Modelle für interagierende Populationen

Größe: px
Ab Seite anzeigen:

Download "Modelle für interagierende Populationen"

Transkript

1 Modelle für interagierende Populationen Christoph Molitor Seminar: Mathematische Modelle in der Biologie (WS 12/13) Literatur: J. D. Murray (2002): Mathematical Biology: I. An Introduction, Third Edition, Springer.

2 Gliederung 1 Räuber-Beute-Modelle 2 Wettbewerbsmodelle 3 Symbiose 4 Diskrete Modelle 5 Fazit

3 Modellvarianten Bisher haben wir isolierte Populationen betrachtet. Nun werden die drei am häufigsten verwendeten Arten von interagierenden Populationsmodellen betrachtet: 1 Räuber-Beute-Modelle 2 Konkurrenzmodelle 3 Symbiose

4 Räuber-Beute-Modelle Für das erste und auf Grund seiner geringen Komplexität recht einfache Modell zur Beschreibung der Wechselwirkung von Räuber- und Beutepopulationen verwendet man die Lotka-Volterra Gleichungen: und dn dt dp dt = N(a bp) = P(cN d). N(t) ist die Beute- und P(t) die Räuberpopulation zur Zeit t. Die Variablen a, b, c und d sind positive Konstanten.

5 Die Annahmen dieses Modells sind: N(t) wächst in Abwesenheit von Räubern unbegrenzt. Die Beutezahl hängt proportional von der Räuberpopulation ab. In Abwesenheit von Beute ist die Sterberate der Jäger exponentiell. Die Wachstumsrate der Jäger ist proportional zur bestehenden Beutepopulation.

6 Benutzt man die Substitutionen u(τ) = cn(t) d und v(τ) = bp(t) a mit τ = at und α = d a, so erhält man die dimensionslosen Gleichungen: du = u(1 v) dτ und dv = αv(u 1), dτ die wir jetzt genauer analysieren.

7 Die Lösung dieser Gleichungen für λ = 1 verläuft gleichmäßig: Quelle: J. D. Murray (2002): Mathematical Biology: I. An Introduction, Third Edition, Springer, S.81

8 Die kritischen Punkte sind u = v = 0 und u = v = 1. (0, 0) ist instabiler Punkt, da λ 1 = 1 > 0. (1, 1) ist ein Zentrum mit neutraler Stabilität, da die Eigenwerte λ 1,2 = ±i λ rein imaginär sind. Quelle:

9 Probleme des Modells: Kleine Veränderungen der Variablen können großen Einfluss auf die Trajektorien haben. Trajektorien sind nicht immer beschränkt, aber geschlossen. Die Lotka-Volterr-Gleichungen sind schlecht geeignet für reale Probleme

10 Stabilitätsverhalten Stabilität der kritischen Punkte am Beispiel der Lotka-Volterra-Gleichungen zum Räuber-Beute-Modell mit k Räuber- und Beutearten: dn i k = N i a i b ij P j, dt und dp i dt j=1 k = P i c ij N j d i j=1 für i = 1,..., k mit positiven Konstanten a i, b ij, c ij und d i.

11 Der triviale Gleichgewichtspunkt N i = P i = 0 für alle i ergibt folgende Diagonalmatrix: a A =.... a k d d k

12 A hat die Eigenwerte λ i = a i > 0, λ k+i = d i < 0 für i = 1,..., k. Dieser stationäre Zustand ist instabil, da alle λ i > 0, i = 1,..., k. Da die Eigenwerte λ i, i = 1,..., 2k Lösungen von A λi = 0 sind, erfüllt die Summe der Wurzeln der λ i die Gleichung 2k i=0 wobei tra die Spur von A ist. λ i = tra = 0,

13 Sind die Elemente der Matrix A reellwertig, sind dies auch die Eigenwerte. Andernfalls sind die Eigenwerte komplex konjungiert und der stationäre Zustand ist, stabil, falls der Reλ i = 0 ist, instabil, falls der Reλ i 0 ist. Quelle: J. D. Murray (2002): Mathematical Biology: I. An Introduction, Third Edition, Springer, S.87 Bemerkung: Komplexität führt in der Regel zu Instabilität.

14 Abhängige Räuber-Beute-Modelle Das Lotka-Volterra-Modell besagt, dass Populationen periodisches Verhalten aufweisen. Heuristisch annehmbar, dass bei Anstieg der Beutezahl ebenfalls die Menge der Räuber größer wird. Mehr Raubtiere benötigen wiederum mehr Nahrung, was die Bevölkerungzahl der Beute wieder sinken lässt. Wodurch die Räuberbevölkerung aufgrund von Nahrungsmangel wieder zu sinken beginnt. Irgendwann beginnt die Beutezahl dann wieder zu steigen und der Zyklus beginnt von vorne.

15 Nicht gut geeignet an den Lotka-Volterra-Gleichungen ist, dass die Beutepopulation in Abwesenheit von Räubern unbegrenzt sei. Realistischer ist, dass die Wachstumsraten voneinander abhängen. Eine bessere Form für die Beutepopulationsgleichung ist daher: ( dn = NF(N, P) mit F(N, P) = r 1 N ) PR(N). dt K

16 Eine dazu passende Gleichung für die Räuberpopulation ist von der Form: ( dp = PG(N, P) mit G (N, P) = k 1 hp ), dt N mit positiven Konstanten k und h. R(N) ist eine auf die Reduzierung der Räuber bezogene Konstante. Besser geeignete Populationsmodelle werden u. a. im Buch von Nisbet und Gurney, 1 sowie dem von Levin 2 beschrieben. 1 R.M. Nisbet and W.S.C. Gurney. Modelling Fluctuating Populations. John Wiley, New York, S.A. Levin, editor. Frontiers in Mathematical Biology, volume 100 of Lect. Notes in Biomathematics. Springer-Verlag, Berlin-Heidelberg-New York, 1994.

17 Stabilitätsbereiche eines Räuber-Beute-Modells mit grenzzyklisch-periodischem Verhalten Stabilitätsbereiche Analyse eines realistischen 2-Spezies-Modells mit Hilfe der Gleichungen: und dn dt = N dn dt [ ( r 1 N ) kp ], K N + D = P [ ( s 1 hp N )] wobei r, K, k, D, s und h positive Konstanten sind.

18 Es ist hierbei nützlich, das System wieder in einer dimensionslosen Form zu schreiben. Drückt man die Populationen N und P mit Hilfe von u(τ) = N(t) K, v(τ) = hp(t) K, τ = rt, a = k hr, b = s r und d = D K aus, so erhält man die Gleichungen du dτ = u(1 u) auv u + d dv und (1 dτ = bv v ). u b > 1 bedeutet beispielsweise, dass das Beutewachstum größer als die Wachstumsrate der Räuber ist.

19 Die einzige positive Gleichgewichtslösung (u, v ) ist: u = (1 a d) + [(1 a d)2 + 4d] und v = u. Von Interesse ist die Stabilität der Fixpunkte. Für die lineare Stabilitätsanalyse schreibt man x(τ) = u(τ) u, y(τ) = v(τ) v, mit dessen Hilfe das Modell die folgende Form besitzt: [ ] dx dτ = A x mit A = u au 1 (u +d) 2 y b b dy dτ au u +d

20 Die Eigenwerte von A sind dann gegeben durch A λi = 0 λ 2 (tra)λ + deta = 0. Für Stabilität benötigt man Reλ < 0. Die Bedingungen dafür sind und tra < 0 u au [ (u + d) 2 1] < b deta > a u + d au (u + d) 2 > 0.

21 Gelten tra < 0 und deta > 0, dann ist der Gleichgewichtspunkt Ein stabiler Knoten, falls die Eigenwerte reellwertig sind. Eine stabile Spirale, falls es sich um komplexe Eigenwerte handelt. Sonst handelt es sich entweder um einen instabilen Knoten (reelle Eigenwerte) oder eine instabile Spirale.

22 Schwellenphänomene Es handelt sich um eine Sonderform der 2-Spezies Räuber-Beute-Modelle. Die Populationsdichten schwanken stark, bevor sie sich einem Gleichgewichtspunkt annähern. Man benutzt für diese Art von Räuber-Beute-Modellen folgende Gleichungen: dn dt = N [F(N) P] = f (N, P) und dp dt = P [N G(P)] = g(n, P).

23 Das qualitative Anzahl der Beute im Verhältnis zu seiner pro Kopf Wachstumsrate wird hier dargestellt: Quelle: J. D. Murray (2002): Mathematical Biology: I. An Introduction, Third Edition, Springer, S.106

24 Das Verhältnis zwischen Räuberanzahl und deren pro Kopf Sterberate: Quelle: J. D. Murray (2002): Mathematical Biology: I. An Introduction, Third Edition, Springer, S.106

25 S und S sind hierbei die Gleichgewichtspunkte, je nachdem welche Anzahl von Beutetieren existiert: Quelle: J. D. Murray (2002): Mathematical Biology: I. An Introduction, Third Edition, Springer, S.107

26 Wettbewerbsmodelle Unterschied zum Räuber-Beute-Modell: Spezies konkurrieren um die gleichen Ressourcen, bis eine ausstirbt keine Spezies dezimiert auf direktem Weg eine andere Nun betrachten wir die 2-Spezies-Lotka-Volterra-Gleichungen zu diesem Modell: [ = r 1 N N ] 1, dn 1 dt dn 2 dt N 2 b 12 K 1 K 1 [ = r 2 N N 2 N 1 b 21 K 2 K 2 ].

27 Die Gleichungen des dimensionslosen Modells zur besseren mathematischen Berechnung sind du 1 dτ = u 1(1 u 1 a 12 u 2 ) und du 2 dτ = ρu 2(1 u 2 a 21 u 1 ). Die Stabilitäts der Gleichgewichtspunkte wird wieder von der Jacobimatrix A bestimmt. A = df 1 du 1 df 1 du 2 df 2 du 1 df 2 du 2 = 1 2u 1 a 12 u 2 a 12 u 1 ρa 21 u 2 ρ(1 2u 2 a 21 u 1 )

28 kritische Punkte: (0,0) instabil, da λ 1 = 1 > 0 { stabil (1,0) ist instabil { stabil (0,1) ist instabil { a 21 > 1, falls a 21 < 1 { a 12 > 1, falls a 12 < 1

29 S = ( 1 a12 1 a 12 a 21, ) 1 a 21 1 a 12 a 21 a 12 < 1, a 21 < 1 a 12 > 1, a 21 > 1 a 12 < 1, a 21 > 1 a 12 > 1, a 21 < 1 (a) (b) (c) (d) (a): Gleichgewichtspunkt S ist stabil und (0,1) und (1,0) sind stationäre Punkte (b): (0,1) und (1,0) besitzen jeweils ein Anziehungsgebiet, das mit Hilfe einer Separatrix durch den stationären Punkt S festgelegt wird (c): (1,0) ist anziehend für den gesamten positiven Quadranten (d): (0,1) ist anziehend für den gesamten positiven Quadranten

30 Quelle: J. D. Murray (2002): Mathematical Biology: I. An Introduction, Third Edition, Springer, S.97

31 Mutualismus und Symbiose Alle Spezies müssen einander Nutzen bringen Symbiose: Wechselwirkung von Individuen unterschiedlicher Arten, die für beide Partner vorteilhaft ist Mutualismus: Regelmäßige, aber nicht lebensnotwendige Beziehung der Symbionten Lotka-Volterra-Gleichungen: dn 1 dt = r 1 N 1 + a 1 N 1 N 2, dn 2 = r 2 N 2 + a 2 N 2 N 1, dt N 1 und N 2 wachsen ungebremst, falls dn 1 dt > 0, dn 2 dt > 0

32 kritische Punkte: (0,0) instabiler Knoten (1,0) und (0,1) sind instabile Sattelpunkte ( 1+a12 ) δ, 1+a 21 positiv, falls δ = 1 a δ 12 a 21 > 0 { a 12 a 21 > 1 (a) a 12 a 21 < 1 (b) (a): unberenztes Wachstum tritt im Gebiet zwischen den durchgezogenen Linien statt (b): alle Trakjektorien laufen auf den positiven Gleichgewichtspunkt S zu

33 Quelle: J. D. Murray (2002): Mathematical Biology: I. An Introduction, Third Edition, Springer, S.101

34 Diskrete Modelle In der Natur interagieren nicht nur 2, sondern mehrere Spezies miteinander. Stabiltät und Instabilität der Gleichgewichtspunkte werden auf die gleiche Art und Weise wie vorher überprüft. Im Buch von May 3 werden einige Resultate diesbezüglich vorgestellt, je nachdem welche Form die Matrix A besitzt. Ein instabiler Gleichgewichtspunkt führt zu einem unbegrenzten Wachstum einer Spezies oder er konvergiert zu einem anderen Gleichgewichtspunkt hin R.M. May. Stability and Complexity in Model Ecosystems. Princeton Univ. Press, Princeton, second edition,

35 Dies alles hat jedoch einen eingeschränkten Nutzen, da reale Situationen nicht so einfache Eigenschaften besitzen. Die (fast) uneingeschränkte Anzahl an Parametern kann zu Chaos oder unregelmäßigem Verhalten führen. Kleine Veränderungen in Interaktionsmodellen können einen außergewöhnlichen Einfluss besitzen. Daher sollte jedes Modell wissenschaftlich sehr genau analysiert werden, bevor man von außen versucht das System zu seinen Gunsten zu manipulieren.

36 Beispiel Die Nilbarsch-Katastrophe am Viktoriasee: Der Nilbarsch wurde 1960 im See angesiedelt. er sollte ursprünglich eine Proteinquelle für die anderen Fischarten sein, um mehr Umsatz mit der Fischerei zu machen seit 1960 haben sich die ökonomischen Bedingungen am See jedoch grundlegend geändert viele kleinere Arten wurden seitdem vom Nilbarsch ausgelöscht

37 zum Räuchern des Barsches müssen, im Gegensatz zu den ausgelöschten Arten, Wälder gerodet werden in den späten 90ern kam noch die Dickstielige Wasserhyazinthe hinzu, was die Brutstätten der Fische zusätzlich zerstört Fatal ist auch, dass eine Schneckenart von der ganzen Veränderung profitiert, die die Krankheit Bilharziose übertragt

38 Fazit Modelle sind eine gute Möglichkeit, um Populationsveränderungen vorherzusagen. Diese sollten so "genau" wie möglich betrachtet werden. Aufgrund einer Vielzahl nicht betrachteter kleinerer Einflüsse in der Realität kann man sich nie zu 100% auf die Analyse verlassen. Aus diesem Grund sollte man beachten, dass sich die Systeme im Wesentlichen nicht so einfach voraussagen lassen.

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg : Gliederung 1 Finanzmathematik 2 Lineare Programme 3 Differentialgleichungen 4 Statistik:

Mehr

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak

Populations Modelle Das Lotka-Volterra Model. Robin Gwinner Seminarleiterin: Dr. Iryna Rybak Populations Modelle Das Lotka-Volterra Model Robin Gwinner Seminarleiterin: Dr. Iryna Rybak 04.05.2016 Motivation Rote Liste: Motivation Rote Liste: Motivation Rote Liste: Motivation Motivation Motivation

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Vorwissen Lineare Modelle zweier Bevölkerungen

Vorwissen Lineare Modelle zweier Bevölkerungen Reiser Stephan 1 Ablauf Vorwissen Lineare Modelle zweier Bevölkerungen Das Konkurrenzmodell von Volterra Ein allgemeineres Konkurrenzmodell Periodische Bahnen für die allgemeine Volterra-Lotka- Gleichung

Mehr

Beispiel: Evolution infizierter Individuen

Beispiel: Evolution infizierter Individuen Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie

Mehr

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t 5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N

Mehr

Räuber-Beute-Modelle, Auslese/Schwellensatz

Räuber-Beute-Modelle, Auslese/Schwellensatz Räuber-Beute-Modelle, Auslese/Schwellensatz Mareike Franz und Brigitte Steinhauser 15. Dezember 2008 1 / 37 1 Räuber-Beute-Modelle 2 Prinzip der Auslese durch Wettbewerb 3 Schwellensatz der Epidemiologie

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

Ausgehend vom Lotka-Volterra Modell der Populationsdynamik sind für die Testaufgabe zwei Teilaufgaben

Ausgehend vom Lotka-Volterra Modell der Populationsdynamik sind für die Testaufgabe zwei Teilaufgaben Praxis 2 - Tabellenkalkulation 9 Fig. 3 Teil C: Testaufgabe 1. Einführung Populationsdynamik bei Tieren in einem Lebensraum Wenn Tiere verschiedener Arten den gleichen Lebensraum besiedeln, können sie

Mehr

Das Paket raeuber_beute_modelle enthält 3 Modelle mit denen das Verhalten von Lotka-Volterra-Systemen simuliert werden kann.

Das Paket raeuber_beute_modelle enthält 3 Modelle mit denen das Verhalten von Lotka-Volterra-Systemen simuliert werden kann. Räuber Beute Modell 1. Versionsgeschichte: Version 0.1 2. Aufgabenstellung für das Modell Das Paket raeuber_beute_modelle enthält 3 Modelle denen das Verhalten von Lotka-Volterra-Systemen simuliert werden

Mehr

Katharina Kausel, April 2012

Katharina Kausel, April 2012 Mathematische Modelle in der Biologie Seminar Biomathematik Seminar Biomathematik Katharina Kausel, April 2012 Mutualismus Was ist Mutualismus? SYMBIOSE Unterschied: eine Art ist ohne die andere LEBENSUNFÄHIG

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Fressen und Gefressen werden

Fressen und Gefressen werden Fressen und Gefressen werden Teilnehmer: Ssohrab Borhanian Kristin Emmrich Johannes Jendersie Sophia Ketterl Arne Müller Thao Phuong Nguyen Felix Rehn Heinrich-Hertz-Oberschule Heinrich-Hertz-Oberschule

Mehr

Logistische Gleichung

Logistische Gleichung Logistische Gleichung Marius Bohn Fakultt6.1MathematikderUniversittSaarbrcken 22.11.2011 Marius Bohn (Universität Saarbrücken) Logistische Gleichung 22.11.2011 1 / 37 Übersicht Bei der Untersuchung von

Mehr

Dynamische Systeme in der Mikrobiologie

Dynamische Systeme in der Mikrobiologie Dynamische Systeme in der Mikrobiologie Gruppe G Mi: Severine Hurni, Esther Marty, Giulia Ranieri, Matthias Engesser, Nicole Konrad Betreuer: Roman Kälin 1. Einleitung Ein dynamisches System ist ein System,

Mehr

Fixpunkte und Stabilitätsanalyse

Fixpunkte und Stabilitätsanalyse Fixpunkte und Stabilitätsanalyse 1 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme

Mehr

Dynamische Systeme in der Mikrobiologie

Dynamische Systeme in der Mikrobiologie Dynamische Systeme in der Mikrobiologie Verfasst von: Blank Patricia, Gattlen Jasmin, Kaspar Romana (DI Gruppe G) Betreut durch: Roman Kälin BBOM, Buchkapitel: 6.1, 6.3-6.6, Hilfsmittel: www.simolife.unizh.ch

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen

Wellen und wandernde Wellen Ähnlichkeitslösungen. Crashkurs PDG anhand von Beispielen. Wellen Wellen Crashkurs PDG anhand von Beispielen Eine Welle ist ein erkennbares Signal, welches innerhalb eines Mediums von einer Seite zur anderen übertragen wird, mit einer erkennbaren Ausbreitungsgeschwindigkeit.

Mehr

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Stabilität von n-spezies Gemeinschaften

Stabilität von n-spezies Gemeinschaften Stabilität von n-spezies Gemeinschaften Julia Klein 20.12.2011 Joseph Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Kap.15 Übersicht 1 Einführung 2 Mutualismus und M-Matrizen 3

Mehr

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1

Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 Gewöhnliche Differentialgleichungen Aufgaben, Teil 1 4-E1 4-E2 4-E3 Gewöhnliche Differentialgleichung: Aufgaben Bestimmen Sie allgemeine und spezielle Lösungen der folgenden Differentialgleichungen Aufgabe

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

Populationsdynamik im Computer simuliert

Populationsdynamik im Computer simuliert Populationsdynamik im Computer simuliert Die Grösse einer Population in einem Ökosystem hängt von zahlreichen abiotischen und biotischen Faktoren ab, die meist auf komplexe Art und Weise zusammenwirken:

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Gleichgewichte von Differentialgleichungen

Gleichgewichte von Differentialgleichungen Gleichgewichte von Differentialgleichungen Gleichgewichte von Differentialgleichungen Teil 1 Zur Erinnerung: Zur Erinnerung: Wir hatten lineare Differentialgleichungen betrachtet: in R 1 : Zur Erinnerung:

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

Appendix A: Grundlagen der Populationsbiologie

Appendix A: Grundlagen der Populationsbiologie 701-245-00L Pop - & Evol biol - A.1 - App. A: Grundlagen der Populationsbiologie Appendix A: Grundlagen der Populationsbiologie Einige grundlegende Prinzipien der Populationsbiologie sind wichtig zum Verständnis

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Beziehung. Beziehung. Abbildung 1: Daten der Hudson s Bay Company

Beziehung. Beziehung. Abbildung 1: Daten der Hudson s Bay Company 1 Information 1.1 Historisches Im Raum um die Hudson Bay betrieb die Hudson s Bay Company einen einträglichen Handel mit Fellen u.a. von Luchsen und Schneehasen. Doch wie die akribischen Aufzeichnungen

Mehr

Mathematik in der Biologie

Mathematik in der Biologie Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?

Mehr

Gekoppelte Populationen

Gekoppelte Populationen Leibnizschule Hannover - Seminararbeit - Gekoppelte Populationen Modellierung und Analyse K.K Schuljahr: 20 Fach: Mathematik Inhaltsverzeichnis 1 Einleitung 2 2 Erläuterungen 3 2.1 Gekoppelte Population..............................

Mehr

Katalytische Hyperzyklen

Katalytische Hyperzyklen Katalytische Hyperzyklen Lara Münster 20.12.2011 Literatur: Hofbauer J., Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press: Cambridge Katalytische Hyperzyklen 1

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Modelle mit zwei Zustandsgrößen Seminar für Lehramt Mathematik

Modelle mit zwei Zustandsgrößen Seminar für Lehramt Mathematik Modelle mit zwei Zustandsgrößen 106.081 Seminar für Lehramt Mathematik Modelle mit zwei Zustandsgrößen Grundlegende Wechselwirkungsmodelle aus der Ökologie Mutualismus Konkurrenz Räuber-Beute-Modell Modelle

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Temperaturabhängige Geschlechtsbestimmung (TSD) bei Krokodilen

Temperaturabhängige Geschlechtsbestimmung (TSD) bei Krokodilen 1 / 45 Temperaturabhängige Geschlechtsbestimmung (TSD) bei Krokodilen J. D. Murray: Mathematical Biology: I. An Introduction, Third Edition, Springer Ina Förster 13. November 2012 2 / 45 Sitzungsablauf

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Berechnung von Eigenwerten und Eigenvektoren Mathematik 1 Bestimmung von Eigenwerten und Eigenvektoren Jedes λ, das det(a

Mehr

2.5 Asymptotisches Lösungsverhalten bei gewöhnlichen Differentialgleichungen

2.5 Asymptotisches Lösungsverhalten bei gewöhnlichen Differentialgleichungen .5 Asymptotisches Lösungsverhalten bei gewöhnlichen Differentialgleichungen Wir wollen nun as Langzeitverhalten von Lösungen zu Systemen gewöhnlicher Differentialgleichungen untersuchen. Wir stellen uns

Mehr

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering

Medizinische Biophysik. Stephan Scheidegger ZHAW School of Engineering Medizinische Biophysik Stephan Scheidegger ZHAW School of Engineering Modelle in der medizinischen Biophysik Inhalt ROETGETECHIK Teil A Systembiophysik (Kapitel 1-4) Teil B Strahlenbiophysik (Kapitel 5-8)

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4

Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4 Prof. Roland Gunesch Sommersemester Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 4 Analysieren Sie folgende mathematischen Modelle der Liebesbeziehung zwischen

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

5 Gewöhnliche Differentialgleichungen

5 Gewöhnliche Differentialgleichungen 5 Gewöhnliche Differentialgleichungen 5.1 Einleitung & Begriffsbildung Slide 223 Natürliches Wachstum Eine Population bestehe zur Zeit t aus N(t) Individuen. Die Population habe konstante Geburts- und

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4

Mehr

Chemische Oszillationen

Chemische Oszillationen Ludwig Pohlmann Thermodynamik offener Systeme und Selbstorganisationsphänomene SS 007 Chemische Oszillationen. Chemische (Formal-)Kinetik Die chemische Kinetik untersucht die Geschwindigkeit und den Mechanismus

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

Lineare Differenzengleichungen

Lineare Differenzengleichungen Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung

Mehr

Elliptische Funktionen

Elliptische Funktionen Elliptische Funktionen Jeff Schomer Universität Freiburg (Schweiz) 27.09.2007 Einleitung In diesem Seminar werden wir über doppelt periodische und elliptische Funktionen sprechen. Nachdem wir grundlegende

Mehr

Mathematische Herleitung der Steady-State-Wachstumsraten im Solow-Modell

Mathematische Herleitung der Steady-State-Wachstumsraten im Solow-Modell Mathematische Herleitung der Steady-State-Wachstumsraten im Solow-Modell Zur Erinnerung: Die Ableitung einer Variablen nach der Zeit t stellt die Veränderung dieser Variablen zum Zeitpunkt t dar. Ist K(t)

Mehr

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur

exponentielle Wachstumsphase Abbildung 1: Wachstumskurve einer Bakterienkultur Bakterienwachstum Mathematische Schwerpunkte: Teil 1: Folgen; vollständige Induktion; rekursiv definierte Folgen Teil 2: Exponentialfunktionen Teil 3: Extremwertbestimmung; Integration einer rationalen

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

GRUNDLEGENDE MODELLE. Caroline Herbek

GRUNDLEGENDE MODELLE. Caroline Herbek GRUNDLEGENDE MODELLE Caroline Herbek Lineares Wachstum Charakteristikum: konstante absolute Zunahme d einer Größe N t in einem Zeitschritt Differenzengleichung: N t -N t-1 =d => N t = N t-1 +d (Rekursion)

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 20/202 Mathematik für Anwender I Vorlesung 30 Gewöhnliche Differentialgleichungen mit getrennten Variablen Definition 30.. Eine Differentialgleichung der Form y = g(t)

Mehr

Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04

Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Weiterbildung für Ingenieure Numerische Methoden für Differentialgleichungen Prinzipien und Praxis Taubert, Heitmann Universität Hamburg WS03/04 Linearisierung 1 K. Taubert LINEARISIERUNG und das VERHALTEN

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Einfache Modelle der Neurodynamik.

Einfache Modelle der Neurodynamik. Vorlesung Einfache Modelle der Neurodynamik. Anregbarkeit und canards. Wintersemester 2015/16 12.01.2016 M. Zaks Aufbau eines Neurons: Gesamtbild 2 / 16 neuron Aufbau eines Neurons: Axon und Dendriten

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Lineare Differenzen- und Differenzialgleichungen

Lineare Differenzen- und Differenzialgleichungen Lineare Differenzen- und Differenzialgleichungen Fakultät Grundlagen April 2011 Fakultät Grundlagen Lineare Differenzen- und Differenzialgleichungen Übersicht 1 Beispiele Anwendung auf Fragen der dynamischen

Mehr

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema

Prof. Dr. H. Brenner Osnabrück SS Analysis II. Vorlesung 50. Hinreichende Kriterien für lokale Extrema Prof. Dr. H. Brenner Osnabrück SS 205 Analysis II Vorlesung 50 Hinreichende Kriterien für lokale Extrema Wir kommen jetzt zu hinreichenden Kriterien für die Existenz von lokalen Extrema einer Funktion

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Mathematik I Prüfung Frühlingssemester 2014

Mathematik I Prüfung Frühlingssemester 2014 Mathematik I Prüfung Frühlingssemester 2014 Prof. Dr. Enrico De Giorgi 23. Juni 2014 Mathematik II: Prüfung Frühlingssemester 2014 1 Teil I: Offene Fragen (50 Punkte) Allgemeine Anweisungen für offene

Mehr

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3.

4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. 4. Dämpfungsmodelle. Elastodynamik 1 3. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 4. Dämpfungsmodelle 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische

Mehr

Folgen und Reihen. Thomas Blasi

Folgen und Reihen. Thomas Blasi Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit.............................

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

Kapitel 5 (Ebene autonome Systeme) Abschnitt 5.1 (Reduktion auf skalare Di.gleichungen)

Kapitel 5 (Ebene autonome Systeme) Abschnitt 5.1 (Reduktion auf skalare Di.gleichungen) Abschnitt 5.1 Reduktion auf skalare Differenzialgleichungen 33 Kapitel 5 Ebene autonome Systeme Abschnitt 5.1 Reduktion auf skalare Di.gleichungen Aufgabe 1, Seite 190 Das gegebene System besitzt oensichtlich

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer 1 Überdeckungskompaktheit Einleitung P T Q A R S U B (a) (b) Abbildung 1: Beispiele verschiedener Überdeckungen (1.1) Definition (Überdeckung)

Mehr

4 Lineare Abbildungen Basisdarstellungen

4 Lineare Abbildungen Basisdarstellungen 4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS

Dämpfung. . Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung. Elastodynamik 2 SS Dämpfung. Grundlagen. Viskose Dämpfung. Modale Dämpfung. Rayleigh-Dämpfung. Strukturdämpfung 5. Dämpfung 5-1 1. Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Mechanische Energie

Mehr

Theoretische Physik 1, Mechanik

Theoretische Physik 1, Mechanik Theoretische Physik 1, Mechanik Harald Friedrich, Technische Universität München Sommersemester 2009 Mathematische Ergänzungen Vektoren und Tensoren Partielle Ableitungen, Nabla-Operator Physikalische

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Sommmersemester Aufgabe Punkte

Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Sommmersemester Aufgabe Punkte Kursprüfung Methoden der VWL Klausurteil Dynamische Methoden der VWL Sommmersemester 2014 29.07.2014 Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer ausgefüllt: Aufgabe 1 2 3 4

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Höhere Mathematik II für die Fachrichtung Physik

Höhere Mathematik II für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 5/6 8..6 Höhere Mathematik II für die Fachrichtung Physik Bachelor-Modulprüfung Aufgabe

Mehr

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011 Asymmetrische Spiele Eric Barré 13. Dezember 2011 Gliederung 1 Einführung Allgemeines Definition Begründung Nash-Gleichgewicht 2 Kampf der Geschlechter Allgemein Auszahlungsmatrix Nash-Gleichgewicht Beispiel

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof. Dr. Erich Walter Farkas Kapitel 8. Funktionen von mehreren Variablen 8.2 Partielle Differentiation Prof. Dr. Erich Walter Farkas Mathematik I+II, 8.2 Part. Diff.

Mehr

Mathematik I für Chemie

Mathematik I für Chemie Mathematik I für Chemie Dr. Sebastian Franz WS 2012/13 sebastian.franz@tu-dresden.de Mathematik I 1 / 24 Physikalische und chemische Gesetzmäßigkeiten werden häufig mittels mathematischer Formeln beschrieben.

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit

Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit Prof. Dr.-Ing. Jörg Raisch Dr.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Veranstaltung Mehrgrößenregelsysteme Aufgabe

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 14. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 14. 06.

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum.

2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum. Wachstumsmodellierung: Theorie Marius Bockwinkel Gliederung 1 Definition 2 Wachstumsarten 2.1 Lineares Wachstum 2.2 Exponentielles Wachstum 2.3 Exponentiell beschränktes Wachstum 2.4 Logistisches Wachstum

Mehr