Spezielle Kinetik MC 1.3. Prof. Dr. B. Dietzek. Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie. Wintersemester 2016/2017

Größe: px
Ab Seite anzeigen:

Download "Spezielle Kinetik MC 1.3. Prof. Dr. B. Dietzek. Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie. Wintersemester 2016/2017"

Transkript

1 Spezielle Kinetik MC 1.3 Prof. Dr. B. Dietzek Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie Wintersemester 2016/2017 B. Dietzek/D. Bender Spezielle Kinetik 1

2 Physikalische Chemie//Master Teil A Symmetrie in der Chemie (Prof. Dr. St. Gräfe) Grundbegriffe der Gruppentheorie Darstellungstheorie Anwendungen der Symmetrie in der Chemie Teil B Statistische Thermodynamik (Prof. Dr. V. Deckert) Grundbegriffe der statistischen Thermodynamik Boltzmann- und Quanten-Statistiken Ableitungen thermodynamischer Größen aus der Zustandssumme Teil C Spezielle Kinetik (Prof. Dr. B. Dietzek) Grundlagen der molekularen Kinetik Behandlung komplexer kinetischer Reaktionen Ultrakurzzeitdynamiken Praktikum Forschungspraktikum zu aktuellen physikochemischen Themen B. Dietzek/D. Bender Spezielle Kinetik 2

3 Organisatorisches Vorlesung Prof. Dr. B. Dietzek montags, 08:15-09:45h donnerstags, 16:00-17:30h Übung Dr. M. Wächtler dienstags 08:15-09:45h B. Dietzek/D. Bender Spezielle Kinetik 3

4 DGL Differentialgleichungen Definition Eine Differentialgleichung heißt eine mathematische Gleichung für eine gesuchte Funktion von einer oder mehreren Variablen, in der auch Ableitungen dieser Funktion vorkommen. gewöhnliche DGL Die gesuchte Funktion hängt von einer Variablen ab. In der Gleichung kommen nur gewöhnliche Ableitungen nach der Variablen vor. partielle DGL Die gesuchte Funktion hängt von mehreren Variablen ab. Die Gleichung enthält partielle Ableitungen nach mehr als einer Variablen. höchste Ableitung entspricht dem Grad der DGL homogene und inhomogene DGL spezielle und allgemeine Lösung; Anfangs- und Randwertprobleme B. Dietzek/D. Bender Spezielle Kinetik 4

5 DGL inhomogene Differentialgleichungen Wir suchen die allgemeine Lösung der (inhomogenen) Differentialgleichung ȧ = k f a 0 k f a k R a = k f a 0 (k f + k R ) a. (1) Dazu betrachten wir zunächst die zugehörige homogene Gleichung ȧ = (k f + k R ) a, (2) deren allgemeine Lösung offenbar a(t) = C 0 e (k f +k R)t (3) lautet. Die allgemeine Lösung der Differentialgleichung (1) erhält man bekanntlich als Summe aus der allgemeinen Lösung der homogenen Differentialgleichung (2) und einer speziellen Lösung von (1). B. Dietzek/D. Bender Spezielle Kinetik 5

6 DGL inhomogene Differentialgleichungen Um zu einer speziellen Lösung der inhomogenen Differentialgleichung zu gelangen, wenden wir die Methode der Variation der Konstanten an, wir betrachten also in Gleichung (3) den Vorfaktor als Funktion der Zeit C 0 = C 0 (t). Damit ist dann a(t) = C 0 (t) e (k f +k R)t (4) und folglich ȧ = Ċ0 e (k f +k R)t C 0 (t) (k f + k R ) e (k f +k R)t (5) = Ċ0 e (k f +k R)t (k f + k R ) a. (6) B. Dietzek/D. Bender Spezielle Kinetik 6

7 DGL inhomogene Differentialgleichungen Der Vergleich mit Gleichung (2) liefert k f a 0 = Ċ0 e (k f +k R)t (7) Ċ0 = k f a 0 e (k f +k R)t. (8) Die einfach mögliche Integration ergibt C 0 (t) = k f k f + k R a 0 e (k f +k R)t + C 1. (9) Damit erhalten wir als allgemeine Lösung der Differentialgleichung (1) ( ) kf a(t) = a 0 e (k f +k R)t + C 1 e (k f +k R)t (10) k f + k R = k f k f + k R a 0 + C 1 e (k f +k R)t. (11) B. Dietzek/D. Bender Spezielle Kinetik 7

8 DGL inhomogene Differentialgleichungen Die noch unbekannte Integrationskonstante C 1 bestimmen wir aus der Anfangsbedingung a(0) = a 0. k f 0 = a(0) = a 0 + C 1 (12) k f + k R ( C 1 = 1 k ) f a 0 = k R a 0. (13) k f + k R k f + k R Damit ist die allgemeine Lösung a(t) = k f a 0 + k R a 0 e (k f +k R)t k f + k R k f + k R (14) = k f + k R e (k f +k R)t k f + k R a 0. (15) B. Dietzek/D. Bender Spezielle Kinetik 8

9 DGL Differentialgleichungssysteme Differentialgleichungen höherer Ordnung lassen sich auf ein Differentialgleichungssystem zurückführen. Man spricht von einem System von Differentialgleichungen, wenn mehrere Funktionen y i (=Vektor) und mehrere Gleichungen mit den ableitungen der y i gleichzeitig zu erfüllen sind. z. B. dynamische System (später) y 1 = f 1 (x, y i (x)) y 2 = f 2 (x, y i (x)). y j = f j (x, y i (x)). B. Dietzek/D. Bender Spezielle Kinetik 9

10 Reaktionskinetik Grundbegriffe Reaktionslaufzahl ξ ν A A + ν B B + ν c C + ν D D + dξ = dn A ν A = dn B ν B = dn C ν C = dn D ν D Reaktionsgeschwindigkeit 1 V dξ dt = 1 dn i ν i dt dξ dt = 1 dc i ν i dt B. Dietzek/D. Bender Spezielle Kinetik 10

11 Reaktionskinetik Grundbegriffe Reaktionsvariable x = ξ V dx = 1 ν A d[a] = 1 ν B d[b] = 1 ν C d[c] = 1 ν D d[d] Geschwindigkeitskonstante k dx dt = k[a]a [B] b Reaktionsordnung a, b,..., a + b + B. Dietzek/D. Bender Spezielle Kinetik 11

12 Reaktionskinetik Reaktionen 1. Ordnung Reaktionen vom Typ A B + C +... z. B. N 2 O 5 N 2 O O 2 Geschwindigkeitsgleichung d[a] dt = k 1 [A] Trennung der Variablen Zeitgesetz [A] = [A] 0 e k 1t B. Dietzek/D. Bender Spezielle Kinetik 12

13 Reaktionskinetik Reaktionen 2. Ordnung Reaktionen vom Typ 2 A C + D +... z. B. 2 NO 2 2 NO + O 2 Geschwindigkeitsgleichung d[a] dt = 2k 2 [A] 2 Trennung der Variablen Zeitgesetz 1 [A] 1 = 2k 2 t [A] 0 B. Dietzek/D. Bender Spezielle Kinetik 13

14 Reaktionskinetik Reaktionen 2. Ordnung Reaktionen vom Typ A + B C + D +... Geschwindigkeitsgleichung dx dt = k 2([A] 0 + ν A x)([b] 0 + ν B x) Trennung der Variablen, Partialbruchzerlegung (s. Tafel) Zeitgesetz 1 ν B [A] 0 ν A [B] 0 ln [A] 0([B] 0 + ν B x) [B] 0 ([A] 0 + ν A x) = k 2t B. Dietzek/D. Bender Spezielle Kinetik 14

15 Reaktionskinetik Reaktionen 3. Ordnung Reaktionen vom Typ A + B + C D +... z. B. 2 NO + O 2 2 NO 2 Geschwindigkeitsgleichung Zeitgesetz dx dt = k 3([A] 0 + ν A x)([b] 0 + ν B x)([c] 0 + ν C x) 1 [A] 2 1 [A] 2 0 = 2k 3 t B. Dietzek/D. Bender Spezielle Kinetik 15

16 Reaktionskinetik Halbwertszeit Definition (Halbwertszeit) Die Halbwertszeit (τ 1/2 oder T 1/2 ) heißt die Zeitspanne, nach der die Konzentration auf die Hälfte ihres Ausgangswertes abgenommen hat. Abhängigkeit von der Ausgangskonzentration je nach Reaktionsordnung τ 1/2 τ 1/2 τ (0) 1/2 c 0 τ (1) 1/2 = const. τ (2) 1/2 1 c 0 τ 1/2 c 0 τ 1/2 c 0 τ (3) 1/2 1 c 2 0 c 0 c 0 B. Dietzek/D. Bender Spezielle Kinetik 16

17 Einführung mathematische Modelle zeitabhängiger Prozesse Mathematik und Physik, aber auch in biologischer Modellbildung und in den Wirtschaftswissenschaften Systeme ohne von außen aufgeprägte Zeitabhängigkeit (homogene Zeitabhängigkeit, autonome Systeme) zeitliche Entwicklung hängt nur von den Anfangsbedingungen ab Zustand des Systems ist durch einen Punkt in einem Zustandsraum (Phasenraum) beschrieben diskreter Zustandsraum: z. B. Menge von natürlichen Zahlen, die die Anzahl von Individuen verschiedener Spezien angeben kontinuierlicher Zustandsraum: z. B. Konzentrationsverläufe (von Zwischenprodukten, BZ-Reaktion) Langzeitverhalten (Stabilität, Periodizität, Chaos und Ergodizität) B. Dietzek/D. Bender Spezielle Kinetik 17

18 Begriffe Begriffe Phasenraum, Trajektorien Zustandsvektor x(t), Zeitreihen konservative und dissipative Systeme zeitliche Entwicklung kann durch eine Funktion F gegeben sein Iterationen x(t n+1 ) = F (x(t n )) bei kontinuierlicher Zeitabhängigkeit auch DGL-Systeme möglich d dt x(t) = F ( x(t)) B. Dietzek/D. Bender Spezielle Kinetik 18

19 Beispiele Einige Beispiele Populationswachstum (exponentielles Wachstum) Federschwinger ẋ(t) = 1 m p(t) ṗ(t) = F (x(t), p(t)) gewöhnliche DGL und DGL-Systeme Iterationen, Markov-Ketten B. Dietzek/D. Bender Spezielle Kinetik 19

20 Beispiele Logistische Abbildung einfaches, nichtlineares dynamisches System mit einem Freiheitsgrad zeigt wesentliche Aspekte, chaotisches Verhalten x n+1 = F (x n ) = rx n (1 x n ) Modell der Populationsentwicklung enthält Reproduktionsrate und Sterberate Bei verschiedenen Werten des Parameters r können bestimmte, deutlich unterschiedliche Verhaltensweisen für große n beobachtet werden. Dabei hängt das Verhalten nicht vom Anfangswert x 0 ab, sondern nur von r. B. Dietzek/D. Bender Spezielle Kinetik 20

21 Beispiele Logistische Abbildung xn r = 0, n Für 0 r 1 stirbt die Population in jedem Fall aus. xn 0 r = 1, n Für 1 < r < 2 nähert sich die Population monoton dem Grenzwert an. r 1 r B. Dietzek/D. Bender Spezielle Kinetik 21

22 Beispiele Logistische Abbildung r = 2, 9 r = 3, xn 0.4 xn n n Für 2 < r < 3 nähert sich die Population dem Grenzwert r 1 r alternierend an, die Werte liegen also abwechselnd über und unter dem Grenzwert. Für 3 < r 3, 45 wechselt die Folge bei fast allen Startwerten zwischen den Umgebungen zweier Häufungspunkte. B. Dietzek/D. Bender Spezielle Kinetik 22

23 Beispiele Logistische Abbildung xn r = 3, n xn r = 3, n Wird r > 3, 45 gibt es erst 4, dann 8, 16, 32,... Häufungspunkte. Bei r 3, 57 beginnt das Chaos. Für r > 4 divergiert die Folge für fast alle Anfangswerte. B. Dietzek/D. Bender Spezielle Kinetik 23

24 Beispiele Mandelbrot-Menge / Apfelmännchen Analoge Funktion in der komplexen Zahlenebene: B. Dietzek/D. Bender Spezielle Kinetik 24

25 Stabilitätsuntersuchungen Stabilitätskriterien Jacobi-Matrix, Ableitung nach den Variablen, Eigenwerte der Jacobi-Matrix zweidimensionaler Fall: 1 zwei reelle, negative Eigenwerte: stabiler Knoten 2 zwei reelle, positive Eigenwerte: instabiler Knoten 3 zwei reelle Eigenwerte mit unterschiedlichem Vorzeichen: Sattel 4 zwei komplexe Eigenwerte mit negativem Realteil: stabiler Fokus 5 zwei komplexe Eigenwerte mit positivem Realteil: instabiler Fokus 6 zwei rein imaginäre Eigenwerte: stabiler Grenzzyklus B. Dietzek/D. Bender Spezielle Kinetik 25

26 Attraktoren Attraktoren asymptotisches Verhalten, t Fixpunkte Grenzzyklen seltsame Attraktoren (3-D), z. B. Rössler-Attraktor Lorenz-Attraktor B. Dietzek/D. Bender Spezielle Kinetik 26

27 Lotka-Volterra-Gleichungen Notwendige Voraussetzungen 1 nichtlineare Terme in den Reaktionsgleichungen (z. B. Autokatalyse) 2 fern ab vom Gleichgewicht B. Dietzek/D. Bender Spezielle Kinetik 27

28 Lotka-Volterra-Gleichungen Lotka-Volterra-Gleichungen 1925/1926 von Alfred Lotka und Vito Volterra unabhängig voneinander entwickelt Beschreibung eines biologischen Systems, mit der Population eines Beutetieres (B) und der Population seines Jägers (P ) abgeschlossenes Biotop Nahrung für die Beute unbegrenzt Begegnung für die Beute negativ, für den Jäger positiv ungestörte Wachstumsrate der Jäger negativ db dt = B (a bp ) und dp dt = P (cb d) B. Dietzek/D. Bender Spezielle Kinetik 28

29 Lotka-Volterra-Gleichungen Konstante Lösungen konstante Lösungen: Ḃ = P = 0 B (a bp ) = 0 und P (cb d) = 0 Man erhält zwei Lösungen: B = P = 0 oder (B, P ) = triviale Lösung und innerer Gleichgewichtspunkt ( d c, a ) b B. Dietzek/D. Bender Spezielle Kinetik 29

30 Lotka-Volterra-Gleichungen Ein erstes Integral nicht-konstante Lösungen Bewegungsinvariante c db dt d db B dt + b dp dt a dp P dt = 0 damit ist V (B, P ) = cb d ln B + bp a ln P = const t/arb. u. B(t) P (t) P (t) Eulerscher Multiplikator exakte Differentialgleichung B(t) B. Dietzek/D. Bender Spezielle Kinetik 30

31 Lotka-Volterra-Gleichungen Stabilität Stabilitätsmatrix (Jacobi-Matrix) an den Fixpunkten trivialer Gleichgewichtspunkt ist ein Sattelpunkt innerer Gleichgewichtspunkt ist stabil (ein Zentrum) B. Dietzek/D. Bender Spezielle Kinetik 31

32 Lotka-Volterra-Gleichungen Erweiterungen Selbstbeschränkung, Rückkopplung von i auf i dp dt = d P + c B P γp B(t) P (t) P (t) t/arb. u. B(t) B. Dietzek/D. Bender Spezielle Kinetik 32

33 Lotka-Volterra-Gleichungen Anwendungen Alternativ beschreibt das Lotka-Volterra-Modell das Zusammenspiel von Preis P und Angebot Q einer Ware. Es seien P und Q Mittelwerte von Preis und Angebot. Liegt der Preis über dem Mittelwert, wird die Produktion der Ware gesteigert, andererseits dämpft ein Überangebot den Preis. Schweinezyklus B. Dietzek/D. Bender Spezielle Kinetik 33

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Zeitgesetze. Stand: 08/2005 II.1.1

Zeitgesetze. Stand: 08/2005 II.1.1 Stand: 08/2005 II.1.1 Zeitgesetze 1.) Ziel des Versuches Ziel des Versuches ist der Erwerb von Fähigkeiten zum Aufstellen kinetischer Gleichungen bei komplexen Reaktionsmechanismen und das Verstehen typischer

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Appendix A: Grundlagen der Populationsbiologie

Appendix A: Grundlagen der Populationsbiologie 701-245-00L Pop - & Evol biol - A.1 - App. A: Grundlagen der Populationsbiologie Appendix A: Grundlagen der Populationsbiologie Einige grundlegende Prinzipien der Populationsbiologie sind wichtig zum Verständnis

Mehr

Skalare Differentialgleichungen

Skalare Differentialgleichungen Kapitel 2 Skalare Differentialgleichungen 2.1 Skalare lineare Differentialgleichungen 2.2 Bernoulli und Riccati Differentialgleichungen 2.3 Differentialgleichungen mit getrennten Variablen 2.4 Exakte Differentialgleichungen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

4. Woche: Mehrdimensionale Modelle

4. Woche: Mehrdimensionale Modelle Systemanalyse I: 4. Woche: Mehrdimensionale Modelle Nicolas Gruber Umweltphysik Institut für Biogeochemie und Schadstoffdynamik ETH Zürich nicolas.gruber@env.ethz.ch 1 Inhalt INHALT 1. Zusammenfassung

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Mathematische Modellbildung ohne und mit Computer Elemente einer diskreten Modellbildung

Mathematische Modellbildung ohne und mit Computer Elemente einer diskreten Modellbildung Mathematische Modellbildung ohne und mit Computer Elemente einer diskreten Modellbildung Teilnehmer: Bernd Lu Tatjana Unruh Anton Vydrin Dehua Duan Friedrich Ginnold Manh Dat Hoang Gruppenleiter: Jochen

Mehr

2.5.2 Selbstorganisierte Karten: das Modell von Kohonen. Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht

2.5.2 Selbstorganisierte Karten: das Modell von Kohonen. Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht 2.5.2 Selbstorganisierte Karten: das Modell von Kohonen Weil es beim Perzeptron keine Wechselwirkung in der Verarbeitungsschicht zwischen den einzelnen Neuronen gibt, spielt deren räumliche Anordnung keine

Mehr

Einführung in die Mathematik für Volks- und Betriebswirte

Einführung in die Mathematik für Volks- und Betriebswirte Einführung in die Mathematik für Volks- und Betriebswirte Von Prof. Dr. Heinrich Bader und Prof. Dr. Siegbert Fröhlich Mit 45 A bbildungen 8. A uflage R. Oldenbourg Verlag München Wien INHALTSVERZEICHNIS

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Notizen zur Vorlesung Gewöhnliche Differentialgleichungen G Sweers Wintersemester 08/09 ii Inhaltsverzeichnis Einführung Modelle 2 Explizite Lösungen 4 2 Trennbar 5 22 Linear erster Ordnung 6 23 Homogen

Mehr

Dieter Suter - 228 - Physik B

Dieter Suter - 228 - Physik B Dieter Suter - 228 - Physik B 4.5 Erzwungene Schwingung 4.5.1 Bewegungsgleichung In vielen Fällen schwingt ein Syste nicht frei, sondern an führt ih von außen Energie zu, inde an eine periodische Kraft

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Was hat Schönheit mit Chaos zu tun?

Was hat Schönheit mit Chaos zu tun? Physik in der Schule 31/2, 71 (1993) Was hat Schönheit mit Chaos zu tun? Vergleich der Mandelbrot-Iteration mit einem chaotischen Drehpendel Udo Backhaus (Universität Osnabrück), H.- Joachim Schlichting,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

+ + Personalmanagement Stuff-Turnover. Simulation im Excel. Organizational Headcount. Turnover. Recruitment

+ + Personalmanagement Stuff-Turnover. Simulation im Excel. Organizational Headcount. Turnover. Recruitment Personalmanagement Stuff-Turnover + Organizational Headcount Recruitment + + Turnover Simulation im Excel Schmetterlingseffekt 1 0,8 x 0,6 0,4 0,2 0 0 5 10 15 2 0 2 5 3 0 n Feigenbaum-Szenario Bifurkationspunkt:

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Stabilität mittels Ljapunov Funktion

Stabilität mittels Ljapunov Funktion Stabilität mittels Ljapunov Funktion Definition Eine C 1 Funktion V : D R, D R, heißt eine Ljapunov Funktion auf K r (0) D für f(y), falls gilt: 1) V(0) = 0, V(y) > 0 für y 0 2) V,f(y) 0 ( y, y r) Gilt

Mehr

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik von Wolfgang König, Heinrich Rommelfanger, Dietrich Ohse, Oliver Wendt, Markus Hofmann, Michael Schwind, Klaus Schäfer, Helmut Kuhnle, Andreas

Mehr

SIMULATION DYNAMISCHER SYSTEME f

SIMULATION DYNAMISCHER SYSTEME f HARTMUT BOSSEL SIMULATION DYNAMISCHER SYSTEME f Grundwissen, Methoden, Programme 2., verbesserte Auflage 0 Iedwische Hothsdxiie Oormsfu Fachbereich Mechanik vieweg Inhaltsverzeichnis 0. Überblick und Vorbemerkungen

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene

Protokoll Physikalisch-Chemisches Praktikum für Fortgeschrittene K. B. Datum des Praktikumstags: 4.12.2007 Matthias Ernst Protokoll-Datum: 8.12.2007 Gruppe 11 Assistent: T. Bentz Testat: AK-Versuch: Modellierung von verbrennungsrelevanten Prozessen Aufgabenstellung

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Gewöhnliche Differentialgleichungen

Gewöhnliche Differentialgleichungen Gewöhnliche Differentialgleichungen Eine Kurzeinführung im Rahmen der Vorlesung Mathematik und Statistik für Molekularbiologen Stefan Boresch stefan @ mdy.univie.ac.at, http://www.mdy.univie.ac.at/en/sbhome.html

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach Logistisches Wachstum am Beispiel einer Hefekultur 16.04.2012 Inhaltsverzeichnis 1.0 Vorwort...3 2.0 Logistisches Wachstum allgemein...4 2.1

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Physikalische Chemie II

Physikalische Chemie II Aufzeichnungen und Mitschriften zur Vorlesung Physikalische Chemie II an der Ruhr-Universität Bochum 1 n 1 1 (n 0 a n y) n 1 1 (n 0 a) n 1 = k t Bearbeiter: Gunnar Schmitz E-mail: Gunnar.Schmitz@rub.de

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.

!(0) + o 1(). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen. Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Markov-Prozesse mit stetigem Zustands- und Parameterraum

Markov-Prozesse mit stetigem Zustands- und Parameterraum Kapitel 8 Markov-Prozesse mit stetigem Zustands- und Parameterraum Markov-Prozesse mit stetigem Zustandsraum S R (bzw. mehrdimensional S R p und in stetiger Zeit, insbesondere sogenannte Diffusionsprozesse

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Die Burgers Gleichung

Die Burgers Gleichung Die Burgers Gleichung Vortrag im Rahmen der Vorlesung Spektralmethoden Elena Frenkel Samuel Voit Balthasar Meyer 29. Mai 2008 1 Einfürung Ein kurzer Überblick Physikalische Motivation 2 Cole-Hopf Transformation

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

2 Kapitel 1. Einleitung

2 Kapitel 1. Einleitung 1 1 Einleitung Zahlreiche Phänomene in den Natur- und Ingenieurswissenschaften werden durch Systeme partieller Differentialgleichungen und insbesondere hyperbolischer Erhaltungsgleichungen modelliert,

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Z = 60! 29!31! 1,1 1017.

Z = 60! 29!31! 1,1 1017. Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der

Mehr

FACHARBEIT MATHEMATIK. Thema:Fraktale Geometrie am Beispiel von Iterationen mit komplexen Zahlen

FACHARBEIT MATHEMATIK. Thema:Fraktale Geometrie am Beispiel von Iterationen mit komplexen Zahlen Gymnasium Erding Kollegstufenjahrgang 1996/98 FACHARBEIT IM LEISTUNGSKURSFACH MATHEMATIK Thema:Fraktale Geometrie am Beispiel von Iterationen mit komplexen Zahlen Verfasser: Michael Steil Leistungskurs:

Mehr

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen

Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Spezielle Eigenfunktionen des Transfer-Operators für Hecke Kongruenz Untergruppen Diplomarbeit 2005 Markus Fraczek Institut für Theoretische Physik Technische Universität Clausthal Abteilung Statistische

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung w-transformation Die w-transformationbildet das Innere des Einheitskreises der z-ebene in die linke w-ebene ab. z 1 w= z+1, bzw. z= 1+w 1 w Nach Anwendung der w-transformationist

Mehr

Ein Einfaches AIDS Modell

Ein Einfaches AIDS Modell Ein Einfaches AIDS Modell Martin Bauer: 990395 Guntram Rümmele: 99008 Das SIR - Modell Die Modellierung von epidemischen Modellen hat schon lange Tradition. Man hat schon immer versucht Erklärungen für

Mehr

Die Black-Scholes-Gleichung

Die Black-Scholes-Gleichung Die Black-Scholes-Gleichung Franziska Merk 22.06.2012 Outline Optionen 1 Optionen 2 3 Optionen Eine Kaufoption ist ein Recht, eine Aktie zu einem heute (t=0) festgelegten Preis E an einem zukünftigen Zeitpunkt

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Folgen. Kapitel 3. 3.1 Zinsrechnung

Folgen. Kapitel 3. 3.1 Zinsrechnung Kapitel 3 Folgen Eine Folge reeller Zahlen ordnet natürlichen Zahlen jeweils eine reelle Zahl zu. Liegen beispielsweise volkswirtschaftliche Daten quartalsweise vor, so kann man diese als Folge interpretieren.

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse 07.01.2015 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung von Systemen, deren Verhalten durch einen zufälligen Übergang von einem Systemzustand zu einem anderen Systemzustand gekennzeichnet

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Apfelmännchen Theorie und Programmierung

Apfelmännchen Theorie und Programmierung Apfelmännchen Theorie und Programmierung Das Thema "Apfelmännchen" gehört zum Oberthema "Chaos und Ordnung in dynamischen Systemen". Es ist ein relativ neues Forschungsgebiete der Mathematik ( ab ca. 1980

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Klausur Analysis II (SS 2005)

Klausur Analysis II (SS 2005) Klausur Analysis II (SS 5) Prof. Dr. J. Franke Abschlußklausur vom. Juli 5 Name, Vorname: Matrikelnummer: Gruppe, Tutor: Pseudonym: ir wünschen Ihnen viel Erfolg! Mit 5 Punkten oder mehr von 5 ist die

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Ingenieurmathematik für Maschinenbau, Blatt 1

Ingenieurmathematik für Maschinenbau, Blatt 1 Ingenieurmathematik für Maschinenbau, Blatt 1 Probeklausur Ingenieurmathematik für Maschinenbau Studiengang Prüfungsfach Prüfer Prüfungstermin Prüfungsdauer Prüfungsunterlagen Hilfsmittel Maschinenbau

Mehr

Modellierung mit Differentialgleichungen

Modellierung mit Differentialgleichungen Modellierung mit Differentialgleichungen Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 9544 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/ lgruene/

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr