Modellbasierte Software- Entwicklung eingebetteter Systeme
|
|
|
- Christoph Boer
- vor 8 Jahren
- Abrufe
Transkript
1 Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS
2 Folie 2 Fragestunde Wie modelliert man physikalische Sachverhalte? Beispiele? Wie werden Gleichungen in Diagramme übersetzt? Was kann bei Rückkopplungen passieren? Lösungsmöglichkeit? Abstraktion von Blöcken? Was ist eine Trajektorie? Was sind Bereiche für Trajektorien?
3 Folie 3 Zustandsraum kontinuierlicher Systeme these slides thanks to Stephan Merz, LORIA / INRIA
4 Folie 4 Terminologie
5 Folie 5 Existenz und Eindeutigkeit von Lösungen
6 Folie 6 Probleme mit der Existenz (1)
7 Folie 7 Probleme mit der Existenz (2)
8 Folie 8 Experiment?
9 Folie 9 Lipschitz-Stetigkeit
10 Folie 10 Existenz und Eindeutigkeit von Trajektorien
11 Folie 11 Näherungslösungen
12 Folie 12 gesteuerte Systeme
13 Im Beispiel Zulauf max min Füllstandsanzeiger Zulauf sei kontinuierlich regelbar (0 z(t) 1) Annahme: min = max = soll der Füllstand sollte möglichst nahe an soll gehalten werden intendiertes Verhalten: je näher der Füllstand bei soll ist, desto mehr wird der Zulauf geschlossen erlaubtes Verhalten: voller Zulauf bis soll erreicht wird, dann zu (oszilliert, ruiniert auf Dauer das Ventil) verboten: max wird irgendwann überschritten und Ventil ist auf gesucht: sanfte Regelung H. Schlingloff, SS2014 modellbasierte Software-Entwicklung eingebetteter Systeme Ablauf Folie 13
14 Folie 14 Regelungstechnik Eingebettetes System: System Umgebung Allgemeines Schema eines Regelkreises: Prof. Dr.-Ing. Ch. Ament
15 Folie 15
16 Folie 16 Reglerklassen Proportionaler, integraler und differentialer Anteil bei der Regelung P-Regler: u(t)=k*e(t) I-Regler: u(t)=k* e(t) dt D-Regler: u(t) = k*e (t) PI-Regler: u(t) = k 1 *e(t) + k 2 * e(t) dt PD-Regler: u(t) = k 1 *e(t) + k 2 *e (t) PID-Regler: u(t) = k 1 *e(t) + k 2 * e(t) dt + k 3 *e (t) u(t) = K P *[e(t) + 1/T I * e(t) dt + T D *e (t)] K P : Proportionalbeiwert, T I : Nachstellzeit, T D : Vorhaltezeit Ziel: Vermeidung bzw. Dämpfung von Überschwingungen Reiner Differenzierer nicht realisierbar (Verzögerung!)
17 Folie 17 informell PID-Regler: P(proportionaler) Anteil: Je größer die Regelabweichung, umso größer muß die Stellgröße sein I(integraler) Anteil: Solange eine Regelabweichung vorliegt, muß die Stellgröße verändert werden D(differentieller) Anteil: Je stärker sich die Regelabweichung verändert, umso stärker muß die Regelung eingreifen
18 Folie 18 PID in Scicos Als fester vorgegebener Block verfügbar!
19 Folie 19 Überschwingungen ohne integralen Anteil mit integralem Anteil
20 Folie 20 Einstellung des Reglers Erst den proportionalen Anteil einstellen erhöhen bis leichte Oszillation auftritt Dann integralen Teil hochregeln solange bis die Oszillation aufhört Dann differentiellen Anteil damit Zielgerade möglichst schnell erreicht wird Parameter Anstiegszeit Überschwingung Einschwingzeit Abweichung P I D
21 Folie 21 Beispiel Wasserstandsregelung
22 Folie 22
23 Folie 23 nochmal Pendel Aufstellen physikalischer Schwingungsgleichungen Erstellen eines Simulationsmodells (Strecke/Regelung) Simulation und Validierung des Modells Codegenerierung
24 Folie 24 einfaches Pendel Länge L Auslenkung s Masse m Ansatz: Trägheitskraft = Rückstellkraft m*s = -m*g*sin =s/l m*s =-m*g*sin(s/l) Anfangsbedingung (0) bzw. s(0) Analytische Lösung meist schwierig / nicht nötig Simulation: Auflösen nach der höchsten Ableitung s =-g*sin(s/l) tu so als wenn s gegeben wäre und male ein Diagramm
25 Folie 25 inverses Pendel Modellierung der Strecke mit Wagen und Pendel
26 Folie 26 inverses Pendel Wagen: F=U-M*x Pendel: F T *cos( ) = F g * sin( )
27 Folie 27 Fraunhofer
70 Jahre Reglereinstellung nach Ziegler und Nichols
Fakultät Informatik, Institut für angewandte Informatik, Professur für technische Informationssysteme Proseminar Technische Informationssysteme Johannes Postel Dresden, 14. November 2011 Überblick 1. Systembegriff
2. Lagrange-Gleichungen
2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen
Optimierung. 1. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit.
FELJC Optimierung_Theorie.odt Optimierung. Grundlegendes Beim PID-Regler müssen 3 Parameter optimal eingestellt werden: Proportionalbeiwert, Nachstellzeit und Vorhaltezeit. Hierzu gibt es unterschiedliche
Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 [email protected] 04. 12.
Einführung in die Robotik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 [email protected] 04. 12. 2012 The human is perhaps the most intelligent control system
Kybernetik Intelligent Agents- Action Selection
Kybernetik Intelligent Agents- Action Selection Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 [email protected] 26. 06. 2012 Intelligent Agents Intelligent Agents Environment
4. Simulink. Zweck und grundlegende Eigenschaften Mit Simulink werden Modelle mathematischer, physikalischer Systeme berechnet (simuliert)
4. Simulink Simulink ist eine s.g. Toolbox von Matlab Zweck und grundlegende Eigenschaften Mit Simulink werden Modelle mathematischer, physikalischer Systeme berechnet (simuliert) Modell basiert auf Blöcken,
10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung)
10. Vorlesung EP I. Mechanik 7. Schwingungen (freie, gedämpfte und erzwungene Schwingung, Resonanz, Schwebung) Versuche: Pendel mit zwei Längen Sandpendel ohne/mit Dämpfung erzwungene Schwingung mit ω
Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken
FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer
Gewöhnliche Dierentialgleichungen
Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat
8 Blockschaltbilddarstellung für diskrete Systeme
Beispiel 7.5 Sprungantwort Die Sprungantwort beschreibt das komplette Übertragungsverhalten, da der Sprung in seiner Fourierzerlegung alle Frequenzen enthält. 7.6 algebraische Schleife 8 Blockschaltbilddarstellung
Regelungs- und Systemtechnik 3
Regelung Mechatronischer Systeme, Regelungs- und Systemtechnik 3 Kapitel 1: Einführung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Luft- und Raumfahrtindustrie 2 Zu regelnde
LTAM-T2EE-ASSER FELJC/GOERI 3. P-Regler
3. P-Regler 3.1. Einleitung 3.1.1. Allgemeines Der Regler muss im Regelkreis dafür sorgen, dass der Istwert der Regelgröße X möglichst wenig vom Sollwert W abweicht. Das Verhalten der Regelstrecke ist
Partielle Ableitungen & Tangentialebenen. Folie 1
Partielle Ableitungen & Tangentialebenen Folie 1 Bei Funktionen mit einer Variable, gibt die Ableitung f () die Steigung an. Bei mehreren Variablen, z(,), gibt es keine eindeutige Steigung. Die Steigung
Strukturbildung und Simulation technischer Systeme. Strukturbildung und Simulation technischer Systeme. strukturbildung-simulation.
Leseprobe zu Kapitel 9 Regelungstechnik des Buchs Strukturbildung und Simulation technischer Systeme Weitere Informationen zum Buch finden Sie unter strukturbildung-simulation.de Im Gegensatz zu Steuerungen
Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1
.1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines
12 Gewöhnliche Differentialgleichungen
12 Gewöhnliche Differentialgleichungen 121 Einführende Beispiele und Grundbegriffe Beispiel 1 ( senkrechter Wurf ) v 0 Ein Flugkörper werde zum Zeitpunkt t = 0 in der Höhe s = 0 t = 0 s = 0 mit der Startgeschwindigkeit
PRAKTIKUM REGELUNGSTECHNIK 2
FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 4: Lageregelung eines Satelitten 1.1 Einleitung Betrachtet werde ein Satellit, dessen Lage im
Grundlagen der Physik 2 Schwingungen und Wärmelehre
(c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti [email protected] Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
Wie macht die Spitze ein Bild der Oberfläche?
Wie macht die Spitze ein Bild der Oberfläche? Steuern und Regeln beim Tunnelmikroskop und Rasterkraftmikroskop Wie erzeugen das Tunnelmikroskop und das Rasterkraftmikroskop ein Bild der Oberfläche der
Charakteristikenmethode im Beispiel
Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)
Modellbasierte Software- Entwicklung eingebetteter Systeme
Modellbasierte Software- Entwicklung eingebetteter Systeme Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS Folie
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Motivation. Motivation 2
Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis
Der Anschluss an einen Computer
Firmware version: 2.1 GUI version: 2.1 Board version: siehe Abbildung Der Anschluss an einen Computer Man verbindet das Controllerboard mit dem PC mit einem USB-Kabel und natürlich den Sensor mit dem entsprechenden
Kritik der Regler-Dimensionierung nach Ziegler und Nichols
Axel Rossmann Thema: Regelungstechnik Kritik der Regler-Dimensionierung nach Ziegler und Nichols http://strukturbildung-simulation.de/ Kritik an Ziegler/Nichols - 1 - Apr 2013 Seite 1 Zum Thema Regelungstechnik:
Vorbereitungskurs Mathematik
7.09. 30.09.010 Hochschule Amberg-Weiden Kaiser-Wilhelm-Ring 3 94 Amberg [email protected] Vorstellung Tätigkeitsbereich Forschungstätigkeiten Vergasung von Biomasse zur Kraft-Wärme-Kopplung Vorlesungen
Frequenzgang und Übergangsfunktion
Labor Regelungstechnik Frequenzgang und Übergangsfunktion. Einführung In diesem Versuch geht es um: Theoretische und experimentelle Ermittlung der Frequenzgänge verschiedener Übertragungsglieder (Regelstrecke,
9. Vorlesung Wintersemester
9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen
FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :
FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-
Regelungstechnik I (WS 15/16) Übung 2
Regelungstechnik I (WS 5/6) Übung Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Aufgabe. (Linearität, Zeitinvarianz). Überprüfen Sie die folgenden dynamischen Systeme auf Linearität
Einführung in die Regelungstechnik
Heinz Mann f Horst Schiffelgen f Rainer Froriep Einführung in die Regelungstechnik Analoge und digitale Regelung, Fuzzy-Regler, Regler-Realisierung, Software 10., neu bearbeitete Auflage mit 379 Bildern
Modellbasierte Entwicklung und Test der Regelung einer hydraulischen Belastungseinheit eines Windkraftprüfstandes mit MATLAB/Simulink und Speedgoat
Innovative Power Transmission Modellbasierte Entwicklung und Test der Regelung einer hydraulischen Belastungseinheit eines Windkraftprüfstandes mit MATLAB/Simulink und Speedgoat 12.05.2015 RENK Test System
Technische. Kybernetik
Technische Kybernetik Gliederung Was ist Kybernetik? Regelung und Rückkopplung Typischer Regelkreis Konkretes Beispiel: das invertierte Pendel Allgemeine Kybernetische Vorgehensweise Problemlösung schafft
Regelungstechnik - KOMPAKT. 1. Grundbegriffe
Regelungstechnik - KOMPAKT 1. Grundbegriffe Im Gegensatz zu Steuerungen arbeiten Regelungen nach dem Prinzip des geschlossenen Wirkungsablaufs. Die zu regelnde Größe x wird ständig erfasst und über eine
Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge
Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe
Rapid Control Prototyping
Dirk Abel Alexander Bollig Rapid Control Prototyping Methoden und Anwendungen Mit 230 Abbildungen und 16 Tabellen Springer Inhaltsverzeichnis Einführung und Überblick 1 1.1 Allgemeines 1 1.2 Entwicklungsprozesse
Praktikum Grundlagen Regelungstechnik
Praktikum Grundlagen Regelungstechnik Versuch P-GRT 04 Versuchsziel Versuch 4 - Durchflussregelung Analyse unterschiedlicher Regelstrecken Untersuchung des Schwingungsverhalten der Regelstrecken Datum
Lageregelung eines Magnetschwebekörpers
Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Digitale Signalverabeitung Praktikum Regelungstechnik 1
Einführung in die Physik I. Schwingungen und Wellen 1
Einführung in die Physik I Schwingungen und Wellen O. von der Lühe und U. Landgraf Schwingungen Periodische Vorgänge spielen in eine große Rolle in vielen Gebieten der Physik E pot Schwingungen treten
Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy
Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft
Modellbasierte Softwareentwicklung eines Kamera basierten Scheinwerfer-Adaptions-Algorithmus. Gerd Mauthe
Modellbasierte Softwareentwicklung eines Kamera basierten Scheinwerfer-Adaptions-Algorithmus Gerd Mauthe München 10.05.2016 MATLAB Expo 2016 Inhalte Vorstellung Thema Algorithmus Konzepte Implementierung
6. Erzwungene Schwingungen
6. Erzwungene Schwingungen Ein durch zeitveränderliche äußere Einwirkung zum Schwingen angeregtes (gezwungenes) System führt erzwungene Schwingungen durch. Bedeutsam sind vor allem periodische Erregungen
Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund
Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu
Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch
Regelungstechnik 1 Praktikum Versuch 1.1 1 nterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Die Aufgabe der Regelungstechnik besteht im weitesten Sinne darin, einen bestimmten
Skalare Differentialgleichungen
Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen
KAPITEL 6. Nichtlineare Ausgleichsrechnung
KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,
Rückblick Motorik. Regelung Beispiel. Regelung. Intern - Tachometer. Interne Sensorik. Thomas Röfer
Sensorik Rückblick Motorik Antriebs-/Lenkachse er Antrieb Thomas Röfer Steuerung und Regelung Interne Sensorik Rotation, Belastung,... Externe Sensorik Taktil,,,... Lenkmotor Stützräder Synchronantrieb
Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Big Data Science in und außerhalb der Physik
Zufall, Determinismus und Chaos Wie viel ist vorhersehbar? Ausarbeitung zum Vortrag im Rahmen des Hauptseminars Big Data Science in und außerhalb der Physik an der Fakultät für Physik am Karlsruher Institut
Resonanz und Dämpfung
Resonanz und ämpfung Wenn eine Masse m an einem Federpendel (Federkonstante ) frei ohne ämpfung schwingt, genügt die Elongation s = s ( t ) der ifferentialgleichung m # s ( t ) + # s( t ) = 0. ies ist
PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)
FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.
Differentialgleichungen. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya
Differentialgleichungen Aufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya ii Inhaltsverzeichnis. Tabelle unbestimmter Integrale............................... iii.. Integrale mit Eponentialfunktionen........................
Übungen zur Vorlesung MATHEMATIK II
Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom
Entwurf robuster Regelungen
Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler
Zustandsraum: Historische Einordnung
Zustandsraum: Historische Einordnung Die Grundlagen der Zustandsraummethoden wurden im Zeitraum 1955 1965 von Kalman und seinen Kollegen in dem Research Institute for Advanced Studies in Baltimore entwickelt.
Einführung in die Regelungstechnik II - Reglerentwurf und diskrete Systeme -
Einführung in die Regelungstechnik II - - Torsten Kröger Technische Universität - 1/64 - Braunschweig - 2/64 - Wiederholung - Einführung in die Regelungstechnik I Blockschema eines Regelkreises Kontinuierliche
2010-03-08 Klausur 3 Kurs 12Ph3g Physik
00-03-08 Klausur 3 Kurs Ph3g Physik Lösung Ein Federpendel mit der Federkonstante D=50 N schwingt mit derselben Frequenz wie ein m Fadenpendel der Länge 30 cm. Die Feder sei masselos. Die Auslenkung des
Prof. Dr. H. Paerschke, Hochschule München Fk 05 / VSG Zuluft-Kaskadenregelung Seite 1
Prof. Dr. H. Paerschke, Hochschule München Fk 05 / VSG Zuluft-Kaskadenregelung Seite Versuchsanleitung: Computersimulation und Optimierung einer Zuluft-Kaskadenregelung Hochschule München, Fk 05 VSG Labor
Zusammenfassung der 8. Vorlesung
Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit
Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)
Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben
Modellierung des operativen und taktischen Verhaltens von Radfahrern an signalgesteuerten Knotenpunkten
Simulation und Verhaltensmodellierung (SIM) Modellierung des operativen und taktischen Verhaltens von Radfahrern an signalgesteuerten Knotenpunkten Heather Twaddle M.Sc. Technische Universität München
Modellierung durch Funktionsanpassung Regression oder Schieberegler?
Modellierung durch Funktionsanpassung Regression oder Schieberegler? Karl-Heinz Keunecke, Angelika Reiß Einführung Das Modellieren von Prozessen durch mathematische Funktionen ist ein wichtiger Bestandteil
Funktionale Abhängigkeiten
Funktionale Abhängigkeiten Lehrplan Die Lehrpläne für die allgemein bildenden Schulen finden Sie online unter: http://www.bmukk.gv.at/schulen/unterricht/lp/lp_abs.xml 5. Klasse (Funktionen) Beschreiben
Nichtlineare Gleichungssysteme
Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische
Zusammenfassung der 3. Vorlesung
Zusammenfassung der 3. Vorlesung Nyquist-Verfahren Motivation Ein mathematisches Modell der Strecke ist nicht notwendig Aussagen über die Stabilität des geschlossenen Regelkreises anhand des Frequenzgangs
Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen
Otto-von-Guericke Universität Magdeburg Fakultät für Elektrotechnik Institut für Automatisierungstechnik Versuch Zweipunktregelung Versuchsziel: Kennenlernen typischer Eigenschaften und Berechnungsmethoden
Ferienkurs Experimentalphysik II Elektrodynamik - Übungen
Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)
Spezialgebiete der Steuer- und Regelungstechnik. Schriftliche Ausarbeitung. Thema: PID - Einstellregeln
Spezialgebiete der Steuer- und Regelungstechnik WS 2008/09 FH Dortmund Schriftliche Ausarbeitung Thema: Verfasser: Betreuer: Dr.-Ing. Jörg Kahlert Seite 1 von 23 Inhaltsverzeichnis 1. Einleitung.3 1.1
4.3 Anwendungen auf Differentialgleichungen
7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung
HS oblenz FB ngenieurwesen Prof. Dr. röber Seite von 7 Versuch 4: Hydraulische Positionsregelung. Versuchsaufbau.. mfang des Versuches m Versuch werden folgende Themenkreise behandelt: - Aufbau eines Prüfstandes
LTAM FELJC [email protected] 1 T2EE. Regelungstechnik ASSERVISSEMENTS
LTAM FELJC [email protected] 1 T2EE Regelungstechnik ASSERVISSEMENTS Z W E R Y S X LTAM FELJC [email protected] 2 1. Grundlagen 1.1. Steuerung Beispiel 1: Drehzahlsteuerung
Aktive Schallreduktion / Active Noise Control (ANC)
Forschungsfeld: Aktive Schallreduktion / Active Noise Control (ANC) Zukünftige Flugzeugkonzepte g setzen aus Gründen der Energieeinsparung vermehrt auf Propellerund Turbopropantriebe Dadurch hoher tieffrequenter
Schwingungen. Harmonische Schwingungen. t Anharmonische Schwingungen. S. Alexandrova FDIBA TU Sofia 1
Schwingungen Harmonische Schwingungen x t Anharmonische Schwingungen x x t S. Alexandrova FDIBA TU Sofia 1 t ANHARMONISCHE SCHWINGUNGEN EHB : Kraft F = -k(x-x o ) Potentielle Energie: E p E p Parabel mit
Qualitätssicherung von Software
Qualitätssicherung von Software Prof. Dr. Holger Schlingloff Huboldt-Universität zu Berlin und Fraunhofer FIRST Folie 2 Wo stehen wir? 1. Einleitung, Begriffe, Software-Qualitätskriterien 2. anuelle und
Überblick. Kapitel 7: Anwendungen der Differentialrechnung
Überblick Kapitel 7: Anwendungen der Differentialrechnung 1 Beispiel 1: Kapitel 7.1: Implizites Differenzieren 1 Beispiel 1: Steigung der Tangente Kapitel 7.1: Implizites Differenzieren 2 Beispiel 1: Steigung
Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung
Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt
Verbundprojekt MIKADO Mechatronik-Kooperationsplattform für anforderungsgesteuerte Prüfung und Diagnose - ein Überblick. Dr.
Verbundprojekt MIKADO Mechatronik-Kooperationsplattform für anforderungsgesteuerte Prüfung und Diagnose - ein Überblick Dr. Haygazun Hayka Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik
Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen
Modellordnungsreduktion für strukturmechanische FEM-Modelle von Werkzeugmaschinen Professur Mathematik in Industrie und Technik Fakultät für Mathematik, Technische Universität Chemnitz Arbeitsbericht zum
Simulationsmodelle im Gebäudesektor
Simulationsmodelle im Gebäudesektor Christoph Baldow 5. Juli 2012 Christoph Baldow Simulationsmodelle im Gebäudesektor 1 / 30 1 Motivation 2 Simulation im Gebäudesektor statische vs. dynamische Modelle
Intermezzo: Das griechische Alphabet
Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ
Grundlagen der Regelungstechnik
Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Einführung Regelungstechnik: Lehre von der gezielten Beeinflussung dynamischer
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
Grundlagen der Regelungstechnik
Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Wiederholung vom letzten Mal Lineare Systeme als Übertragungsglieder Abstraktion vom physikalischen
Handbuch zur Regelkreissimulation eines PID - Reglers
Handbuch zur Regelkreissimulation eines PID - Reglers Ein Projekt der Lehrveranstaltung - Vertiefung der Prozessdatenverarbeitung im SS 2005 Fachhochschule Wiesbaden, Juli 2005 Thomas Zimmer Oliver Nirschl
Messung der linearen Polarisation von γ-strahlung
Messung der linearen Polarisation von γ-strahlung Präsentation für das Seminar Kernstruktur und Nukleare Astrophysik Vojtěch Horný TU Darmstadt, TTU Prag 31. Januar 2013 Vojtěch Horný (TU Darmstadt, TTU
B-P 11: Mathematik für Physiker
B-P 11: Mathematik für Physiker Status: freigegeben Modulziele Erwerb der Grundkenntnisse der Analysis, der Linearen Algebra und Rechenmethoden der Physik Modulelemente Mathematik für Physiker I: Analysis
III. Schwingungen und Wellen
III. Schwingungen und Wellen III.1 Schwingungen Physik für Mediziner 1 Schwingungen Eine Schwingung ist ein zeitlich periodischer Vorgang Schwingungen finden im allgemeinen um eine stabile Gleichgewichtslage
Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen
Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich
Differenzialgleichungen
Differenzialgleichungen Fakultät Grundlagen Februar 2016 Fakultät Grundlagen Differenzialgleichungen Übersicht Definitionen, Beispiele 1 Definitionen, Beispiele 2 Geometrische Deutung Numerik Einfache
Gefesselte Masse. Jörg J. Buchholz 23. März 2014
Gefesselte Masse Jörg J. Buchholz 23. März 204 Einleitung In Abbildung ist eine Punktmasse m dargestellt, die sich, von einem masselosen starren tab der Länge l gefesselt, auf einer Kreisbahn bewegt. Dabei
Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 [email protected] 19. 06.
Kybernetik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 [email protected] 9. 06. 202 Was ist Regelung? Regelung ist eine gezielte Beeinflussung dynamischer Systeme,
Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen
Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory
Lösen goniometrischer Gleichungen
Lösen goniometrischer Gleichungen Eine Gleichung, bei der die Lösungsvariable im Argument von Winkelfunktionen auftritt, heißt goniometrische Gleichung. Aufgabe: Lösen Sie die goniometrischen Gleichungen.
ANBINDUNG KUNDENSEITIGER-TOOLCHAIN ZUR PARAMETRIERUNG VON MECHATRONISCHEN GESAMTSYSTEM-MODELLEN
ANBINDUNG KUNDENSEITIGER-TOOLCHAIN ZUR PARAMETRIERUNG VON MECHATRONISCHEN GESAMTSYSTEM-MODELLEN Fraunhofer-Einrichtung Entwurfstechnik Mechatronik IEM Dr.-Ing Christian Henke, Dipl.-Ing. Thorsten Gehrmann
Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes
Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden
