Feigenbaum, Chaos und die RG

Größe: px
Ab Seite anzeigen:

Download "Feigenbaum, Chaos und die RG"

Transkript

1 Feigenbaum, Chaos und die RG 9. Juli 27 Lara Becker Bildquelle: [7]

2 Nichtlineare Systeme und Chaos nichtlineare Systeme in letzter Zeit wieder reges Forschungsgebiet Ermöglichung der Untersuchung nicht-integrabler Systeme durch Computer Anfänge der Chaostheorie: Arbeiten von Edward Lorenz (um 96) math. Modell der Atmosphäre sensitive Abhängigkeit von den Anfangsbedingungen heute: Untersuchung eines Phasenübergangs ins Chaos 9. Juli 27 Lara Becker 2 Bildquellen: [2, 3]

3 Logistische Abbildung Die logistische Abbildung... ist definiert als: f () = r( ), r [, 4] zeigt unterschiedliches Verhalten: r : = stabil < r 3: stabil 3 < r 3.45: Oszillationen mit Periode < r 3.54: Oszillationen mit Periode 4... r > r c 3.57: chaotisches Verhalten.8.4 id r = r = r = r = Zeitschritt Zeitschritt Zeitschritt Zeitschritt 9. Juli 27 Lara Becker 3

4 Logistische Abbildung Periodenverdopplungen für r r c durchläuft die logistische Abbildung eine Reihe von Periodenverdopplungen Periodenverdopplung: stabiler Orbit der Länge 2 k wird instabil und ein stabiler Orbit der Länge 2 k+ entsteht geschieht, wenn f (, r) = für alle Punkte gleichzeitig: d f (2n) () d = = 2 n k= f ( k ) Periodenverdopplungen als Weg ins Chaos 9. Juli 27 Lara Becker 4 r = 2.5 f() r = r = , f() f() f().4.4.8

5 Logistische Abbildung Feigenbaum-Konstanten logistische Abbildung vollzieht Übergang zum Chaos durch Periodenverdopplungen Chaos beginnt bei r c 3.57 Feigenbaum-Konstanten: Bifurkationsdiagramm der logistischen Abbildung. δ = limn r n r n r n+ r n α = d limn n d n charakterisieren horizontale bzw. vertikale Längenskala des Bifurkationsdiagramms 9. Juli 27 Lara Becker 5 Bildquellen: [6, 7]

6 Logistische Abbildung Universalität α und δ nicht speziell für logistische Abbildung! andere Abbildungen: f r () = r sin(π), r f r () = r( 2 )(2 2 ), Bifurkationsdiagramm der Sinus-Abbildung. r 9 6 physikalische Systeme: Eperimente zur Rayleigh- Bénard-Konvektion in Hg [5] δ = 4.4 ±. Universalität? mit RG-Methoden untersuchen 9. Juli 27 Lara Becker 6 Periodenverdopplung im Eperiment. Bildquellen: [, 5]

7 RG-Formalismus Präliminarien U: Raum von Familien einparametriger Abbildungen {f r } mit guten Eigenschaften U = {f : I I, f regulär, unimodal, quad. Maimum} setze: I = [, ] und f r () = Universalität sollte Eigenschaft von U unter Anwendung eines renormierenden Operators R : U U sein 9. Juli 27 Lara Becker 7

8 RG-Formalimus Renormierungsoperator R Eigenschaften von R: Abbildung von Zyklen mit Periode 2 n auf Zyklen mit Periode 2 n coarse-graining der Zeitskala - f f f R : U U, f() r = f(), f(f(f())) r = Reskalierung notwendig R(f ) = αf f ( α ) untersuche dynamisches System R : U U Funktionsweise des Renormierungsoperators R. 9. Juli 27 Lara Becker 8 Bildquelle: [6]

9 RG-Formalismus Bestimmung von α betrachte den Fipunkt φ von R an dieser Stelle gilt: φ () = R(φ )() = αφ (φ ( α )) wissen: φ () = Ansatz: φ () = + N n= c n 2n + O( 2N+2 ) Einsetzen in die Fipunkt-Gl. und Lösen liefert Näherungen für α N = 3 : α 2.479, c.522, c 2.73, c 3.46 N = 6 : α vergleiche: α Näherung für N = 6 auf 6 genau! 9. Juli 27 Lara Becker 9

10 Zusammenfassung Übergang der Dynamik eindimensionaler Abbildungen f r () ins Chaos für r r c via Periodenverdopplung Phasenübergang zwischen nicht-chaotischer und chaotischer Dynamik kritischer Punkt: r c Auftreten des Attraktors mit Länge 2 unendliche Korrelationslänge Abfolge der Periodenverdopplungen (asymptotisch) selbstähnlich charakterisiert durch Feigenbaum-Konstanten α, δ α, δ universell für bestimmte Klassen von Abbildungen Phasenübergang + Selbstähnlichkeit + Universalität RG-Methoden Untersuchung des RG flow ermöglicht sehr gute Näherung von α und δ für andere Klassen von Abbildungen: andere Werte von α und δ z.b. quartisches Maimum: α und δ Juli 27 Lara Becker

11 Ende Geschafft! Fragen? 9. Juli 27 Lara Becker

12 Quellen I AGUIRRE, L. A., UND FURTADO, E. C. Building dynamical models from data and prior knowledge: the case of the first period-doubling bifurcation. Physical Review E 76, 4 (27), BOEING, G. Visual analysis of nonlinear dynamical systems: Chaos, fractals, self-similarity and the limits of prediction. Systems 4, 4 (26), 37. CCREWEB. Darstellungen des Lorenz-Attraktors. [Stand: 4. Juli 27]. CRESWICK, R., FARACH, H. A., UND POOLE, C. Introduction to renormalization group methods in physics. John Wiley & Sons, 992. LIBCHABER, A., LAROCHE, C., UND FAUVE, S. Period doubling cascade in mercury, a quantitative measurement. Journal de Physique Lettres 43, 7 (982), SFONDRINI, A. An introduction to universality and renormalization group techniques. arxiv preprint arxiv:2262 (22). WIKIMEDIA (NUTZER: PAR). Bifurkationsdiagramm der logistischen Gleichung (eigene Überarbeitung). [Stand:. Juli 27]. 9. Juli 27 Lara Becker 2

13

14 RG-Formalismus Konzept: superstabile Zyklen Lyapunov-Eponent: Maß für die Geschwindigkeit, mit der sich benachbarte Punkte im Phasenraum voneinander entfernen am Bifurkationspunkt: λ = zwischen zwei Bifurkationen: an einer Stelle λ( r n ) = superstabiler Zyklus Werte r n konvergieren wie die r n mit Rate δ gegen r c 3.57 Lyapunov-Eponent der logistischen Abbildung für r > Juli 27 Lara Becker 4 Bildquelle: [6]

15 RG-Formalismus Analyse von R : U U untersuche dynamisches System R : U U nehme zur Vereinfachung an: φ U so, dass R(φ ) = φ nur ein EW von R(φ ) relevant δ Annahmen ermöglichen Vorstellung der Struktur von U Struktur des Raums U unter Anwendung von R. 9. Juli 27 Lara Becker 5 Bildquelle: [6]

16 RG-Formalismus Bestimmung von δ betrachte die Stelle f r U R(f r )() R(f r )() + (r r )R fr ( dfr dr r=r )() wissen: f r W s {f r } R n (f r )() φ () + (r r )R n dfr φ ( dr r=r )() entwickle ϕ() = dfr dr r=r in Eigenfunktionen von R φ für superstabile Abbildungen: φ () + ( r n r )c δ δ n φ δ () ( r n r )δ n φ () c δ ϕ δ () = const. Struktur des Raums U unter Anwendung von R. die r n konvergieren mit Rate δ löse also R φ ϕ δ () = δϕ δ () N = 6 : δ vergleiche: δ Juli 27 Lara Becker 6 Bildquelle: [6]

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität

6.1 Beispiele dissipativer Systeme. Der Duffing Ozillator. Bewegungsgleichung: Nichtlinearität 6.1 Beispiele dissipativer Systeme Der Duffing Ozillator z.b. für (Ueda Oszillator) Potential Bewegungsgleichung: Nichtlinearität nur zwei Parameter Kartierung des Verhaltens in der (f,r)- Ebene äußerst

Mehr

Jan Henrik Sylvester. 10. Februar 2003

Jan Henrik Sylvester. 10. Februar 2003 Seminar über gewöhnliche Differentialgleichungen Chaos in eindimensionalen diskreten dynamischen Systemen: Das Feigenbaum-Szenario Die logistische Abbildung Jan Henrik Sylvester 10. Februar 2003 1 Die

Mehr

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks

Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos. Wintersemester 2018/ M. Zaks Vorlesung 14. Lorenz-Attraktor: erstes Beispiel vom dynamischen Chaos Wintersemester 2018/19 22.01.2019 M. Zaks hintergrund Kontext: Wettervorhersage. Entstehung von Luftbewegungen infolge der thermischen

Mehr

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme

( ) Diskretes dynamisches Chaos. 1. Einleitung: Diskrete dynamische Systeme Diskretes dynamisches Chaos. Einleitung: Diskrete dynamische Systeme Verschiedene Problemstellungen können zu zeitlich diskreten Systemen (Differenzengleichungen) führen: Zinseszinsrechnung: x(n+) = x(n)

Mehr

Dynamik hüpfender Bälle

Dynamik hüpfender Bälle 1 Dynamik hüpfender Bälle Proseminar: Theoretische Physik Florian Döhle 2. Juli 2014 2 Video Chaotische Bewegung Video Periodische Bewegung 3 Gliederung 1 Motivation 2 Aufstellen und Fixpunktanalyse der

Mehr

Deterministisches Chaos

Deterministisches Chaos Heinz Georg Schuster Deterministisches Chaos Eine Einführung Weinheim New York Basel Cambridge Tokyo Einleitung 1 1 Experimente und einfache Modelle 7 1.1 Experimente zum Deterministischen Chaos 7 Das

Mehr

Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten:

Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten: Kapitel 3 Nichtlineare Systeme 3. Logistische Gleichung Wir betrachten die zeitliche Entwicklung einer Population N (z.b. die Zahl der Fische in einem Teich). Es gilt dn dt wobei die Symbole bedeuten:

Mehr

Perkolation Zusammenhang mit RG

Perkolation Zusammenhang mit RG Perkolation Zusammenhang mit RG 19.07.2017 TU Darmstadt Fachbereich Physik Johannes Reinhard 1 Agenda 1.1 Einführung und Motivation 1.2 Grundlagen 2.1 Erzeugende Funktion 2.2 Perkolation in einer Dimension

Mehr

Nichtlineare Dynamik Einführung

Nichtlineare Dynamik Einführung Nichtlineare Dynamik Einführung Tobias Kerscher gekürzte Internetversion (ohne fremde Bilder) Sommerakademie Ftan 2004, 13. August Gliederung 1. Def: Nichtlineare Physik 2. Typische Beispiele 3. Dynamische

Mehr

Lyapunov-Exponenten. Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems:

Lyapunov-Exponenten. Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems: Analyse des Langzeitverhaltens ( t ) eines physikalischen Systems: - t tritt bei konkreten beobachteten Systemen nicht auf t >> τ (τ: charakteristische Systemzeit) - t: Dauer der Beobachtung, Prognosezeitraum,...

Mehr

Der Duffing-Oszillator

Der Duffing-Oszillator 11.04.2006 Inhalt Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen. Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile

Mehr

1 Nicht-lineare dynamische Systeme

1 Nicht-lineare dynamische Systeme 1 Nicht-lineare dynamische Systeme 1.1 Charakteristika linerarer Systeme Superpositionsprinzip: Sind x 1 und x Lösungen eines linearen Systems, dann ist auch α 1 x 1 + α x eine Lösung. Berühmte Beispiele:

Mehr

Deterministisches Chaos

Deterministisches Chaos Deterministisches Chaos Um 1900 Henri Poincaré: Bewegung von zwei Planeten um die Sonne kann zu sehr komplizierten Bahnen führen. (chaotische Bahnen) Seit ca. 1970 Entwicklung der Chaostheorie basierend

Mehr

Seltsame Attraktoren

Seltsame Attraktoren 1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?

Mehr

Chaotische Systeme Der Weg ins Chaos Kontrollmethoden Probleme bei großen Systemen Zusammenfassung Quellen. Chaotische Systeme

Chaotische Systeme Der Weg ins Chaos Kontrollmethoden Probleme bei großen Systemen Zusammenfassung Quellen. Chaotische Systeme Der Weg ins Chaos und zurück Otto-von-Guericke- Fakultät für Informatik Institut für Simulation und Grafik Das virtuelle Labor 20.12.2007 Wo treffen wir auf chaotische Systeme Herzschlag Populationsentwicklungen

Mehr

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos

Dynamisches Chaos. 1. Einleitung: Determinismus und Chaos Dynamisches Chaos 1. Einleitung: Determinismus und Chaos In der üblichen Betrachtungsweise ist der Zufall nur auf dem Mikroniveau erlaubt: - das Boltzmannsche molekulare Chaos; - die quantenmechanischen

Mehr

Nichtlinearität in der klassischen Physik

Nichtlinearität in der klassischen Physik Nichtlinearität in der klassischen Physik Dr. Peter Schlagheck Vorlesung an der Uni Regensburg im Wintersemester 25/26 Inhaltsverzeichnis Klassische Mechanik 2. Lagrange-Formalismus........................................

Mehr

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis

Die Chaostheorie a) Geschichtliche Betrachtung Die Chaostheorie Quellenverzeichnis Die Chaostheorie a) Geschichtliche Betrachtung i. Das mechanistische Naturbild ii. Zweikörperproblem iii. Dreikörperproblem iv. Lagrange-Punkte v. Entdeckung des Chaos b) Die Chaostheorie i. Eigenschaften

Mehr

8. Deterministisches Chaos

8. Deterministisches Chaos 8. Deterministisches Chaos Widerspruch: deterministisch chaotisch Schmetterlingseffekt: Der Flügelschlag eines Schmetterlings entscheidet über die Entwicklung eines Sturms. Allgemein: kleinste Änderungen

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

Fixpunkte und Stabilitätsanalyse

Fixpunkte und Stabilitätsanalyse Fixpunkte und Stabilitätsanalyse 1 Themenüberblick Motivation 1D-Probleme Bifurkationen 2D-Probleme Fixpunkttypen Lotka-Volterra-Modelle 2 Motivation Bisher: Lineare Dynamik Jetzt: Nichtlineare Systeme

Mehr

Chaotische Systeme. ViLab. Marian Panten

Chaotische Systeme. ViLab. Marian Panten Chaotische Systeme ViLab Marian Panten Einleitung Geschichte Übersicht Merkmale und Eigenschaften Beispiele und Anwendungen Schluss 26. November 2003 - = Marian Panten - Chaotische Systeme = - 2 Einleitung

Mehr

Merkwürdige und chaotische Attraktoren und deren Stabilität

Merkwürdige und chaotische Attraktoren und deren Stabilität Merkwürdige und chaotische Attraktoren und deren Stabilität Ann-Kristin Baum Seminar Dynamische Systeme SS 06 1 Inhaltsverzeichnis 2 1 Einführung Reale Vorgänge in den Natur- oder Gesellschaftswissenschaften,

Mehr

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit

Ergebnis: Allg. Lösung der homogenen DGL ist Summe über alle Eigenlösungen: mit Zusammenfassung: Lineare DGL mit konstanten Koeffizienten (i) Suche Lösung für homogene DGL per Exponential-Ansatz: e-ansatz: Zeitabhängigkeit nur im Exponenten! zeitunabhängiger Vektor, Ergebnis: Allg.

Mehr

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt.

11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. 11. Nichtlineare Dynamik und Chaos Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. der Auslenkung Fadenlänge L, Masse m, Auslenkwinkel φ Rücktreibende Kraft: Beschleunigung:

Mehr

Chaos - Nichtlineare Dynamik

Chaos - Nichtlineare Dynamik Äg Chaos - Nichtlineare Dynamik Renate Thies Universität Dortmund - Fachbereich Informatik Lehrstuhl für Systemanalyse (LS11) Sommersemester 2004 Chaos - Nichtlineare Dynamik 1/102 Inhaltsverzeichnis Äg

Mehr

Seminar Populations- und Epidemiemodelle. Die Lorenz-Gleichungen.

Seminar Populations- und Epidemiemodelle. Die Lorenz-Gleichungen. Seminar Populations- und Epidemiemodelle. Die Lorenz-Gleichungen. Christian Rose 30. Juni 2013 1 1 Motivation In den sechziger Jahren des 20. Jahrhunderts fragte sich ein Meteorologe namens Lorenz, wie

Mehr

Ökologische Gleichungen für zwei Spezies

Ökologische Gleichungen für zwei Spezies Ökologische Gleichungen für zwei Spezies Florian Kern 06.Dezember 2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kapitel 4 Inhaltsverzeichnis 1 Satz von der

Mehr

Seminar Fraktale. Kapitel 13 Dynamical Systems. Von Dirk Simon

Seminar Fraktale. Kapitel 13 Dynamical Systems. Von Dirk Simon Seminar Fraktale Kapitel 13 Dynamical Systems Von Dirk Simon Übersicht Einführung und Definitionen Dynamische Systeme Attraktoren Chaos Ein paar Beispiele Anwendungen Einführung Anwendung für f r Dynamische

Mehr

Hartes Chaos am Beispiel des anisotropen Keplerproblems

Hartes Chaos am Beispiel des anisotropen Keplerproblems Hartes Chaos am Beispiel des anisotropen Keplerproblems M. C. Gutzwiller Mechanik Seminar WiSe 17/18 Robert Klassert Institut für Theoretische Physik, Universität Heidelberg Hartes Chaos am Beispiel des

Mehr

Vortragsthemen. Reelle Dynamik

Vortragsthemen. Reelle Dynamik Vortragsthemen Jede Teilnehmende ist für ein Thema verantwortlich, das sie im Kurs vorstellen wird. Es gibt also insgesamt 15 Vorträge, 4 aus den Gebieten Reelle bzw. Komplexe Dynamik und 7 aus dem Gebiet

Mehr

Otto-von-Guericke-Universität Magdeburg. Fakultät für Informatik Institut für Simulation und Grafik. Seminararbeit. Der Weg ins Chaos und zurück

Otto-von-Guericke-Universität Magdeburg. Fakultät für Informatik Institut für Simulation und Grafik. Seminararbeit. Der Weg ins Chaos und zurück Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Simulation und Grafik Seminararbeit Der Weg ins Chaos und zurück Verfasser: Fabian Schmidt 13. Dezember 2007 Betreuer: Dipl.-Ing.

Mehr

FC3 - Duffing Oszillator

FC3 - Duffing Oszillator FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme

Mehr

Nichtlineare Prozesse in der Elektrochemie II

Nichtlineare Prozesse in der Elektrochemie II Nichtlineare Prozesse in der Elektrochemie II 5. Stabilität und Instabilität Neue (dissipative) Strukturen entstehen, wenn der bisherige stationäre Zustand, der den thermodynamischen Zweig repräsentiert,

Mehr

Fraktale und Beispiele aus der Physik

Fraktale und Beispiele aus der Physik Fraktale und Beispiele aus der Physik Anschauung Warum beschäftigen Fraktale (auch) Naturwissenschaftler? kurze Wiederholung Konkretes Beispiel: Magnetpendel Das Experiment Mathematische Beschreibung Trajektorien

Mehr

1. Vorwort zum Versuch Ziel des Versuchs Aufgabenstellung Aufgaben zur Vorbereitung Versuchsdurchführung...

1. Vorwort zum Versuch Ziel des Versuchs Aufgabenstellung Aufgaben zur Vorbereitung Versuchsdurchführung... Albert-Ludwigs-Universität Freiburg Fakultät für Physik Fortgeschrittenenpraktikum I FP I Deterministisches Chaos Inhalt A. Versuchsanleitung: Seite 1. Vorwort zum Versuch... 2 2. Ziel des Versuchs...

Mehr

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel).

3.7 Chaos. Ist N 3, können chaotische Trajektorien auftreten (Zwei-Planeten- Problem, Doppel-Pendel). 3.7 Chaos Wir untersuchen weiter autonome Systeme der Form dy i dt = f i(y,y 2,..y N ), y i (0) = a i, i =...N () (f i hängt nicht explizit von der Zeit ab). Eindeutigkeit der Lösung: aus y(t) folgt genau

Mehr

Globale Bifurkationen Rotationszahlen und Verzweigungen ein-dimensionaler Abbildungen SoSe 2006 geleitet durch Prof. Gunesch.

Globale Bifurkationen Rotationszahlen und Verzweigungen ein-dimensionaler Abbildungen SoSe 2006 geleitet durch Prof. Gunesch. Globale Bifurkationen Rotationszahlen und Verzweigungen ein-dimensionaler Abbildungen SoSe 26 geleitet durch Prof. Gunesch Patrick Schuch. Juli 26 Einleitung Das Thema dieses Vortrages sind globale Bifurkationen.

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: ) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung: Bei fortgeschrittenen

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt

Analysis 4. Lösungsvorschlag zum 12. Übungsblatt Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Andreas Geyer-Schulz SS 208. Juli 208 Analysis 4 Lösungsvorschlag zum 2. Übungsblatt Aufgabe 42 Wir untersuchen

Mehr

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form:

System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: C7.5 Differentialgleichungen 1. Ordnung - Allgemeine Aussagen System von n gewöhnlichen DG 1. Ordnung hat die allgemeine Form: Kompaktnotation: Anfangsbedingung: Gesuchte Lösung: Gleichungen dieser Art

Mehr

Differentialgleichungen I

Differentialgleichungen I Differentialgleichungen I Michael Hinze (zusammen mit Peywand Kiani) Department Mathematik Schwerpunkt Optimierung und Approximation, Universität Hamburg 5. Januar 2009 Beachtenswertes Die Veranstaltung

Mehr

Theory Austrian German (Austria) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag.

Theory Austrian German (Austria) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 points) Lies, bitte, bevor du mit der Aufgabe beginnst die allgemeinen Anweisungen im separaten Briefumschlag. Einleitung Bistabile nichtlineare halbleitende

Mehr

Theoretische Physik VI (Vertiefung) Nichtlineare Dynamik und Kontrolle

Theoretische Physik VI (Vertiefung) Nichtlineare Dynamik und Kontrolle LV 3233 L 152 - Sommersemester 2016 Theoretische Physik VI (Vertiefung) Nichtlineare Dynamik und Kontrolle Dozenten: Prof. Dr. Kathy Lüdge Wann/Wo: Do & Fr 10:15 im EW203 (VL) Prof. Dr. E. Schöll, PhD

Mehr

nichtlineare dynamische Systeme

nichtlineare dynamische Systeme nichtlineare dynamische Systeme dynamische Systeme: - Systeme mit Krafteinwirkung (δυναµιο = Kraft) - zeitabhängige Systemzustände - Zustandsänderung abhängig vom momentanen Zustand deterministisch gleiche

Mehr

Zu einigen Grundlagen der Stabilitätstheorie dynamischer Systeme

Zu einigen Grundlagen der Stabilitätstheorie dynamischer Systeme Seminar Zu einigen Grundlagen der Stabilitätstheorie dynamischer Systeme 15.4.201 2 Inhaltsverzeichnis 1 Existenz und Eindeutigkeit 7 1.1 Lineare Systeme.................................... 7 1.2 Der Begriff

Mehr

Versuch 3.14: Resonanzverhalten Nichtlinearer Oszillatoren

Versuch 3.14: Resonanzverhalten Nichtlinearer Oszillatoren Physikalisches Praktikum für Fortgeschrittene Technische Hochschule Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 3.14: Resonanzverhalten Nichtlinearer Oszillatoren Vorbereitung: Resonanz,

Mehr

Abbildung 1: Feigenbaum-Diagramm

Abbildung 1: Feigenbaum-Diagramm Kursübersicht Im folgenden findet Ihr Zusammenfassungen zu jedem der drei Teilgebiete, die wir im Kurs behandeln möchten. Die genaue Gewichtung der drei Gebiete ist noch nicht festgelegt und hängt von

Mehr

Zentrumsmannigfaltigkeiten. Eva Maria Bartram

Zentrumsmannigfaltigkeiten. Eva Maria Bartram Zentrumsmannigfaltigkeiten Eva Maria Bartram 09. Mai 2006 Gliederung 1. Einleitung 1.1 Hartmans Theorem 1.2 Stabile Mannigfaltigkeiten-Theorem für einen Fixpunkt 2. Zentrumsmannigfaltigkeits-Theorem für

Mehr

Exkurs: Method of multiple scales (Mehrskalen Methode)

Exkurs: Method of multiple scales (Mehrskalen Methode) Exkurs: Method of multiple scales (Mehrskalen Methode) dr. karin mora* Im folgenden betrachten wir nichtlineare dynamische Systeme (NDS) mit sogenannten kleinen nichtlinearen Termen. Viele mathematische

Mehr

Wie lang ist die Küste Großbritanniens?

Wie lang ist die Küste Großbritanniens? Wie lang ist die Küste Großbritanniens? Vortrag am 16.01.2009 Fach: Physik Deterministisches Chaos Ein Vortrag von Tina Rosner und Florian Sachs Werner-von-Siemens-Gymnasium Magdeburg Gliederung 1 Das

Mehr

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08

Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK. K. Taubert Universität Hamburg SS08 Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK K. Taubert Universität Hamburg SS8 Linearisierung 2 LINEARISIERUNG und das VERHALTEN VON LÖSUNGEN NICHTLINEARER DIFFERENTIALGLEICHUNGEN

Mehr

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau

Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann Bergische Universität Wuppertal. Modul: Mathematik I und II, Bachelor Maschinenbau Apl. Prof. Dr. G. Herbort, Prof. Dr. M. Heilmann 6.9.6 Bergische Universität Wuppertal Aufgabe ( Punkte Modul: Mathematik I und II, Bachelor Maschinenbau a Zeigen Sie durch Induktion nach n die Summenformel

Mehr

Diskrete Populationsmodelle für Einzelspezies - Teil 2

Diskrete Populationsmodelle für Einzelspezies - Teil 2 Diskrete Populationsmodelle für Einzelspezies - Teil 2 Laura Gemmel 30.10.2012 Literatur, die verwendet wurde: J.D. Murray Mathematical Biology: I. An Introduction, Third Edition Springer Inhaltsverzeichnis

Mehr

Nichtlineare Dynamische Systeme

Nichtlineare Dynamische Systeme Nichtlineare Dynamische Systeme Vorlesung von P. H. Richter, Bremen, Wintersemester 2009/10 Inhaltsverzeichnis 1. Einführung und Übersicht: Powerpoint-Präsentation 30 years of chaos theory from a personal

Mehr

4. Transiente Analyse

4. Transiente Analyse 4. Transiente Analyse Bei der transienten Analyse wird der zeitliche Verlauf der Antwort auf eine zeitlich veränderliche Last bestimmt. Die zu lösende Bewegungsgleichung lautet: [ M ] [ü ]+[ D ] [ u ]+

Mehr

Nichtlineare Phänomene und Selbstorganisation

Nichtlineare Phänomene und Selbstorganisation Nichtlineare Phänomene und Selbstorganisation Von Dr. rer i.. ibü: Rein*»i M ce Doz. Dr. rer. nat. nabii. Jürn Schmelzer Prof. Dr. rer. nat. habil. Gerd Röpke Universität Rostock Mit zahlreichen Figuren

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Lineare Algebra I - Klausur

Lineare Algebra I - Klausur Prof. Dr. R. Löwen Wintersemester 2007/2008 Dipl.-Math. H. Kubiak TU Braunschweig Institut für Analysis und Algebra 01.03.2008 Lineare Algebra I - Klausur Aufgabe 1: Wir betrachten die Menge A = {t (1,

Mehr

11. April Institut für Theoretische Physik. Das Toda-Gitter: periodische Lösungen. Daniel Westerfeld. Motivation. Vorbereitungen.

11. April Institut für Theoretische Physik. Das Toda-Gitter: periodische Lösungen. Daniel Westerfeld. Motivation. Vorbereitungen. Toda- Institut für Theoretische Physik 11. April 2012 Überblick Toda- 1 2 3 Toda- Toda- Betrachte eindimensionale Kette N identischer Teilchen. Wechselwirkung nur zwischen Nachbarn = Bewegungsgleichung:

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

Korteweg-de-Vries-Gleichung

Korteweg-de-Vries-Gleichung Florian Oppermann 25. April 2012 Inhaltsverzeichnis Wann war was? 1834: John Russell beobachtet Solitonen in einem Kanal 1871/1876: Herleitung der Wellenform und -geschwindigkeit aus bekannten en 1895:

Mehr

Kleine Schwingungen vieler Freiheitsgrade

Kleine Schwingungen vieler Freiheitsgrade Kleine Schwingungen vieler Freiheitsgrade Betrachte System mit f Freiheitsgraden: (z.b. N Teilchen in 3 Dim.: f = 3N) Koordinaten: Geschwindigkeiten: Kinetische Energie: "Massenmatrix" Nebenbemerkung:

Mehr

Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert

Poincaré-Schnitte. Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Poincaré-Schnitte Ein Vortrag im Rahmen des Proseminars Theoretische Physik von Kai Hühn und Robin Mevert Themen 1. Was sind Poincaré-Schnitte?. Anwendung: Poincaré-Schnitte Mathematica-Beispiel: Attraktor

Mehr

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen

Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Gregoire Nicolis/ Ilya Prigogine Die Erforschung des Komplexen Auf dem Weg zu einem neuen Verständnis der Naturwissenschaften Deutsche Ausgabe bearbeitet von Eckhard Rebhan Mit 110 Abbildungen T) Piper

Mehr

Chaos und. Alexander Mielke

Chaos und. Alexander Mielke Chaos und Šarkovskiǐs Anordnung der natürlichen Zahlen Alexander Mielke Die Theorie der Dynamischen Systeme geht zurück auf die bahnbrechenden Arbeiten von H. Poincaré im ausgehenden 9. Jahrhundert. Er

Mehr

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte.

tun, sondern nur mit der Reaktion auf verschiedene Anfangswerte. 2.3 Stabilität Eine wichtige Rolle spielt das Stabilitätsverhalten dynamischer Systeme. Wie üblich sei Φ die Fundamentalmatrix des linearen Systems ẋ = A(t)x + u. Im weiteren sei t fixiert, später wird

Mehr

Vorwort Dynamische Systeme können durch mathematische Gleichungen modelliert werden, die eine eindeutige Vorschrift zur Berechnung der zeitlichen Entwicklung des Systemzustandes darstellen, so daß die

Mehr

Übungen zu Theoretischer Mechanik (T1)

Übungen zu Theoretischer Mechanik (T1) Arnold Sommerfeld Center Ludwig Maximilians Universität München Prof. Dr. Viatcheslav Mukhanov Sommersemester 08 Übungen zu Theoretischer Mechanik T Übungsblatt 8, Besprechung ab 04.06.08 Aufgabe 8. Lineare

Mehr

Auswertung des Versuches Resonanzverhalten nichtlinearer Oszillatoren

Auswertung des Versuches Resonanzverhalten nichtlinearer Oszillatoren Auswertung des Versuches Resonanzverhalten nichtlinearer Oszillatoren Andreas Buhr, Matrikelnummer 1229903 23. Juni 2006 Inhaltsverzeichnis 1 Formales 3 2 Überblick über den Versuch 4 3 Grundlagen 4 3.1

Mehr

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 28/29 Dr. Hanna Peywand Kiani Hörsaalübung 6 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Autonome Systeme, Stabilität Die ins

Mehr

Von der Schönheit des mathematischen Chaos. Eine Einführung in Seltsame Attraktoren mit jreality

Von der Schönheit des mathematischen Chaos. Eine Einführung in Seltsame Attraktoren mit jreality Von der Schönheit des mathematischen Chaos Eine Einführung in Seltsame Attraktoren mit jreality Inhalt Physikalische Grundlagen Definition Eigenschaften Beispiele Implementierung Demonstration Physikalische

Mehr

Modul: Atmosphärische Skalen in Raum und Zeit

Modul: Atmosphärische Skalen in Raum und Zeit in Raum und Zeit ernziel: Erstes Einordnen der verschiedenen atmosphärischen Prozesse nach ihren charakteristischen Größenordnungen, Definition der typischen dynamischen Skala in Raum und Zeit, Einführung

Mehr

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

1 Die logistische Gleichung X t+1 = λx t (1 X t )

1 Die logistische Gleichung X t+1 = λx t (1 X t ) 1 Die logistische Gleichung X t+1 = X t (1 X t ) Bisher haben wir Rekursionen mit mehr oder weniger einfachem Verhalten betrachtet; wir konnten entweder eine explizite Lösungsformel aufstellen oder ohne

Mehr

Dreh- und Schraubflächen

Dreh- und Schraubflächen Vorlesung 9 Dreh- und Schraubflächen 9.1 Drehflächen Betrachte eine in der Ebene {y = 0} liegende reguläre Kurve c(r) = (r,0,f(r)). Denken wir uns diese um die z-achse gedreht, erhalten wir eine Dreh-

Mehr

Phasenraum. Zeitreihe. Phasenraum. Ort (x) Zeit. Geschwindigkeit (v)

Phasenraum. Zeitreihe. Phasenraum. Ort (x) Zeit. Geschwindigkeit (v) Phasenraum Ort (x) Zeitreihe Zeit Geschwindigkeit (v) v Phasenraum x Phasenraum - geometrische Darstellung der Dynamik im kartesischen Raum - Repräsentation von parametrischen Systemzuständen zu festen

Mehr

7. Systeme mit drei (und mehr) Spezies: chaotische Systeme

7. Systeme mit drei (und mehr) Spezies: chaotische Systeme 7. Systeme mit drei (und mehr) Spezies: chaotische Systeme Dies kann z.b. Ein System mit mehreren verschiedenen Räubern sein, die die selben Beutetiere jagen. Auch ein nicht autonomes System mit zwei Spezies

Mehr

Blockspin-Konstruktion für das zweidimensionale Ising-Modell

Blockspin-Konstruktion für das zweidimensionale Ising-Modell Blockspin-Konstruktion für das zweidimensionale Ising-Modell Friedrich Bach. April 03 Inhaltsverzeichnis. Vorbereitung. Ising-Modell 3. Renormierungsgruppe 3 3.. D-Ising-Modell.................................

Mehr

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst.

Theory Swiss German (Liechtenstein) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Q2-1 Nichtlineare Dynamik in Stromkreisen (10 Punkte) Lies die Anweisungen in dem separaten Umschlag, bevor Du mit dieser Aufgabe beginnst. Einleitung Bistabile nichtlineare halbleitende Komponenten (z.b.

Mehr

Wilde hyperbolische Mengen

Wilde hyperbolische Mengen Wilde hyperbolische Mengen Frank Bruder 16. Juli 2006 Grundlegendes Es sei im Weiteren M immer eine zweidimensionale Mannigfaltigkeit. Definition 1. Für eine r mal stetig differenzierbare Abbildung f :

Mehr

HARMONIK ZWISCHEN ORDNUNG UND CHAOS

HARMONIK ZWISCHEN ORDNUNG UND CHAOS HARMONIK ZWISCHEN ORDNUNG UND CHAOS Grundstrukturen der Natur und ihre Wahrnehmung durch den Hörenden Menschen Vortrag auf dem Harmonik-Symposion 2010 am 2. Mai 2010 Hans G. Weidinger 1. Was ist Harmonik?

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik) Prof. Dr. Th. Feldmann 15. Januar 2014 Kurzzusammenfassung Vorlesung 21 vom 14.1.2014 6. Hamilton-Mechanik Zusammenfassung Lagrange-Formalismus: (generalisierte)

Mehr

Mathematik Teil 2: Differentialgleichungen

Mathematik Teil 2: Differentialgleichungen Mathematik Teil 2: Differentialgleichungen M. Gutting Fakultät IV, Department Mathematik 19. Juni 2017 Natürliches Wachstum/Zerfall Wachstum/Zerfall (Zinsen, Population / Radioaktiver Zerfall) verhält

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel 14 Differentialgleichungen Josef Leydold Mathematik für VW WS 2017/18 14 Differentialgleichungen 1 / 41 Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen:

Mehr

Blatt 12.3: Fourier-Integrale, Differentialgleichungen

Blatt 12.3: Fourier-Integrale, Differentialgleichungen Fakultät für Physik R: Rechenmethoden für Physiker, WiSe 205/6 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Dennis Schimmel, Frauke Schwarz, Lukas Weidinger http://homepages.physik.uni-muenchen.de/~vondelft/lehre/5r/

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

Elementare nichtlineare Dynamik anhand des bouncing ball Problems

Elementare nichtlineare Dynamik anhand des bouncing ball Problems Elementare nichtlineare Dynamik anhand des bouncing ball Problems Seminar zur Theorie der Atome, Kerne und kondensierter Materie Westfälische Wilhelms-Universität Münster BSc Physik 16. Dezember 2011 Patrick

Mehr

Synchronisation in Natur und Technik

Synchronisation in Natur und Technik Am Beispiel des Kuramoto-Modells Jan Baumbach Christoph Schöler Christian Barthel 2 Inhalt 1. Einleitung 2. Kuramoto-Modell 3. Simulation und Ergebnisse 3 Die Motivation Das Phänomen Synchronisation tritt

Mehr

Theoretische Biophysik - Statistische Physik

Theoretische Biophysik - Statistische Physik Theoretische Biophysik - Statistische Physik 10. Vorlesung Pawel Romanczuk Wintersemester 2018 http://lab.romanczuk.de/teaching/ 1 Brownsche Bewegung Zusammenfassung letzte VL Formulierung über Newtonsche

Mehr

3 Zweidimensionale dynamische Systeme Oszillationen

3 Zweidimensionale dynamische Systeme Oszillationen 3 Zweidimensionale dynamische Systeme Oszillationen Lineare Systeme Ein Beispiel für ein zweidimensionales dynamisches System ist die Gleichung ẍ + ω 2 sin x = 0 für ebene Schwingungen eines reibungsfreien

Mehr

y 1,2 = - 1 α 2β ± 1 α

y 1,2 = - 1 α 2β ± 1 α Beispiel 9 (Einige einfache nichtlineare Differenzengleichungen; Formulierung als Aufgabe) Beispiel 9.1 (Einzelne Aufgaben) Aufgabe 1 Es gebe folgende Gleichung, die diskrete sog. logistische Gleichung:

Mehr

Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen

Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen Stabilität von Warteschlangen-Netzwerken: Fluid Approximationen und Lyapunov Funktionen Michael Schönlein, Fabian Wirth Im Rahmen des Forschungsprojekts: Stabilität, Robustheit und Approximation großskaliger

Mehr

Das Hénon-Heiles Potential Beispiel für Weiches Chaos und die Anwendung des KAM-Theorems

Das Hénon-Heiles Potential Beispiel für Weiches Chaos und die Anwendung des KAM-Theorems Das Hénon-Heiles Potential Beispiel für Weiches Chaos und die Anwendung des KAM-Theorems Jonathan Wider 16.November 2018 Zusammenfassung Dieses Handout soll die wesentlichen Inhalte des am 16.11.2018 gehaltenen

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr