Modellbasierte Software- Entwicklung eingebetteter Systeme

Größe: px
Ab Seite anzeigen:

Download "Modellbasierte Software- Entwicklung eingebetteter Systeme"

Transkript

1 Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS

2 Folie 2 Fragestunde Wie modelliert man physikalische Sachverhalte? Beispiele? Wie werden Gleichungen in Diagramme übersetzt? Was kann bei Rückkopplungen passieren? Lösungsmöglichkeit? Abstraktion von Blöcken? Was ist eine Trajektorie? Was sind Bereiche für Trajektorien?

3 Folie 3 Zustandsraum kontinuierlicher Systeme these slides thanks to Stephan Merz, LORIA / INRIA

4 Folie 4 Terminologie

5 Folie 5 Existenz und Eindeutigkeit von Lösungen

6 Folie 6 Probleme mit der Existenz (1)

7 Folie 7 Probleme mit der Existenz (2)

8 Folie 8 Experiment?

9 Folie 9 Lipschitz-Stetigkeit

10 Folie 10 Existenz und Eindeutigkeit von Trajektorien

11 Folie 11 Näherungslösungen

12 Folie 12 gesteuerte Systeme

13 Im Beispiel Zulauf max min Füllstandsanzeiger Zulauf sei kontinuierlich regelbar (0 z(t) 1) Annahme: min = max = soll der Füllstand sollte möglichst nahe an soll gehalten werden intendiertes Verhalten: je näher der Füllstand bei soll ist, desto mehr wird der Zulauf geschlossen erlaubtes Verhalten: voller Zulauf bis soll erreicht wird, dann zu (oszilliert, ruiniert auf Dauer das Ventil) verboten: max wird irgendwann überschritten und Ventil ist auf gesucht: sanfte Regelung H. Schlingloff, SS2014 modellbasierte Software-Entwicklung eingebetteter Systeme Ablauf Folie 13

14 Folie 14 Regelungstechnik Eingebettetes System: System Umgebung Allgemeines Schema eines Regelkreises: Prof. Dr.-Ing. Ch. Ament

15 Folie 15

16 Folie 16 Reglerklassen Proportionaler, integraler und differentialer Anteil bei der Regelung P-Regler: u(t)=k*e(t) I-Regler: u(t)=k* e(t) dt D-Regler: u(t) = k*e (t) PI-Regler: u(t) = k 1 *e(t) + k 2 * e(t) dt PD-Regler: u(t) = k 1 *e(t) + k 2 *e (t) PID-Regler: u(t) = k 1 *e(t) + k 2 * e(t) dt + k 3 *e (t) u(t) = K P *[e(t) + 1/T I * e(t) dt + T D *e (t)] K P : Proportionalbeiwert, T I : Nachstellzeit, T D : Vorhaltezeit Ziel: Vermeidung bzw. Dämpfung von Überschwingungen Reiner Differenzierer nicht realisierbar (Verzögerung!)

17 Folie 17 informell PID-Regler: P(proportionaler) Anteil: Je größer die Regelabweichung, umso größer muß die Stellgröße sein I(integraler) Anteil: Solange eine Regelabweichung vorliegt, muß die Stellgröße verändert werden D(differentieller) Anteil: Je stärker sich die Regelabweichung verändert, umso stärker muß die Regelung eingreifen

18 Folie 18 PID in Scicos Als fester vorgegebener Block verfügbar!

19 Folie 19 Überschwingungen ohne integralen Anteil mit integralem Anteil

20 Folie 20 Einstellung des Reglers Erst den proportionalen Anteil einstellen erhöhen bis leichte Oszillation auftritt Dann integralen Teil hochregeln solange bis die Oszillation aufhört Dann differentiellen Anteil damit Zielgerade möglichst schnell erreicht wird Parameter Anstiegszeit Überschwingung Einschwingzeit Abweichung P I D

21 Folie 21 Beispiel Wasserstandsregelung

22 Folie 22

23 Folie 23 nochmal Pendel Aufstellen physikalischer Schwingungsgleichungen Erstellen eines Simulationsmodells (Strecke/Regelung) Simulation und Validierung des Modells Codegenerierung

24 Folie 24 einfaches Pendel Länge L Auslenkung s Masse m Ansatz: Trägheitskraft = Rückstellkraft m*s = -m*g*sin =s/l m*s =-m*g*sin(s/l) Anfangsbedingung (0) bzw. s(0) Analytische Lösung meist schwierig / nicht nötig Simulation: Auflösen nach der höchsten Ableitung s =-g*sin(s/l) tu so als wenn s gegeben wäre und male ein Diagramm

25 Folie 25 inverses Pendel Modellierung der Strecke mit Wagen und Pendel

26 Folie 26 inverses Pendel Wagen: F=U-M*x Pendel: F T *cos( ) = F g * sin( )

27 Folie 27 Fraunhofer

70 Jahre Reglereinstellung nach Ziegler und Nichols

70 Jahre Reglereinstellung nach Ziegler und Nichols Fakultät Informatik, Institut für angewandte Informatik, Professur für technische Informationssysteme Proseminar Technische Informationssysteme Johannes Postel Dresden, 14. November 2011 Überblick 1. Systembegriff

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit.

Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. FELJC Optimierung_Theorie.odt Optimierung. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. Hierzu gibt es unterschiedliche

Mehr

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 [email protected] 04. 12.

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. Einführung in die Robotik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 [email protected] 04. 12. 2012 The human is perhaps the most intelligent control system

Mehr

Kybernetik Intelligent Agents- Action Selection

Kybernetik Intelligent Agents- Action Selection Kybernetik Intelligent Agents- Action Selection Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 [email protected] 26. 06. 2012 Intelligent Agents Intelligent Agents Environment

Mehr

4. Simulink. Zweck und grundlegende Eigenschaften Mit Simulink werden Modelle mathematischer, physikalischer Systeme berechnet (simuliert)

4. Simulink. Zweck und grundlegende Eigenschaften Mit Simulink werden Modelle mathematischer, physikalischer Systeme berechnet (simuliert) 4. Simulink Simulink ist eine s.g. Toolbox von Matlab Zweck und grundlegende Eigenschaften Mit Simulink werden Modelle mathematischer, physikalischer Systeme berechnet (simuliert) Modell basiert auf Blöcken,

Mehr

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)

10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) 10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

8 Blockschaltbilddarstellung für diskrete Systeme

8 Blockschaltbilddarstellung für diskrete Systeme Beispiel 7.5 Sprungantwort Die Sprungantwort beschreibt das komplette Übertragungsverhalten, da der Sprung in seiner Fourierzerlegung alle Frequenzen enthält. 7.6 algebraische Schleife 8 Blockschaltbilddarstellung

Mehr

Regelungs- und Systemtechnik 3

Regelungs- und Systemtechnik 3 Regelung Mechatronischer Systeme, Regelungs- und Systemtechnik 3 Kapitel 1: Einführung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Luft- und Raumfahrtindustrie 2 Zu regelnde

Mehr

LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler

LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler 3. P-Regler 3.1. Einleitung 3.1.1. Allgemeines Der Regler muss im Regelkreis dafür sorgen, dass der Istwert der Regelgröße X möglichst wenig vom Sollwert W abweicht. Das Verhalten der Regelstrecke ist

Mehr

Partielle Ableitungen & Tangentialebenen. Folie 1

Partielle Ableitungen & Tangentialebenen. Folie 1 Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung

Mehr

Strukturbildung und Simulation technischer Systeme. Strukturbildung und Simulation technischer Systeme. strukturbildung-simulation.

Strukturbildung und Simulation technischer Systeme. Strukturbildung und Simulation technischer Systeme. strukturbildung-simulation. Leseprobe zu Kapitel 9 Regelungstechnik des Buchs Strukturbildung und Simulation technischer Systeme Weitere Informationen zum Buch finden Sie unter strukturbildung-simulation.de Im Gegensatz zu Steuerungen

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Wie macht die Spitze ein Bild der Oberfläche?

Wie macht die Spitze ein Bild der Oberfläche? Wie macht die Spitze ein Bild der Oberfläche? Steuern und Regeln beim Tunnelmikroskop und Rasterkraftmikroskop Wie erzeugen das Tunnelmikroskop und das Rasterkraftmikroskop ein Bild der Oberfläche der

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Modellbasierte Software- Entwicklung eingebetteter Systeme

Modellbasierte Software- Entwicklung eingebetteter Systeme Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS Folie

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Motivation. Motivation 2

Motivation. Motivation 2 Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis

Mehr

Der Anschluss an einen Computer

Der Anschluss an einen Computer Firmware version: 2.1 GUI version: 2.1 Board version: siehe Abbildung Der Anschluss an einen Computer Man verbindet das Controllerboard mit dem PC mit einem USB-Kabel und natürlich den Sensor mit dem entsprechenden

Mehr

Kritik der Regler-Dimensionierung nach Ziegler und Nichols

Kritik der Regler-Dimensionierung nach Ziegler und Nichols Axel Rossmann Thema: Regelungstechnik Kritik der Regler-Dimensionierung nach Ziegler und Nichols http://strukturbildung-simulation.de/ Kritik an Ziegler/Nichols - 1 - Apr 2013 Seite 1 Zum Thema Regelungstechnik:

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik 7.09. 30.09.010 Hochschule Amberg-Weiden Kaiser-Wilhelm-Ring 3 94 Amberg [email protected] Vorstellung Tätigkeitsbereich Forschungstätigkeiten Vergasung von Biomasse zur Kraft-Wärme-Kopplung Vorlesungen

Mehr

Frequenzgang und Übergangsfunktion

Frequenzgang und Übergangsfunktion Labor Regelungstechnik Frequenzgang und Übergangsfunktion. Einführung In diesem Versuch geht es um: Theoretische und experimentelle Ermittlung der Frequenzgänge verschiedener Übertragungsglieder (Regelstrecke,

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs : FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-

Mehr

Regelungstechnik I (WS 15/16) Übung 2

Regelungstechnik I (WS 15/16) Übung 2 Regelungstechnik I (WS 5/6) Übung Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Aufgabe. (Linearität, Zeitinvarianz). Überprüfen Sie die folgenden dynamischen Systeme auf Linearität

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Heinz Mann f Horst Schiffelgen f Rainer Froriep Einführung in die Regelungstechnik Analoge und digitale Regelung, Fuzzy-Regler, Regler-Realisierung, Software 10., neu bearbeitete Auflage mit 379 Bildern

Mehr

Modellbasierte Entwicklung und Test der Regelung einer hydraulischen Belastungseinheit eines Windkraftprüfstandes mit MATLAB/Simulink und Speedgoat

Modellbasierte Entwicklung und Test der Regelung einer hydraulischen Belastungseinheit eines Windkraftprüfstandes mit MATLAB/Simulink und Speedgoat Innovative Power Transmission Modellbasierte Entwicklung und Test der Regelung einer hydraulischen Belastungseinheit eines Windkraftprüfstandes mit MATLAB/Simulink und Speedgoat 12.05.2015 RENK Test System

Mehr

Technische. Kybernetik

Technische. Kybernetik Technische Kybernetik Gliederung Was ist Kybernetik? Regelung und Rückkopplung Typischer Regelkreis Konkretes Beispiel: das invertierte Pendel Allgemeine Kybernetische Vorgehensweise Problemlösung schafft

Mehr

Regelungstechnik - KOMPAKT. 1. Grundbegriffe

Regelungstechnik - KOMPAKT. 1. Grundbegriffe Regelungstechnik - KOMPAKT 1. Grundbegriffe Im Gegensatz zu Steuerungen arbeiten Regelungen nach dem Prinzip des geschlossenen Wirkungsablaufs. Die zu regelnde Größe x wird ständig erfasst und über eine

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Rapid Control Prototyping

Rapid Control Prototyping Dirk Abel Alexander Bollig Rapid Control Prototyping Methoden und Anwendungen Mit 230 Abbildungen und 16 Tabellen Springer Inhaltsverzeichnis Einführung und Überblick 1 1.1 Allgemeines 1 1.2 Entwicklungsprozesse

Mehr

Praktikum Grundlagen Regelungstechnik

Praktikum Grundlagen Regelungstechnik Praktikum Grundlagen Regelungstechnik Versuch P-GRT 04 Versuchsziel Versuch 4 - Durchflussregelung Analyse unterschiedlicher Regelstrecken Untersuchung des Schwingungsverhalten der Regelstrecken Datum

Mehr

Lageregelung eines Magnetschwebekörpers

Lageregelung eines Magnetschwebekörpers Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Digitale Signalverabeitung Praktikum Regelungstechnik 1

Mehr

Einführung in die Physik I. Schwingungen und Wellen 1

Einführung in die Physik I. Schwingungen und Wellen 1 Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Modellbasierte Softwareentwicklung eines Kamera basierten Scheinwerfer-Adaptions-Algorithmus. Gerd Mauthe

Modellbasierte Softwareentwicklung eines Kamera basierten Scheinwerfer-Adaptions-Algorithmus. Gerd Mauthe Modellbasierte Softwareentwicklung eines Kamera basierten Scheinwerfer-Adaptions-Algorithmus Gerd Mauthe München 10.05.2016 MATLAB Expo 2016 Inhalte Vorstellung Thema Algorithmus Konzepte Implementierung

Mehr

6. Erzwungene Schwingungen

6. Erzwungene Schwingungen 6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Regelungstechnik 1 Praktikum Versuch 1.1 1 nterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Die Aufgabe der Regelungstechnik besteht im weitesten Sinne darin, einen bestimmten

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

Rückblick Motorik. Regelung Beispiel. Regelung. Intern - Tachometer. Interne Sensorik. Thomas Röfer

Rückblick Motorik. Regelung Beispiel. Regelung. Intern - Tachometer. Interne Sensorik. Thomas Röfer Sensorik Rückblick Motorik Antriebs-/Lenkachse er Antrieb Thomas Röfer Steuerung und Regelung Interne Sensorik Rotation, Belastung,... Externe Sensorik Taktil,,,... Lenkmotor Stützräder Synchronantrieb

Mehr

Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik

Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Ausarbeitung zum Vortrag im Rahmen des Hauptseminars Big Data Science in und außerhalb der Physik an der Fakultät für Physik am Karlsruher Institut

Mehr

Resonanz und Dämpfung

Resonanz und Dämpfung Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya

Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................

Mehr

Übungen zur Vorlesung MATHEMATIK II

Übungen zur Vorlesung MATHEMATIK II Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Zustandsraum: Historische Einordnung

Zustandsraum: Historische Einordnung Zustandsraum: Historische Einordnung Die Grundlagen der Zustandsraummethoden wurden im Zeitraum 1955 1965 von Kalman und seinen Kollegen in dem Research Institute for Advanced Studies in Baltimore entwickelt.

Mehr

Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme -

Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme - Einführung in die Regelungstechnik II - - Torsten Kröger Technische Universität - 1/64 - Braunschweig - 2/64 - Wiederholung - Einführung in die Regelungstechnik I Blockschema eines Regelkreises Kontinuierliche

Mehr

2010-03-08 Klausur 3 Kurs 12Ph3g Physik

2010-03-08 Klausur 3 Kurs 12Ph3g Physik 00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des

Mehr

Prof. Dr. H. Paerschke, Hochschule München Fk 05 / VSG Zuluft-Kaskadenregelung Seite 1

Prof. Dr. H. Paerschke, Hochschule München Fk 05 / VSG Zuluft-Kaskadenregelung Seite 1 Prof. Dr. H. Paerschke, Hochschule München Fk 05 / VSG Zuluft-Kaskadenregelung Seite Versuchsanleitung: Computersimulation und Optimierung einer Zuluft-Kaskadenregelung Hochschule München, Fk 05 VSG Labor

Mehr

Zusammenfassung der 8. Vorlesung

Zusammenfassung der 8. Vorlesung Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Modellierung des operativen und taktischen Verhaltens von Radfahrern an signalgesteuerten Knotenpunkten

Modellierung des operativen und taktischen Verhaltens von Radfahrern an signalgesteuerten Knotenpunkten Simulation und Verhaltensmodellierung (SIM) Modellierung des operativen und taktischen Verhaltens von Radfahrern an signalgesteuerten Knotenpunkten Heather Twaddle M.Sc. Technische Universität München

Mehr

Modellierung durch Funktionsanpassung Regression oder Schieberegler?

Modellierung durch Funktionsanpassung Regression oder Schieberegler? Modellierung durch Funktionsanpassung Regression oder Schieberegler? Karl-Heinz Keunecke, Angelika Reiß Einführung Das Modellieren von Prozessen durch mathematische Funktionen ist ein wichtiger Bestandteil

Mehr

Funktionale Abhängigkeiten

Funktionale Abhängigkeiten Funktionale Abhängigkeiten Lehrplan Die Lehrpläne für die allgemein bildenden Schulen finden Sie online unter: http://www.bmukk.gv.at/schulen/unterricht/lp/lp_abs.xml 5. Klasse (Funktionen) Beschreiben

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Zusammenfassung der 3. Vorlesung

Zusammenfassung der 3. Vorlesung Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs

Mehr

Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen

Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen Otto-von-Guericke Universität Magdeburg Fakultät für Elektrotechnik Institut für Automatisierungstechnik Versuch Zweipunktregelung Versuchsziel: Kennenlernen typischer Eigenschaften und Berechnungsmethoden

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

Spezialgebiete der Steuer- und Regelungstechnik. Schriftliche Ausarbeitung. Thema: PID - Einstellregeln

Spezialgebiete der Steuer- und Regelungstechnik. Schriftliche Ausarbeitung. Thema: PID - Einstellregeln Spezialgebiete der Steuer- und Regelungstechnik WS 2008/09 FH Dortmund Schriftliche Ausarbeitung Thema: Verfasser: Betreuer: Dr.-Ing. Jörg Kahlert Seite 1 von 23 Inhaltsverzeichnis 1. Einleitung.3 1.1

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung HS oblenz FB ngenieurwesen Prof. Dr. röber Seite von 7 Versuch 4: Hydraulische Positionsregelung. Versuchsaufbau.. mfang des Versuches m Versuch werden folgende Themenkreise behandelt: - Aufbau eines Prüfstandes

Mehr

LTAM FELJC [email protected] 1 T2EE. Regelungstechnik ASSERVISSEMENTS

LTAM FELJC jean-claude.feltes@education.lu 1 T2EE. Regelungstechnik ASSERVISSEMENTS LTAM FELJC [email protected] 1 T2EE Regelungstechnik ASSERVISSEMENTS Z W E R Y S X LTAM FELJC [email protected] 2 1. Grundlagen 1.1. Steuerung Beispiel 1: Drehzahlsteuerung

Mehr

Aktive Schallreduktion / Active Noise Control (ANC)

Aktive Schallreduktion / Active Noise Control (ANC) Forschungsfeld: Aktive Schallreduktion / Active Noise Control (ANC) Zukünftige Flugzeugkonzepte g setzen aus Gründen der Energieeinsparung vermehrt auf Propellerund Turbopropantriebe Dadurch hoher tieffrequenter

Mehr

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1

Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1 Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit

Mehr

Qualitätssicherung von Software

Qualitätssicherung von Software Qualitätssicherung von Software Prof. Dr. Holger Schlingloff Huboldt-Universität zu Berlin und Fraunhofer FIRST Folie 2 Wo stehen wir? 1. Einleitung, Begriffe, Software-Qualitätskriterien 2. anuelle und

Mehr

Überblick. Kapitel 7: Anwendungen der Differentialrechnung

Überblick. Kapitel 7: Anwendungen der Differentialrechnung Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Verbundprojekt MIKADO Mechatronik-Kooperationsplattform für anforderungsgesteuerte Prüfung und Diagnose - ein Überblick. Dr.

Verbundprojekt MIKADO Mechatronik-Kooperationsplattform für anforderungsgesteuerte Prüfung und Diagnose - ein Überblick. Dr. Verbundprojekt MIKADO Mechatronik-Kooperationsplattform für anforderungsgesteuerte Prüfung und Diagnose - ein Überblick Dr. Haygazun Hayka Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik

Mehr

Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen

Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen Professur Mathematik in Industrie und Technik Fakultät für Mathematik, Technische Universität Chemnitz Arbeitsbericht zum

Mehr

Simulationsmodelle im Gebäudesektor

Simulationsmodelle im Gebäudesektor Simulationsmodelle im Gebäudesektor Christoph Baldow 5. Juli 2012 Christoph Baldow Simulationsmodelle im Gebäudesektor 1 / 30 1 Motivation 2 Simulation im Gebäudesektor statische vs. dynamische Modelle

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Einführung Regelungstechnik: Lehre von der gezielten Beeinflussung dynamischer

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Lineare Systeme als Übertragungsglieder Abstraktion vom physikalischen

Mehr

Handbuch zur Regelkreissimulation eines PID - Reglers

Handbuch zur Regelkreissimulation eines PID - Reglers Handbuch zur Regelkreissimulation eines PID - Reglers Ein Projekt der Lehrveranstaltung - Vertiefung der Prozessdatenverarbeitung im SS 2005 Fachhochschule Wiesbaden, Juli 2005 Thomas Zimmer Oliver Nirschl

Mehr

Messung der linearen Polarisation von γ-strahlung

Messung der linearen Polarisation von γ-strahlung Messung der linearen Polarisation von γ-strahlung Präsentation für das Seminar Kernstruktur und Nukleare Astrophysik Vojtěch Horný TU Darmstadt, TTU Prag 31. Januar 2013 Vojtěch Horný (TU Darmstadt, TTU

Mehr

B-P 11: Mathematik für Physiker

B-P 11: Mathematik für Physiker B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis

Mehr

III. Schwingungen und Wellen

III. Schwingungen und Wellen III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Differenzialgleichungen

Differenzialgleichungen Differenzialgleichungen Fakultät Grundlagen Februar 2016 Fakultät Grundlagen Differenzialgleichungen Übersicht Definitionen, Beispiele 1 Definitionen, Beispiele 2 Geometrische Deutung Numerik Einfache

Mehr

Gefesselte Masse. Jörg J. Buchholz 23. März 2014

Gefesselte Masse. Jörg J. Buchholz 23. März 2014 Gefesselte Masse Jörg J. Buchholz 23. März 204 Einleitung In Abbildung ist eine Punktmasse m dargestellt, die sich, von einem masselosen starren tab der Länge l gefesselt, auf einer Kreisbahn bewegt. Dabei

Mehr

Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 [email protected] 19. 06.

Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 19. 06. Kybernetik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 [email protected] 9. 06. 202 Was ist Regelung? Regelung ist eine gezielte Beeinflussung dynamischer Systeme,

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

Lösen goniometrischer Gleichungen

Lösen goniometrischer Gleichungen Lösen goniometrischer Gleichungen Eine Gleichung, bei der die Lösungsvariable im Argument von Winkelfunktionen auftritt, heißt goniometrische Gleichung. Aufgabe: Lösen Sie die goniometrischen Gleichungen.

Mehr

ANBINDUNG KUNDENSEITIGER-TOOLCHAIN ZUR PARAMETRIERUNG VON MECHATRONISCHEN GESAMTSYSTEM-MODELLEN

ANBINDUNG KUNDENSEITIGER-TOOLCHAIN ZUR PARAMETRIERUNG VON MECHATRONISCHEN GESAMTSYSTEM-MODELLEN ANBINDUNG KUNDENSEITIGER-TOOLCHAIN ZUR PARAMETRIERUNG VON MECHATRONISCHEN GESAMTSYSTEM-MODELLEN Fraunhofer-Einrichtung Entwurfstechnik Mechatronik IEM Dr.-Ing Christian Henke, Dipl.-Ing. Thorsten Gehrmann

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr