Ordnung Dynamische Entwicklung von Populationen Entwickelt sich eine bestimmte Größe, zb die einer Population oder eines einzelnen Organismus, nicht nur proportional

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 27.01.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen 1. Abkühlungsgesetz von Newton Newton s Abkühlungsgesetz beschreibt die Wärmezunahme bzw. -abnahme einer Tasse kalten oder heissen Wassers, die zur Zeit t = 0 in einen grossen Raum

Mehr

Computer-orientierte Mathematik

Computer-orientierte Mathematik Computer-orientierte Mathematik 5. Vorlesung - Christof Schuette 25.11.16 Memo: Relative und Absolute Kondition Relative Kondition der Grundrechenarten: Addition, Multiplikation und Division liefern beruhigende

Mehr

Lineare gewöhnliche Differentialgleichungen und Randwertprobleme

Lineare gewöhnliche Differentialgleichungen und Randwertprobleme Kapitel Lineare gewöhnliche Differentialgleichungen und Randwertprobleme Eine Differentialgleichung (DGL) ist eine Gleichung, in der die Variable x, die gesuchte Funktion y(x) sowie deren Ableitungen vorkommen.

Mehr

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016

Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016 Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche

Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche Newton-Beschreibung: Bewegung eines Massenpunkts auf einer Oberfläche R. Mahnke (Univ. Rostock), J. Kaupužs (Lettische Univ. Riga) 3. Mai 24 Zusammenfassung Ziel dieses Kommentars ist es, die Newtonschen

Mehr

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) =

Bemerkungen. f (x 1,..., x i + x i,..., x n ) f (x 1,..., x n ) lim. f xi (x 1,..., x n ) = Bemerkungen Die Erweiterung der Definition von partiellen Ableitungen 1. Ordnung für Funktionen u = f (x 1,..., x n ) mit n > 2 Veränderlichen ist offensichtlich: f xi (x 1,..., x n ) = f (x 1,..., x i

Mehr

Systemanalyse und Modellbildung

Systemanalyse und Modellbildung Systemanalyse und Modellbildung Universität Koblenz-Landau Fachbereich 7: Natur- und Umweltwissenschaften Institut für Umweltwissenschaften Dr. Horst Niemes(Lehrbeauftragter) 10.1 Systemdefinition Eine

Mehr

Modellbildung, Simulation und Populationsdynamik

Modellbildung, Simulation und Populationsdynamik ΔN Bild: Reg Mckenna, UK ΔN Bild: Wikipedia.org User StefanGe Modellbildung, Simulation und Populationsdynamik W. Oehme, Uniersität Leipzig Bild: Wikipedia.org User Barbarossa Bild: Wikipedia.org User

Mehr

Klausur zur AVWL WS 2014/15: Konjunktur und Wachstum

Klausur zur AVWL WS 2014/15: Konjunktur und Wachstum Rechts- und Staatswissenschaftliche Klausur zur AVWL WS 2014/15: Konjunktur und Wachstum Wachstum und technischer Fortschritt: Das Solow-Modell erklärt, dass durch Kapitalakkumulation Einkommenswachstum

Mehr

3. Kinematik und Schwingungen

3. Kinematik und Schwingungen 3. Kinematik und Schwingungen 1 3.1. Kinematik Als Nächstes wollen wir Bewegungen beschreiben z.b. die einer Cataglyphis 2 Zuallererst brauchen wir ein Koordinatensystem um die Positionen überhaupt zu

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

3. Ebene Systeme und DGL zweiter Ordnung

3. Ebene Systeme und DGL zweiter Ordnung H.J. Oberle Differentialgleichungen I WiSe 2012/13 3. Ebene Systeme und DGL zweiter Ordnung A. Ebene autonome DGL-Systeme. Ein explizites DGL-System erster Ordung, y (t) = f(t, y(t)), heißt bekanntlich

Mehr

MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012

MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012 MATHEMATIK III-PARTIELLE DIFFERENTIALGLEICHUNGEN, D-CHEM Herbstsemester 2012 Lektion 20 September 2012 Dieser Kurs ist eine Einführung von linearen partiellen Differentialgleichungen. Das Hauptziel ist

Mehr

Diskrete Populationsmodelle für Einzelspezies

Diskrete Populationsmodelle für Einzelspezies Diskrete Populationsmodelle für Einzelspezies Lisa Zang 30.10.2012 Quelle: J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Inhaltsverzeichnis 1. Einführung Einfache Modelle

Mehr

Computer und Software 1

Computer und Software 1 omputer und oftware 1. Köhler 6. aple Differentialgleichungen Folien: alint Aradi Differentialgleichungen Gewöhnliche Differentialgleichungen: f t, x t, x 1 t, x 2 t,..., x n t =0 x i t = d i x t dt i

Mehr

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung

Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Explizite gewöhnliche Differentialgleichung 1. Ordnung mit Anfangsbedingung Gesucht ist eine Funktion y(x), welche erfüllt y = f(x,y) y(x 0 ) = y 0 Differentialgleichung Anfangsbedingung Wenn f in x stetig

Mehr

Gewöhnliche Differenzialgleichungen

Gewöhnliche Differenzialgleichungen Chapter 3 Gewöhnliche Differenzialgleichungen 3.1 Der Luft- oder Strömungswiderstand (verursacht durch den Impulsübertrag der Luftmoleküle auf den Fallschirm), den ein Fallschirmspringer spürt, nachdem

Mehr

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte)

Klassische Theoretische Physik I WS 2013/ Wegintegrale ( = 50 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 2 Dr. P. P. Orth Abgabe und Besprechung 8.11.213 1. Wegintegrale 1 +

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr