Der Duffing-Oszillator
|
|
|
- Günter Christoph Schräder
- vor 7 Jahren
- Abrufe
Transkript
1
2
3 Inhalt
4 Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen.
5 Inhalt Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen. Idee: Potential V (x) = x 4 /4 x 2 /2
6 Erwartung im stationären Fall: eine instabile Ruhelage, zwei asymptotisch stabile Ruhelagen. Idee: Potential V (x) = x 4 /4 x 2 /2 2 Potential V(x) = x 4 /4 x 2 /2 für die Duffing Gleichung V(x) x
7 Inhalt 2. Newton sches Axiom: F = m a
8 2. Newton sches Axiom: F = m a Der Gradient von V bestimmt die Kraft.
9 2. Newton sches Axiom: F = m a Der Gradient von V bestimmt die Kraft. Potentialsystem: x = V = x x 3
10 Inhalt Zusätzlich betrachten wir Reibung z.b. durch Luft:
11 Zusätzlich betrachten wir Reibung z.b. durch Luft: x + δx x + x 3 = 0.
12 Inhalt Periodische Bewegung des Aufbaus:
13 Inhalt Periodische Bewegung des Aufbaus: x + δx x + x 3 = γ cos(ωt).
14 Inhalt Periodische Bewegung des Aufbaus: x + δx x + x 3 = γ cos(ωt).
15 Vereinfachungen:
16 Vereinfachungen: lineare Reibung
17 Vereinfachungen: lineare Reibung Modellierung der Magnetfelder
18 Vereinfachungen: lineare Reibung Modellierung der Magnetfelder eine Raumdimension
19 Krümmung im Ursprung des Stabs als Maß für die Auslenkung x(t).
20 Krümmung im Ursprung des Stabs als Maß für die Auslenkung x(t). Für γ nahe bei 0: periodische Bewegungen um einen der Magnete.
21 Krümmung im Ursprung des Stabs als Maß für die Auslenkung x(t). Für γ nahe bei 0: periodische Bewegungen um einen der Magnete. Für große γ: anscheinend chaotische Oszillationen
22 Beispiel für einen chaotischen Parameterwert
23 Beispiel für einen chaotischen Parameterwert (a) Beobachtungen (b) Simulation der Modellgleichung siehe [Guckenheimer, Holmes]
24 Zunächst: γ = 0, δ > 0.
25 Zunächst: γ = 0, δ > 0. Neuer Parameter β für den linearen Steifheitsterm.
26 Zunächst: γ = 0, δ > 0. Neuer Parameter β für den linearen Steifheitsterm. Umschreiben in ein System erster Ordnung: u = x, v = x u = v v = βu u 3 δv.
27 Ruhelagen:
28 Ruhelagen: (0, 0) für β < 0, d.h. schwache Magnete
29 Ruhelagen: (0, 0) für β < 0, d.h. schwache Magnete ( β 2, 0), (0, 0), (β 2, 0) für β > 0, d.h. starke Magnete
30 v Inhalt Trajektorien für γ = 0, δ = 0.25 und β = u
31 v Inhalt Trajektorien für γ = 0, δ = 0.25 und β = u
32 Zum Vergleich der Fall ohne Reibung: δ = 0 :
33 Zum Vergleich der Fall ohne Reibung: δ = 0 : Mit H(u, v) := v 2 2 β u2 2 + u4 4 gilt: u = v H = v v = u H = βu u 3
34 Zum Vergleich der Fall ohne Reibung: δ = 0 : Mit H(u, v) := v 2 2 β u2 2 + u4 4 gilt: u = v H = v v = u H = βu u 3 Das System ist also Hamilton sch.
35 1.5 Phasenportrait für γ, δ = 0 und β = x x
36 1.5 Phasenportrait für γ, δ = 0 und β = x x
37 Wirkung der Reibung:
38 Wirkung der Reibung: Das Geschwindigkeitsfeld wird nach innen gedreht.
39 v Inhalt Trajektorien für γ = 0, δ = 0.25 und β = u
40 v Inhalt Trajektorien für γ = 0, δ = 0.25 und β = u
41 β = 1, θ = t
42 β = 1, θ = t Wir erhalten ein autonomes System: u = v v = u u 3 δv + γcos(ωθ) θ = 1 für (u, v, θ) R 2 S 1.
43 Hyperebene im Phasenraum: S = {(u, v, θ) R 2 S 1 θ = 0}.
44 Hyperebene im Phasenraum: S = {(u, v, θ) R 2 S 1 θ = 0}. Poincaré Abbildung: P γ : S S
45 Hyperebene im Phasenraum: S = {(u, v, θ) R 2 S 1 θ = 0}. Poincaré Abbildung: P γ : S S P 0 = Zeit- 2π ω Abbildung
46 Erklärungsansatz für das komplexes Verhalten: invariante Mannigfaltigkeiten des hyperbolischen Fixpunkts p nahe (0, 0).
47 Erklärungsansatz für das komplexes Verhalten: invariante Mannigfaltigkeiten des hyperbolischen Fixpunkts p nahe (0, 0). W s (p) = {(u, v) d(p n γ (u, v), p) 0 für n } W u (p) = {(u, v) d(p n γ (u, v), p) 0 für n }
48 siehe dazu Abbildung in [Guckenheimer, Holmes]
49 Sei B der Abschluß einer offenen Menge in S mit der Eigenschaft P n γ (B) B für n > 0.
50 Sei B der Abschluß einer offenen Menge in S mit der Eigenschaft Pγ n (B) B für n > 0. Weiter sei A γ = Pγ n (B). n=0
51 Divergenz der Duffing-Gleichung: u (v) + v (u u 3 δv + γcos(ωθ)) + θ (1) = δ
52 Divergenz der Duffing-Gleichung: u (v) + v (u u 3 δv + γcos(ωθ)) + θ (1) = δ Der Fluss und damit P γ kontrahieren also Volumen.
53 Divergenz der Duffing-Gleichung: u (v) + v (u u 3 δv + γcos(ωθ)) + θ (1) = δ Der Fluss und damit P γ kontrahieren also Volumen. A γ ist also eine Nullmenge im R 2.
54 siehe dazu Abbildung in [Guckenheimer, Holmes]
55 Vermutung: A γ = W u (p)
56 Vermutung: A γ = W u (p) Annahme: γ hinreichend klein.
57 Vermutung: A γ = W u (p) Annahme: γ hinreichend klein. Poincaré-Bendixson: alle Orbits für Punkte x B W s (p) streben gegen eine der asymptotischen Ruhelagen
58 Vermutung: A γ = W u (p) Annahme: γ hinreichend klein. Poincaré-Bendixson: alle Orbits für Punkte x B W s (p) streben gegen eine der asymptotischen Ruhelagen A γ enthält also die Ruhelagen.
59 Idee: Verbinde x W s (p) mit y B durch eine Kurve.
60 Idee: Verbinde x W s (p) mit y B durch eine Kurve. x strebt gegen p und y gegen eine der stabilen Ruhelagen.
61 Idee: Verbinde x W s (p) mit y B durch eine Kurve. x strebt gegen p und y gegen eine der stabilen Ruhelagen. Aus dem Satz über Graphen-Transformation folgt das
62 Idee: Verbinde x W s (p) mit y B durch eine Kurve. x strebt gegen p und y gegen eine der stabilen Ruhelagen. Aus dem Satz über Graphen-Transformation folgt das alle Punkte der Kurve gegen Punkte aus W u (p) konvergieren.
63 Für große γ ist die Aussage noch nicht bewiesen.
64 Literatur Inhalt John Guckenheimer, Philip Holmes, Nonlinear Oscillation, Dynamical Systems and Bifurcations of Vector Fields, Springer Verlag
Flüsse, Fixpunkte, Stabilität
1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher
Seltsame Attraktoren
1 Seltsame Attraktoren Proseminar: Theoretische Physik Jonas Haferkamp 9. Juli 2014 Abbildung: Poincaré-Schnitt der Duffing-Gleichungen 2 3 Gliederung 1 Motivation 2 Was ist ein (seltsamer) Attraktor?
Dynamische Systeme eine Einführung
Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,
Abbildung 5.1: stabile und instabile Ruhelagen
Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer
Chaos und. Alexander Mielke
Chaos und Šarkovskiǐs Anordnung der natürlichen Zahlen Alexander Mielke Die Theorie der Dynamischen Systeme geht zurück auf die bahnbrechenden Arbeiten von H. Poincaré im ausgehenden 9. Jahrhundert. Er
11. Nichtlineare Dynamik und Chaos. Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt.
11. Nichtlineare Dynamik und Chaos Bei den meisten bisherigen Phänomenen z. B: Pendelbewegung: Kraft linear als Fkt. der Auslenkung Fadenlänge L, Masse m, Auslenkwinkel φ Rücktreibende Kraft: Beschleunigung:
Lotka-Volterra-Gleichungen für mehr als zwei Populationen
Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei
2.2 4-Stromdichte [Griffiths , Jackson 11.9]
Um zu verstehen, wie sich die elektromagnetischen Felder transformieren, gehen wir von den Maxwellgleichungen aus. Dazu brauchen wir zunächst die. 4-Stromdichte [Griffiths 1.3.4, Jackson 11.9] Die Ladungsdichte
Motivation. Motivation 2
Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis
Praktikum I PP Physikalisches Pendel
Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1
6 Differentialgeometrie: Grundlagen Vorlesung Einleitung. Motivation.. Name of the game Geometer bezeichnet klassisch einen Landvermesser (heute ist eher Geodät gebräuchlich. Die klassische Differentialgeometrie
5 Schwingungen und Wellen
5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung
PP Physikalisches Pendel
PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung
Insertion Devices. Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation
Wavelength-Shifter Das Wiggler/Undulator Feld Bewegungsgleichung Undulator Strahlung Eigenschaften Polarisation Wellenlängenschieber R R In einem Speicherring gilt für die kritische Energie E c 1/R R:
S4 Erzwungene Schwingung Protokoll
Christian Müller Jan Philipp Dietrich S4 Erzwungene Schwingung Protokoll I. Freie Schwingung a) Erläuterung b) Bestimmung der Eigenkreisfrequenz c) Bestimmung des Dämpfungsmaß β II. Erzwungene Schwingung
Chaos unter Koordinatentransformation
Chaos unter Koordinatentransformation Gundula Meckenhäuser WiSe 2006/07 Inhaltsverzeichnis Die Lorentz-Transformation 2. Das Michelson-Morley Experiment................. 2.2 Die Galilei-Transformation......................
FC3 - Duffing Oszillator
FC3 - Duffing Oszillator 4. Oktober 2007 Universität Paderborn - Theoretische Physik leer Autor: Stephan Blankenburg, Björn Lange Datum: 4. Oktober 2007 FC3 - Duffing Oszillator 3 1 Theorie komplexer Systeme
Definition 1.1 (Wirkung) Wir wollen die Kurvenverläufe x(t) finden, die das Funktional
Christina Schindler Karolina Stoiber Ferienkurs Analysis für Physiker SS 13 A 1 Variationsrechnung 1.1 Lagrange. Art Wir führen die Überlegungen von gestern fort und wollen nun die Lagrangegleichungen.
den Satz von Poincaré-Bendixson.
Seminar zu Geometrie der Gewöhnlichen Differentialgleichungen Der Satz von Poincaré-Bendixson bearbeitet von Rodrigo Menendez Zusammenfassung Fragen des Langzeitverhaltens und der Stabilität spielen in
Theoretische Physik I: Lösungen Blatt Michael Czopnik
Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin
Anhang A1. Schwingungen. A1.1 Freie Schwingung ohne Dämpfung. A1.2 Freie Schwingung mit Dämpfung PN0907
Anhang A1 Schwingungen Am Beispiel eines Drehschwingers werden im Folgenden die allgemeinen Eigenschaften schwingfähiger Systeme zusammengestellt und diskutiert. A1.1 Freie Schwingung ohne Dämpfung Idealisierter
16 Vektorfelder und 1-Formen
45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung
Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.
Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE
Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse
Experimentalphysik E1
Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober
durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t
5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N
Rekurrente Neuronale Netze. Rudolf Kruse Neuronale Netze 227
Rekurrente Neuronale Netze Rudolf Kruse Neuronale Netze 227 Rekurrente Netze: Abkühlungsgesetz Ein Körper der Temperaturϑ wird in eine Umgebung der Temperaturϑ A eingebracht. Die Abkühlung/Aufheizung des
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
1.3 Flüsse. Y (t) = f(y(t))
18 Kapitel 1. Gewöhnliche Differentialgleichungen 1.3 Flüsse Sei jetzt F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes. Das
Versuch e - Lineares Pendel
UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Grundlagenpraktikum A für Bachelor of Nanoscience Versuch e - Lineares Pendel 23. überarbeitete Auflage 2011 Dr. Stephan
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester Physik-Institut der Universität Zürich
Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Resonanz (R) Herbstsemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 4 Resonanz (R) 4.1 4.1 Einleitung........................................
P1-12,22 AUSWERTUNG VERSUCH RESONANZ
P1-12,22 AUSWERTUNG VERSUCH RESONANZ GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 0.1. Drehpendel - Harmonischer Oszillator. Bei dem Drehpendel handelt es sich um einen harmonischen Oszillator. Das Trägheitsmoment,
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und
31 Die Potentialgleichung
3 Die Potentialgleichung Die Potentialgleichung oder auch Poisson-Gleichung ist die lineare Gleichung zweiter Ordnung u = f in einem Gebiet R n. Im homogenen Fall f = 0 spricht man auch von der Laplace-
TECHNISCHE MECHANIK III (DYNAMIK)
Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die
κ Κα π Κ α α Κ Α
κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ
Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke
Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer
Übungen zu Partielle Differentialgleichungen, WS 2016
Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,
KORREKTURANLEITUNGEN zum Testheft A1
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik KORREKTURANLEITUNGEN zum Testheft A1 A1 Zahlen N Z Q R 0,03-6 π 3 10-3 1 Bemerkung: Die Aufgabe gilt nur dann als richtig gelöst, wenn alle
!(0) + o 1("). Es ist damit möglich, dass mehrere Familien geschlossener Orbits gleichzeitig abzweigen.
Bifurkationen an geschlossenen Orbits 5.4 167 der Schnittabbldung konstruiert. Die Periode T (") der zugehörigen periodischen Lösungen ergibt sich aus =! + o 1 (") beziehungsweise Es ist also t 0 = T (")
Theoretische Physik: Mechanik
Ferienkurs Theoretische Physik: Mechanik Sommer 2016 Vorlesung 1 (mit freundlicher Genehmigung von Verena Walbrecht) Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 1 Mathematische
3. Versuch: Fadenpendel
Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 3. Versuch: Fadenpendel In diesem Versuch werden Sie mit den mechanischen Grundlagen vertraut gemacht. Anhand eines Fadenpendels
2.5 Asymptotisches Lösungsverhalten bei gewöhnlichen Differentialgleichungen
.5 Asymptotisches Lösungsverhalten bei gewöhnlichen Differentialgleichungen Wir wollen nun as Langzeitverhalten von Lösungen zu Systemen gewöhnlicher Differentialgleichungen untersuchen. Wir stellen uns
Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung
Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:
Versuch dp : Drehpendel
U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung
Theoretische Physik I: Weihnachtszettel Michael Czopnik
Theoretische Physik I: Weihnachtszettel 21.12.2012 Michael Czopnik Aufgabe 1: Rudolph und der Weihnachtsmann Der Weihnachtsmann (Masse M) und sein Rentier Rudolph (Masse m) sind durch ein Seil mit konstanter
Erzwungene Schwingungen
Fachrichtung Physik Physikalisches Grundpraktikum Versuch: ES Erstellt: M. Kauer B. Scholz Aktualisiert: am 28. 06. 2016 Erzwungene Schwingungen Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen
IX Relativistische Mechanik
IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.
1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine
5. Fourier-Transformation
Fragestellungen: 5. Fourier-Transformation Bei Anregung mit einer harmonischen Last kann quasistatitisch gerechnet werden, wenn die Erregerfrequenz kleiner als etwa 30% der Resonanzfrequenz ist. Wann darf
Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten
Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator
Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung
Einführung in die Maximum Likelihood Methodik
in die Maximum Likelihood Methodik Thushyanthan Baskaran [email protected] Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood
1 Lagrange sche Gleichung 1. Art
1 Lagrange sche Gleichung 1. Art 1.1 Einführung und Beispiel Bewege sich ein Massepunkt auf einer Geraden (G) im Raum, so hat dieser einen Freiheitsgrad, d.h. es müssen 2 Zwangsbedingungen für ihn gelten.
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n
2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve
Elektrodynamik. Übungsblatt 5 Musterlösungen. 1 c t( i A i ) = 4πρ, A i = i g + ( v) i. t ρ(τ, x)dτ + w( x) w 0 (t, x) + w( x),
UNIVERSITÄT LEIPZIG INSTITUT FÜR THEORETISCHE PHYSIK Elektrodynamik Übungsblatt 5 Musterlösungen 13 Aufgabe (a) Der Ausgangspunkt für diese Aufgabe sind die Maxwell-Gleichungen a ( a A b b A a ) = 4π c
Sei Φ(x, y, z) ein skalares Feld, also eine Funktion, deren Wert in jedem Raumpunkt definiert ist.
Beim Differenzieren von Vektoren im Zusammenhang mit den Kreisbewegungen haben wir bereits gesehen, dass ein Vektor als dreiwertige Funktion a(x, y, z) aufgefasst werden kann, die an jedem Punkt im dreidimensionalen
Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider
Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators
Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten
1.2 Schwingungen von gekoppelten Pendeln
0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken
Vorlesung 6: Alternativen zur Erwartungsnutzentheorie
Vorlesung 6: Alternativen zur Erwartungsnutzentheorie Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Entscheidung VL 6 (FS 11) Alternativen zur Erwartungsnutzentheorie 1 / 21 1.
Inhaltsverzeichnis INHALTSVERZEICHNIS 1
INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4
Fakultät Grundlagen. Februar 2016
Schwingungsdifferenzialgleichung Fakultät Grundlagen Hochschule Esslingen Februar 016 Fakultät Grundlagen Schwingungsdifferenzialgleichung Übersicht 1 Schwingungsdifferenzialgleichung Fakultät Grundlagen
Rekursionen (Teschl/Teschl 8.1-8.2)
Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied
Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund
Seminarvortrag Euler-Approximation Marian Verkely TU Dortmund 03.12.14 1 / 33 Inhaltsverzeichnis 1 Motivation 2 Simulierte Prozesse 3 Euler-Approximation 4 Vasicek-Prozess: Vergleich analytische Lösung
Experimente, Ideen und Entwicklung der Chaostheorie
Experimente, Ideen und Entwicklung der Chaostheorie Stephan Lück Ursprünge der Chaostheorie Edward Lorenz (1917-2008) Meteorologe einfaches Atmosphärenmodell (ca. 1960) basierend auf Konvektion Modellexperiment
Mathematik in der Biologie
Erich Bohl Mathematik in der Biologie 4., vollständig überarbeitete und erweiterte Auflage Mit 65 Abbildungen und 16 Tabellen ^J Springer Inhaltsverzeichnis Warum verwendet ein Biologe eigentlich Mathematik?
Name: Gruppe: Matrikel-Nummer:
Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 1/13/14) Dozent: J. von Delft Übungen: B. Kubala Klausur zur Vorlesung T1: Theoretische Mechanik, SoSe 008 (3. Juli 007) Bearbeitungszeit:
Von Fluss zu Abbildung und zurück
Kapitel 3 Von Fluss zu Abbildung und zurück 3.1 Poincaré-Abbildungen Sei ϕ ein Fluss auf einer Mannigfaltigkeit M (insbesondere M = Ê n oder M = T n ). Das zugehörige Vektorfeld heiße f, d.h. f(x) = d
8. Energie, Impuls und Drehimpuls des elektromagnetischen
8. Energie, Impuls und Drehimpuls des elektromagnetischen Feldes 8.1 Energie In Abschnitt 2.5 hatten wir dem elektrostatischen Feld eine Energie zugeordnet, charakterisiert durch die Energiedichte ω el
Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis)
Westfälische Wilhelms-Universität Münster Thema: Klassifikation von 1-Mannigfaltigkeiten (mit Beweis) und von abgeschlossenen 2-Mannigfaltigkeiten (ohne Beweis) Ausarbeitung im Rahmen des Seminars Einführung
Numerische Lösung gewöhnlicher Differentialgleichungen: (Erzwungene Schwingungen, Chaos)
Numerische Lösung gewöhnlicher Differentialgleichungen: (Erzwungene Schwingungen, Chaos) M. Fink, H.Ritsch 07 Ausdruck: 19. März 2007 0 Vorbemerkungen: Numerische Berechnungen und Simulationen bilden heute
D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9
D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, [email protected]
Ist Mathematik ansteckend? Mathematik und Epidemiologie
Ist Mathematik ansteckend? Mathematik und Epidemiologie Thomas Götz [email protected] Kolloquium Mathematik und ihre Didaktik 29.10.2013 Campus Landau Kollegen Karunia Putra Doktorand UKO-LD M.Sc. ITB
Allgemeines Näherungsverfahren zur Lösung von f(x) = 0 - Fixpunkt-Iteration -
Allgemeines Näherungsverfahren zur Lösung von f(x) = 0 - Fixpunkt-Iteration - Gernot Lorenz März 2006 Zusammenfassung Das Lösen von Gleichungen der Form f(x) = 0 auf algebraische Art, d.h. durch Auflösung
Räuber-Beute-Modelle, Auslese/Schwellensatz
Räuber-Beute-Modelle, Auslese/Schwellensatz Mareike Franz und Brigitte Steinhauser 15. Dezember 2008 1 / 37 1 Räuber-Beute-Modelle 2 Prinzip der Auslese durch Wettbewerb 3 Schwellensatz der Epidemiologie
Geodäten im hyperbolischen Raum und Zahlentheorie Geodesics in hyperbolic space and number theory
Geodäten im hyperbolischen Raum und Zahlentheorie Geodesics in hyperbolic space and number theory Petridis, Yiannis Max-Planck-Institut für Mathematik, Bonn Korrespondierender Autor E-Mail: [email protected]
Numerische Methoden I FEM/REM
Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: [email protected] Dresden, 27.0.206 Klausur Datum: 2.3.206 Numerische Methoden RES, SM, MT (DPO 203),
7. Kritische Exponenten, Skalenhypothese
7. Kritische Exponenten, Skalenhypothese 1 Kritische Exponenten, Universalitätsklassen 2 Beziehungen zwischen den kritischen Exponenten 3 Skalenhypothese für die thermodynamischen Potentiale G. Kahl (Institut
Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik
Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik von Wolfgang König, Heinrich Rommelfanger, Dietrich Ohse, Oliver Wendt, Markus Hofmann, Michael Schwind, Klaus Schäfer, Helmut Kuhnle, Andreas
Aus der Schwingungsdauer eines physikalischen Pendels.
2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es
Ferienkurs Theoretische Mechanik Lösungen Hamilton
Ferienkurs Theoretische Mechanik Lösungen Hamilton Max Knötig August 10, 2008 1 Hamiltonfunktion, Energie und Zeitabhängigkeit 1.1 Perle auf rotierendem Draht Ein Teilchen sei auf einem halbkreisförmig
Der Primzahlsatz. Es gibt eine Konstante A, so daß f(x) g(x) Ah(x) für alle genügend großen x.
Der Primzahlsatz Zusammenfassung Im Jahr 896 wurde von Hadamard und de la Vallée Poussin der Primzahlsatz bewiesen: Die Anzahl der Primzahlen kleiner gleich verhält sich asymptotisch wie / log. Für ihren
Theoretische Physik I Mechanik Probeklausur - Lösungshinweise
Prof. H. Monien St. Kräer R. Sanchez SS2014 Theoretische Physik I Mechanik Probeklausur - Lösungshinweise Hinweise: Diese Lösung/Lösungshinweise erhebt keinen Anspruch auf Richtigkeit oder Vollständigkeit,
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Schwingungen und Wellen - Prof. Dr. Ulrich Hahn SS 28 Mechanik elastische Wellen Schwingung von Bauteilen Wasserwellen Akustik Elektrodynamik Schwingkreise elektromagnetische
Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand
Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche
Kapitel 16 : Differentialrechnung
Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen
Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)
Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?
